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Molecular fragmentation algorithms provide a powerful approach to extending electronic structure
methods to very large systems. Here we present a method for including charge transfer between
molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential
energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved,
and charge transfer between fragments is not allowed. The description of charge transfer is made pos-
sible by treating each fragment as an open system with respect to the number of electrons. To achieve
this, we applied Mermin’s finite temperature method to the X-Pol wave function. In the application of
this method to X-Pol, the fragments are open systems that partially equilibrate their number of elec-
trons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment
can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The
equilibrium state for the electrons is determined by electronegativity equalization with conservation
of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the
temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We
determined this coupling parameter so as to reproduce the charge transfer energy obtained by block
localized energy decomposition analysis. We apply the new method to ten systems, and we show
that it can yield reasonable approximations to potential energy profiles, to charge transfer stabiliza-
tion energies, and to the direction and amount of charge transferred. © 2011 American Institute of
Physics. [doi:10.1063/1.3624890]

I. INTRODUCTION

Charge transfer interaction was introduced into theo-
retical chemistry by Mulliken and others1, 2 to explain the
attractive interaction in complexes that could not be classi-
fied according to the interaction types previously recognized,
in particular, ionic, covalent, and hydrogen bonds. Since
then, charge transfer systems have been extensively studied
by experiment, calculations, and model development.3–6 We
are concerned here with charge transfer between interact-
ing molecules or fragments in their ground electronic states,
and from the point of view of molecular orbital theory, such
charge transfer is recognized as the migration of electron
density primarily from the highest occupied molecular or-
bital (HOMO) of an electron donor to the lowest unoccupied
molecular orbital (LUMO) of an electron acceptor. Charge
transfer is included in molecular modeling by treating the
complex as a supermolecule, and, if desired, the specific con-
tribution of charge transfer to the complex’s energy can be
identified by energy decomposition methods.7–10 The appli-
cation of decomposition methods to a wide range of systems
has made clear the role of the charge transfer interaction in
both simple and complex systems.11–15

Electron transfer is important not just in charge trans-
fer complexes1, 2 (where it provides the dominant contribu-
tion to binding) but to some extent in all interatomic and
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intermolecular interactions, except for high-symmetry cases
in small systems. Neglect of charge transfer interactions in
molecular modeling has the consequence that the electron
densities and/or charge distributions upon which the model-
ing is based have systematic errors. In recent years, consid-
erable attention has been devoted to including polarization in
molecular modeling methods,16–28 but usually without includ-
ing charge transfer between interacting molecules or molec-
ular fragments. This is unbalanced because charge transfer is
actually an extreme form of polarization, where the polarized
charge moves a significant distance and cannot be well ap-
proximated as a linear response.

The explicit polarization (X-Pol) method29–32 is a model
that describes polarization by a quantum mechanical treat-
ment of molecular electron densities (as opposed to many
other models that are essentially classical, such as molecu-
lar mechanics). In this model, a condensed-phase system is
divided into interacting fragments, the internal energies of
the fragments are treated with quantum mechanical electronic
structure theory, and the interactions between fragments are
described by electrostatistics and empirical functions for the
description of exchange repulsion and dispersion-like inter-
actions between fragments. The sum of these exchange re-
pulsion and dispersion-like interactions is called the van der
Waals energy. The true interfragment interaction may be de-
composed into five components: electrostatic, polarization,
exchange-repulsion, dispersion, and charge transfer interac-
tions. In the X-Pol method, the electrostatic interaction can be
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described using a variety of approaches, including the approx-
imation used here that the electrostatic potential of the other
fragments is given by the Coulomb potential of partial atomic
charges29, 31, 32 (one can also use multipole moments33). The
exchange repulsion interactions can be estimated by antisym-
metrizing the X-Pol wave function34 using the block-localized
wave function (BLW) approach.10 The exchange repulsion
is short-ranged and approximately pairwise additive, and so
here and in most previous work we approximate it by the
short range term of Lennard-Jones potentials. Dispersion is
also included by Lennard-Jones potentials, and the polariza-
tion is included by a self-consistent field quantum mechanical
model. Charge transfer interaction between fragments that are
not connected by a covalent bond is not included in the orig-
inal X-Pol method because the fragments each have a fixed
number of electrons.

The requirement that fragments have a fixed integer num-
ber of electrons presents a barrier to including charge transfer
in all quantum mechanical fragment models. Li et al.35 in-
cluded the charge transfer interaction in the framework of the
effective fragment method36, 37 based on the second-order per-
turbation method. In the perturbation method, the stabiliza-
tion energy by the charge transfer is included by the combina-
tion of occupied molecular orbitals of one fragment with the
virtual molecular orbitals of another fragment. The perturba-
tion method was also used in the study by Stone.38 However,
the perturbation approach lacks self-consistency steps and be-
haves correctly only when the interaction is relatively small.

In this work, we construct a self-consistent fragment-
based charge transfer model that predicts the direction and
amount of charge transfer from one fragment to the other frag-
ment and provides an estimate of the stabilization energy due
to charge transfer. The method is an extension of X-Pol, and
we call it grand canonical-X-Pol or GC-X-Pol. It is applica-
ble to both weak van der Waals interactions and to the fairly
strong interactions in systems that include charged species. In
order to describe the migration of electrons from one fragment
to another, one needs to treat each fragment as an open system
with respect to the number of electrons. Mermin’s finite tem-
perature method39 makes this possible, because the electrons
in a molecule are treated with the grand canonical ensemble
and the electron distribution is determined by Fermi–Dirac40

statistics. Mermin’s theory is an extension of the Hohenberg–
Kohn theorem41 and reduces to conventional density func-
tional theory in the case of zero temperature. It has been
applied to electrochemical processes42 and to the dynamics
of quantum fluids.43–46 In our application of this theory to
the X-Pol fragment method, the distribution of electrons be-
tween fragments is determined based on the concept of chem-
ical potential equalization, which is also called electronega-
tivity equalization. This concept was originally suggested by
Sanderson47 and has been rigorously defined in density func-
tional theory.48, 49 A large number of applications have proved
that this concept is a useful tool to determine the redistribu-
tion of charge densities during chemical processes.50–66 Much
of the previous work on electronegativity equilibration algo-
rithms has been in the context of polarizable molecular me-
chanics and semiempirical valence bond theory, but we note
that the method has also previously been applied67 in a quan-

FIG. 1. Electron donor (ED) and acceptor (EA) combined via an elec-
tron reservoir with coupling strength τ1 and τ2, respectively. ε0,HOMO and
ε0,LUMO are labeled for the orbitals of the HOMO and the LUMO at zero
coupling. μ1 and μ2 are chemical potentials and these are located on be-
tween the HOMO and the LUMO. The right and left arrows indicate that the
system is in an equilibrium state for the electrons.

tum mechanical fragment method, which is the subject of the
present paper.67

II. METHOD

II.A. Mermin’s free-energy functional in X-Pol

We consider a system which is composed of Nf frag-
ments. For example, each fragment can be a molecule or ion
in a liquid system or a residue in a protein. Each fragment is
coupled to the others via an electron reservoir as shown in
Fig. 1, and the fragments exchange electrons through the
reservoir. The grand canonical energy for a fragment α is
given by39

Fα[ρα(r)] = Tα[ρα(r)] + Jα[ρα(r)] + �xc,α[ρα(r)]

− θSα[ρα(r)] +
∫

(vext(r) − μ) ρα(r)dr + Enuc
α ,

(1)

where the first term is the electronic kinetic energy, and the
second and third terms are electron-electron Coulomb energy
and exchange-correlation energy, respectively. The first and
second energy terms are given by

Tα[ρα(r)] =
Mα∑
i

fα,i

∫
ψα,i(r)

(
−∇2

2

)
ψα,i(r)dr (2)

and

Jα[ρα(r)] = 1

2

∫ ∫
ρα(r)ρα(r′)

|r − r′| drdr′, (3)

where ψα,i(r) is the ith molecular orbital and Mα is the num-
ber of orbitals in fragment α. Note that in closed-shell frag-
ments the up-spin and down-spin spatial orbitals are iden-
tical, in which case each spatial orbital occurs twice. In
Eq. (2), fα,i(εα,i) is orbital occupancy which is represented
by the Fermi–Dirac distribution function,

fα,i(εα,i) = 1

1 + exp

(
εα,i − μ

kBθ

) . (4)
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Here εα,i is the orbital energy of the ith molecular orbital, μ

is the chemical potential that characterizes the whole system,
and kB and θ are the Boltzmann constant and the temperature,
respectively.

At zero temperature, μ is equal to the Fermi energy εF ,
and the occupancy function becomes a Heaviside function,

fα,i(εα,i) =
{

1 (εα,i < εF )

0 (εα,i > εF ).
(5)

The orbitals that have zero occupancy in this limit are called
virtual orbitals.

The fourth term in Eq. (1) is the contribution of the en-
tropy, where the entropy for Fermi particles is given by

Sα[ρα(r)] = −kB

Mα∑
i

{fα,i ln fα,i + (1 − fα,i) ln(1 − fα,i)}.
(6)

The entropy term has a nonzero value only when one or more
of the orbitals is occupied by a fractional number of electrons.

In the fifth term in Eq. (1), vext(r) is the potential from
sources external to the electronic subsystem of fragment α;
this includes the interaction of the electrons in fragment α

with the nuclei of fragment α and with the electrostatic field
due to the other fragments. Therefore, the interaction between
the external potential and the electron density in fragment α

is given by

∫
vext(r)ρα(r)dr = −

Nα∑
a∈α

∫
Za

|r − Ra|ρα(r)dr

−
Nf∑

β �=α

Nβ∑
b∈β

∫
qb

|r − Rb|ρα(r)dr, (7)

where Nα and Nf are the number of atoms in fragment α

and the number of fragments, respectively, and Ra is the co-
ordinate of nucleus a. The terms in Eq. (7) represent interac-
tions of electrons with the nuclear charges {Zα} in the same
fragment α and with the partial atomic charges {qb} in the
remaining fragments. The chemical potential also affects the
motion of electrons, such that the electrons move in the ef-
fective potential vext − μα . The last term in Eq. (1) represents
nuclear-nuclear repulsion interaction energies.

At a finite temperature, the equilibrium system is as-
sumed to be a mixture of ground and excited states, and we
observe some electron density in the virtual orbitals. The elec-
tron density in fragment α is expressed as

ρα(r) =
Mα∑
i=1

fα,i(εα,i)|ψα,i(r)|2. (8)

The number of electrons in each fragment is not fixed because
each fragment can exchange electrons with other fragments
via the electron reservoir; however, the total number of elec-
trons in the whole system, Ntot, is preserved as

Nf∑
α

Mα∑
i∈α

fα,i = Ntot. (9)

The actual charge transfer interactions in the systems we
study are not caused by a finite temperature; however, we
use the finite-temperature ensemble with an artificially raised
temperature to model the correction to the approximation
that each fragment has a fixed number of electrons. The
determination of the temperature parameter is explained in
Section IV.

The molecular orbitals that minimize the grand canoni-
cal potential energy are obtained by solving the grand canon-
ical Kohn–Sham (KS) equations at a finite temperature θ and
chemical potential μ,⎧⎨
⎩−∇2

2
−

Nα∑
a∈α

Za

|r − Ra| +
∫

ρα(r′)
|r − r′|dr′ +

Nf∑
β �=α

Nβ∑
b∈β

qb

|r − Rb|

+wxc,α,i(r)

}
ψα,i(r) = εα,iψα,i(r), (10)

where wxc,α,i(r) is exchange-correlation potential defined by

wxc,α,i(r) ≡ δEXC

δρα,i(r)
. (11)

Equation (10) differs from the conventional zero-temperature
KS equation in that the electron density is represented with
fractional occupation numbers. The grand canonical Kohn-
Sham operator is the operator in the braces of Eq. (10).
It depends implicitly on μ because it involves the electron
density, which depends on the chemical potential through
Eqs. (4) and (8).

Using the molecular orbitals obtained from Eq. (10), one
can calculate the grand canonical energy of fragment α from a
formula analogous to that used in Hartree–Fock (HF) theory,

Fα = Eα − θSα − Nαμα

= 1

2

Mα∑
λ

Mα∑
ν

P̃α,λν

(
H core

α,λν + Fα,λν

) − θSα − Nαμα.

(12)

In Eq. (12), Fα,λν is an element of the Fock matrix, and H core
α,λν

is defined as69

H core
α,λν =

∫
φ∗

α,λ

[
−1

2
∇2 −

Nα∑
a∈α

Za

|r − Ra|

−
Nf∑

β �=α

Nβ∑
b∈β

∫
qb

|r − Rb|

⎤
⎦φα,νdr, (13)

where the indices λ and ν refer to the atomic orbitals, and
P̃α,λν is a density matrix element that can be written using
fractional occupancies as

P̃α,λν =
Mα∑
i

fα,icα,λicα,νi , (14)

where cα,λi is the coefficient of the λth atomic orbital in
molecular orbital i of fragment α.
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Then the total energy of the entire system is written as

EX-Pol =
Nf∑
α

Uα + 1

2

Nf∑
α

Nα∑
a∈α

Nf∑
β �=α

Nβ∑
b∈β

qbZa

|Rb − Ra| + EvdW,

(15)
where

Uα = Eα − θSα. (16)

Note that Eq. (15) excludes the chemical potential contribu-
tion of the grand canonical energy Fα . Because Sα is very
small, Uα is almost equal to the electronic energy Eα , which
is as a sum of the kinetic and potential energies of the electron.
The second and third term in Eq. (15) represent the Coulomb
and van der Waals interactions between fragments, respec-
tively. In the present study, the partial charge is determined
by Mulliken population analysis,70 and the Mulliken charge
is given by

qb = Zb −
Mβ∑
μ∈b

(P̃S)μ, (17)

where S is the overlap integral. The van der Waals interactions
are determined using the Lennard-Jones potential function,

Evdw =
Nα∑
a

Nβ∑
b

4εab

[(
σab

Rab

)12

−
(

σab

Rab

)6
]

. (18)

The pairwise parameters εab and σab are derived from atomic
parameters εa , εb, σa , and σb by using combining rules:

εab = √
εaεb (19a)

σab = σa + σb

2
(19b)

Notice that hardness is included automatically in the present
model by the full electronic structure calculation on each frag-
ment.

II.B. Fermi–Dirac distribution function for X-Pol

According to the electronegativity equalization principle,
the chemical potential is the same in every fragment of the
complex. However, in a fragment method, we are not treat-
ing true thermodynamic equilibrium, and the degree of equal-
ization should depend on the strength of coupling between a
pair of fragments, and this coupling strength is a function of
the distance between them. For example, when the two frag-
ments are infinitely separated, the chemical potential of each
fragment is independent of the other fragment because the

two fragments are no longer coupled to a common electron
reservoir. The need for introducing partial equilibration when
overlap is diminished is well established in the literature of
electronegativity equilibration.58, 59, 61, 62, 64, 68 If a fragment is
infinitely separated from all other fragments, then its chemical
potential is the same as that in the gas phase, and as two frag-
ments approach, the coupling becomes significant, and each
fragment is characterized by the same chemical potential (we
call the common chemical potential the universal chemical
potential). We include this distance effect by writing,

μα = gαμ̃ + (1 − gα)μ0
α(τα), (20)

where μ0
α(τα) is the chemical potential of the constituent frag-

ment that combines with the electron reservoir with coupling
strength τα , μ̃ is the universal chemical potential for the entire
system based on the self-consistent equations for the coupled
fragments, and gα is the weight of the universal chemical po-
tential μ̃ as specified below.

The Fermi–Dirac distribution depends on both the tem-
perature and the chemical potential. In the Fermi–Dirac dis-
tribution function, the occupancies of the virtual orbitals
increase with increasing temperature, and this controls the
amount of charge transfer. In order to reflect the dependency
of the coupling strength on the interfragment distance, we
rewrite the Fermi–Dirac distribution function as

fα,i = 1

1 + exp

(
εα,i − μα

τα

) (21)

where τα is coupling strength defined by

τα ≡ kBθgα. (22)

The weight gα is an exponentially decaying pairwise function
of the effective distance between atomic sites, and it deter-
mines the balance between the universal chemical potential
and the chemical potential of the single fragment α. At infi-
nite separation of a given fragment from all other fragments,
gα becomes zero, and the coupling strength becomes zero.
The weight takes a value between 0 and 1 and is given by

gα(R̃ab) = 1

Nβ

Nβ∑
b∈β

1

Nα

Nα∑
a∈α

e−ζ R̃ab , (23)

where Nα and Nβ are the numbers of atoms in fragments α

and β, respectively, and ζ is a constant parameter that deter-
mines the dependence on the effective distance R̃ab between
atom a in fragment α and atom b in fragment β. The effective
distance is given by

R̃ab =

⎧⎪⎪⎨
⎪⎪⎩

0, (Rab < σ̃ab)

Spl(Rab) = α(Rab − σ̃ab)3 + β(Rab − σ̃ab)4 + γ (Rab − σ̃ab)5, (σ̃ab ≤ Rab ≤ σ̃ab + �)

Rab, (Rab > σ̃ab + �)

(24)
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where the two functions R̃ab = 0 and R̃ab = Rab are smoothly
connected by the spline function Spl(R̃ab) in the region be-
tween σ̃ab and σ̃ab + �. The coefficients of the spline function
are given by

α = 10

�3
(� + σ̃ab) − 4

�2
, (25)

β = −15

�4
(� + σ̃ab) + 7

�3
, (26)

γ = 6

�5
(� + σ̃ab) − 3

�4
. (27)

These are obtained by solving the linear equations yielded by
imposing three continuity conditions for the function and its
first two derivatives at each boundary. The pairwise parameter
σ̃ab is written as

σ̃ab = κ (σ̃a + σ̃b) , (28)

where σ̃a is the van der Waals radii of atom a. In
Eqs. (24)–(27), � and κ are constant parameters which are
independent of the type of atom or the system. Because
Eq. (23), like overlap, decreases exponentially with distance,
its use should eliminate the superlinear scaling and unphysical
polarizabilities encountered59, 63, 64 in early versions of elec-
tronegativity equalization based on molecular mechanics. The
use of Eq. (23) also avoids the problem of dissociation to ion
instead of neutral fragments.60

III. COMPUTATIONAL DETAILS

In the conventional X-Pol method, double self-consistent
field (SCF) optimizations are performed.29, 31, 32 One of
the SCF procedures corresponds to molecular orbital opti-
mizations for the individual fragments under the external
electrostatic potential of the remaining fragments. In the
nonvariational version of X-Pol that is used here, this elec-
trostatic potential is the same as is used in quantum me-
chanical/molecular mechanical (QM/MM) calculations based
on partial atomic charges. The other SCF calculation is per-
formed to obtain the full relaxation of the electronic polar-
ization over the entire system. In this procedure, the wave
function of given fragments and the charges of the remaining
fragments are alternately (or simultaneously) updated. The
double SCF calculations are continued until the total energy
of the whole system converges. In addition to the above SCF
calculations, one more iterative calculation is required in the
GC-X-Pol method in order to determine a universal chemical
potential that characterizes the system. The procedure includ-
ing the triple SCF calculations is illustrated with the flowchart
in Fig. 2. The initial chemical potential of a fragment α that is
coupled to the electron reservoir is given by

μ0,init
α = εHOMO

α (0) + εLUMO
α (0)

2
, (29)

where superscript “0” indicates the isolated fragment, and
εHOMO
α (0) and εLUMO

α (0) are respectively orbital energies of
the HOMO and LUMO at zero temperature. This equation

FIG. 2. Flowchart of triple SCF procedures in GC-X-Pol method.

originates from Mulliken’s definition of absolute electroneg-
ativity,

χ = IP + EA

2
, (30)

where IP and EA are the ionization potential and electron
affinity, respectively. For this purpose, the IP and EA are
approximated by orbital energies:

IP ≈ εHOMO
α (0) (31a)

and

EA ≈ εLUMO
α (0), (31b)

where Eq. (31a) is Koopmans’s theorem.71 The initial univer-
sal chemical potential is given as an average of the chemical
potentials of constituent single fragments,

μ̃init =
Nf∑
α

μ0
α(τα)/Nf . (32)

At each iteration, the electronic structure of each fragment is
determined under the constant chemical potential μα and cou-
pling strength τα , where the occupancies change in each iter-
ation step of the SCF procedure because the occupancies are
functions of the molecular orbital energies. After the molecu-
lar orbitals are optimized for the all of fragments, the number
of electrons in the whole system is checked. The chemical
potential is increased when the total number of electrons is
smaller than the original number of electrons and is reduced
when the number is exceeded. This adjustment is continued
until the total number of electrons in the entire system reaches
the original integer number. To achieve smooth convergence
of the chemical potential, we used the following function for
the adjustments:

�μj = EhC�Nj (33)
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FIG. 3. Chemical structures of ten dimer systems with the definitions of R and θ . (a)–(c) are hydrogen bonded systems of neutral dipole-dipole complexes,
(d)–(f) are hydrogen bonded systems of ion–dipole pairs, (g)–(j) are charge transfer systems.

with

�Nj = Nj − N0, (34)

where Eh is one hartree, C is unitless, and �Nj is the
difference of the number of electrons at the j th iteration
step Nj and the original number of electrons N0. Note that
Eq. (33) is obtained by a first-order truncation of the Fermi-
Dirac distribution. The initial value of C is 1.0 and the value
is changed in each SCF iteration step as following. When the

number of electrons fluctuates around the original number of
electrons, we multiply C by a factor 0.0 < Cfluctuation < 1.0.
On the other hand, when the number of electrons is continu-
ously under or over of the original number of electrons, we
multiply C by 1.0 < Cmonotonic < 2.0. Thus, C is written as a
product of powers of Cfluctuation and Cmonotonic. The threshold
for each SCF procedure is 10−7 electron for the total num-
ber of electrons, 10−6 hartrees for the electronic energy of
each fragment, and 10−7 hartrees for the X-Pol energy of the
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TABLE I. Optimized intermolecular distance R [Å] and angle θ [degree].

Ra θb

(a) H2O · · ·H2O 1.92 140.7
(b) CH3OH · · ·H2O 1.92 139.5
(c) CH3NH2· · ·H2O 2.15 135.5
(d) CH3NH+

3 · · ·H2O 1.71 180.0b

(e) CH3CO−
2 · · ·H2O 1.69 122.5

(f) NH+
4 · · ·H2O 1.68 180.0b

(g) ClF · · ·NH3 2.43 127.0
(h) Cl2· · ·NH3 2.64 126.3
(i) ClF · · ·H2O 2.55 134.7
(j) ClF · · ·C2H4 2.83 ...

aThe definitions of R and θ are given in Fig. 3.
bThe value is fixed to avoid the flip of the water molecule at large R and to define a
reaction coordinate that yields a smooth binding energy profile.

entire system. The actual number of interactions required to
achieve convergence will depend on the algorithm used. The
algorithm presented above is a straightforward one but it’s not
optimized. Optimization of the iteration scheme is subject for
future study.

All of the geometries are optimized using the M06-2X
density functional72 with the 6-31+G(d,p) (Ref. 73) basis set.
The dimer geometries are determined by partial optimization
with the internal geometry of each monomer fixed. The opti-
mized intermolecular coordinates are summarized in Table I.
In the X-Pol calculation for both 0 K and finite temperature,
the energies are calculated using M06-2X with the 6-31G(d)
(Ref. 73) basis set because this basis set provides reasonable
Mulliken charge distributions.32 (However, one can also use
more accurate charge models74–76 in future work.) In the nu-
merical calculation of the exchange-correlation energy, polar
coordinates are employed for the grid generation. The num-
ber of grid points is as follows. Ninety-six radial points in the
Euler-MacLaurin quadrature, 20 points for angle theta, and 40
points for angle phi grids in the Gauss-Legendre quadrature.
This number of grid points provides enough accuracy for the
comparison of eigenvalues between different conformers for
the identical molecule.

Lennard-Jones (LJ) parameters are important for the ac-
curate estimate of interaction energy between QM and MM
fragments.77, 78 The present LJ parameters are taken from the
previous X-Pol work32 for C, O, and N atoms except that here
we use an arithmetic mean in Eq. (19b), and Ref. 32 used
a geometric mean. These parameters were optimized for the
B3LYP/6-31G(d) model so as to reproduce the equilibrium
geometries and the binding energies determined by electronic
structure calculations (therefore, these parameters need not be
the optimal ones for the present M06-2X functional, but they
will suffice to illustrate the new method). For the O atom, we
took the average value for those of the sp2 and sp3 hybridiza-
tion states. The parameters of F and Cl are the same as those
used in the generalized AMBER force field,79 except for ep-
silon of Cl. Both εH and σH are parametrized in the present
study so as to yield reasonable binding energy surfaces for hy-
drogen bonded systems, and σCl is parametrized for the refer-
ence charge transfer systems. The LJ parameters that we used
are summarized in Table II.

TABLE II. Lennard-Jones parameters.

Ha Cb Nb O Fd Cl

σ [Å] 1.100 3.650 3.450 3.225c 3.120 2.610a

ε [kcal/mol] 0.080 0.150 0.200 0.150b 0.061 0.265d

aDetermined in the present study.
bTaken from Ref. 32.
cTaken average for two hybridization states, sp2 and sp3 in Ref. 32.
dTaken from Ref. 79.

IV. PARAMETRIZATION

Mermin’s grand canonical method is incorporated in
the X-Pol method in Subsection II A, and in Subsec-
tion II B we included the distance effect using weight
function gα in the Fermi–Dirac distribution function in
order to take account of the vanishing of the cou-
pling when the subsystems are separated. In the weight
function gα , three kind of parameters, ζ , �, and van
der Waals radii, are included. We used Bondi’s values80

for the atomic radii: σ̃H = 1.20, σ̃O = 1.52, σ̃C = 1.70, σ̃N

= 1.55, σ̃F = 1.47, σ̃Cl = 1.75 in Å. Thus, the present charge
transfer model has three parameters still to be determined: ζ ,
�, and temperature θ . The absolute coupling strength is de-
termined by θ , and ζ and � have less of an effect on the main
results. Therefore, we parametrize θ for reasonable values of
ζ and �. In the present, we set ζ = 0.05 a−1

0 and � = 1.0 Å.
The parametrization of θ is carried out so as to reproduce

the charge transfer energy yielded by the BLW energy decom-
position method (BLW-ED).10 Figure 2 shows ten dimer sys-
tems used for the parametrization; these include 6 hydrogen
bonded systems and 4 charge transfer systems.6, 81–83

In GC-X-Pol, the charge transfer interaction energy is de-
fined by

�E
CT,GC-X-Pol
AB ≡ �EGC-X-Pol

AB (τα, τβ ) − �EX-Pol
AB (0),

(35)
where �EGC-X-Pol(τα, τβ) is the GC-X-Pol binding energy
calculated by

�EGC-X-Pol
AB (τα, τβ ) = EGC-X-Pol

AB (τα, τβ ) − EGC-X-Pol
A (τα)

−EGC-X-Pol
B (τβ), (36)

and where �EX-Pol
AB (0) is the binding energy calculated by

X-Pol without charge transfer, which is given by setting θ

equal to zero:

�EX-Pol
AB (0) = EX-Pol

AB (0) − EA(0) − EB(0), (37)

where EX-Pol
AB (0) is the conventional X-Pol energy, and EA(0)

is the monomer energy at zero temperature. Note that in
Eq. (36), the reference state is defined as the isolated frag-
ments each coupled to the electron reservoir with the same
coupling strength that they have in the dimer. This definition
is necessary to treat the kinetic energy of the electrons con-
sistently in the coupled and uncoupled states. Note that the
charge transfer energy in Eq. (36) may be considered as a
model to mimic the electron delocalization effect as defined
in the BLW Ref. 10 decomposition scheme, and the proce-
dure should not be interpreted as yielding a physical wave
function; that is important because the charge transfer energy
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is not the difference between the GC energy and the energy of
X-Pol, but rather it is an addition to the X-Pol energy based
on the difference of terms calculated with nonzero coupling
strengths, whereas the X-Pol wave function has zero coupling
strength.

The quantity that is minimized in the parameter optimiza-
tion is the root-mean square (RMS) deviation of the charge
transfer energy predicted by GC-X-Pol from that predicted
by the BLW-ED method; this is given by

R(θ ) =
√√√√ 1

Ns

Ns∑
Is

(
�E

CT,GC-X-Pol
Is

(θ ) − �E
CT,BLW
Is

)
,

(38)
where Ns is the total number of test systems. In the BLW
method, the charge transfer energy is defined as

�ECT,BLW = E(�AB) − E
(
�BLW

AB

)
, (39)

where �AB is the fully optimized wave function for dimer AB,
and �BLW

AB is a block localized wave function defined by

�BLW
AB = Â {�A�B} , (40)

where �A represents a wave function that includes the polar-
ization (intramolecular charge redistribution) and exchange
interactions, and Â is an antisymmetrizer. It is noted that
the migration of electrons between fragments A and B (in-
termoleular charge redistribution) is not allowed in the wave
function �BLW

AB . In order to allow charge transfer, it is required
to expand the orbitals of each monomer to the space of the
entire system. Thus, BLW and X-Pol have the same definition
of charge transfer from the point of view that the all of inter-
actions except for charge transfer are based on the localized
wave function in each fragment, although BLW also includes
exchange repulsion explicitly.

V. RESULTS AND DISCUSSION

V.A. Effect of coupling strength on charge transfer

Table III lists orbital energies and electron occupancies
of the electron donor in a water dimer at three temperatures,
0 K, 15 000 K, and 25 000 K. The purpose of the table is to il-
lustrate the Fermi-Dirac distribution achieved by the coupled
open systems that have partially equilibrated their number of
electrons in the quasithermodynamic model of the dimer. By
Eq. (22), these temperatures correspond to coupling strengths
τα of 0.00 eV, 1.20 eV, and 2.00 eV, respectively, with the
value of weight function gα in Eq. (22) being 0.93. As the
coupling strength increases, the orbital energies are lowered,
and occupancies of the virtual orbitals increase. On average,
for 38 occupied and virtual orbitals in the dimer, the orbital
energy lowering is 0.03 eV for θ = 15 000 K and 0.32 eV for
θ = 25 000 K; this large orbital energy shift is especially im-
portant for the HOMO and LUMO. One of the reasons that
the orbital energies are lowered is the shielding effect, that
is, as the temperature increases, the electron momentum in-
creases, allowing occupancy of the higher energy orbitals. As
a consequence, the electron densities in the inner shell be-
come smaller, and the net interaction with inner orbitals and
the nucleus becomes more attractive. The other reason is the
complementary relationship between kinetic energy and po-
tential energy due to the virial theorem.

The electrons distribute in a broader range of orbitals at
the higher temperature due to the Fermi–Dirac distribution. To
understand this better, we tested using a Gaussian-type distri-
bution instead of the Fermi–Dirac distribution. When we did
this, even higher temperature parameters were required to ob-
tain the same amount of charge transfer as that obtained with
the Fermi–Dirac distribution. This result indicates that the oc-
cupation of the high energy orbitals is an essential condition
for the charge transfer states.

Because the amount of charge transferred and the charge
transfer energy are physical observables and depend on the
definition used, we focus first on the binding energy, which

TABLE III. Orbital energies [eV] and occupancies at 0 K, 15 000 K, and 25 000 K for the electron donor of water
dimer calculated with GC-X-Pol with M06-2X/6-31G(d).

θ = 0 θ = 15 000 θ = 25 000

εi fi εi fi εi fi

1 − 533.14 1.0 − 533.27 1.000 000 000 0 − 533.99 1.000 000 000 0
2 − 29.51 1.0 − 29.62 0.999 999 999 7 − 30.22 0.999 998 425 9
3 − 15.37 1.0 − 15.47 0.999 958 717 9 − 16.01 0.998 084 891 7
4 − 11.42 1.0 − 11.53 0.998 892 567 6 − 12.05 0.986 315 204 0
5 (HOMO) − 9.44 1.0 − 9.51 0.994 070 052 8 − 9.89 0.960 705 034 3
6 (LUMO) 4.19 0.0 4.15 0.001 920 634 8 3.76 0.025 489 804 2
7 6.97 0.0 6.92 0.000 187 785 5 6.60 0.006 314 469 6
8 23.98 0.0 23.90 0.000 000 000 1 23.50 0.000 001 363 6
9 26.52 0.0 26.43 0.000 000 000 0 25.99 0.000 000 391 7

10 27.00 0.0 26.91 0.000 000 000 0 26.41 0.000 000 317 9
11 27.21 0.0 27.12 0.000 000 000 0 26.59 0.000 000 290 8
12 32.17 0.0 32.08 0.000 000 000 0 31.59 0.000 000 023 8
13 34.68 0.0 34.60 0.000 000 000 0 34.16 0.000 000 006 6
14 49.58 0.0 49.47 0.000 000 000 0 48.88 0.000 000 000 0
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FIG. 4. Relationship between binding energy and coupling strength in
(a) CH3OH · · ·H2O, (b) NH+

4 · · ·H2O, and (c) ClF · · ·H2O.

is an observable. Figure 4 gives the relationship between the
binding energy and the coupling strengths. As the coupling
strength increases, the binding energy changes almost mono-
tonically. However, the ratio of increase of binding energy is
not linear, and it depends on the system, because of the de-
pendence on the whole set of orbital energies. Figure 5 shows
the coupling strength dependence of the charge separation. As
can be expected, the amount of charge transfer becomes large
as the coupling strength increases. The monotonic increase
of charge separation with the coupling strength correlates
with the binding energy stabilization for CH3OH · · ·H2O and
NH+

4 · · ·H2O. However, for ClF · · ·H2O, the behavior of the
charge separation is not monotonic; for example, the charge
separation at coupling strength 1.52 eV (θ = 21 000 K) and
2.17 eV (θ = 30 000 K) is almost the same with the value be-
ing 0.011 e. This is because the intramolecular charge redis-
tribution rather than the intermolecule charge redistribution is
dominant at 30 000 K. The charge on the O atom is −0.81 e
and −0.75 e for coupling strengths of 1.52 eV and 2.17 eV,
respectively.

Figure 6 displays the energy difference between the
HOMO of the electron donor and the LUMO of the elec-
tron acceptor and the HOMO of the electron acceptor and
the LUMO of the electron donor. For hydrogen bonded sys-
tems in the both neutral–neutral and ion–neutral pairs, the en-
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FIG. 5. Relationship between charge separation and coupling strength in
(a) CH3OH · · ·H2O, (b) NH+

4 · · ·H2O, and (c) ClF · · ·H2O. The charge of
electron donor is plotted with closed circle and the charge of electron ac-
ceptor is plotted with open circle.

ergy gap between the HOMO of the electron donor and the
LUMO of the electron acceptor increases, and the energy gap
between the HOMO of the electron acceptor and the LUMO
of the electron donor decreases. Thus, one energy gap in-
creases, and another energy gap decreases. This indicates that
the charge transfer from the HOMO of the electron acceptor
to the LUMO of the electron donor also contributes to the
system stabilization. For charge transfer systems, both of the
energy gaps decrease. This behavior is reasonable for charge
transfer systems, and this trend is observed for all four charge
transfer systems.

V.B. Properties at bimolecular complexes

Figure 7 shows the RMS deviation of the charge trans-
fer energy of GC-X-Pol from that estimated by the BLW-ED
method, and this figure shows that θ = 25 000 K (the corre-
sponding coupling strength differs for each system due to the
difference of the weight gα) provides the lowest RMS devia-
tion with the value being 1.22 kcal/mol.

Table IV lists the calculated charge transfer energies
in comparison with those calculated by the BLW method
for the optimized coupling strength. The charge transfer en-
ergy is overestimated for the neutral–neutral pairs except for
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FIG. 6. Relationship between molecular orbital energy gap and coupling strength in (a) CH3OH · · ·H2O, (b) NH+
4 · · ·H2O, and (c) ClF · · ·H2O. The two energy

gaps correspond to the difference between the HOMO of the electron donor and the LUMO of the electron acceptor (closed diamond) and the difference between
the HOMO of the electron acceptor and the LUMO of the electron donor (open diamond), respectively.

C2H4· · ·ClF; on the other hand, it is underestimated for bi-
molecular complexes consisting of ion and neutral molecule.
As mentioned in Sec. IV, the electrostatic, exchange repul-
sion, and polarization interactions are described using local-
ized wave functions for both the X-Pol and BLW methods,
and a major difference between these methods is the de-
scription of the intermolecular interactions—which employs
a fully antisymmetrized wave function in one case and ap-
proximates the exchange repulsion empirically in the other. A
second contribution is that parameters are only partially opti-
mized in the present study. In the present initial test of the new
method, we used constant values for the �, ζ in the GC-X-Pol
method; therefore, further refinement is possible by changing
these parameters so as to depend on the type of atom.

Figure 8 shows a cut through the binding energy sur-
face of two of the hydrogen bonded systems and one charge
transfer system. The inclusion of charge transfer enhances
the binding energy relative to those obtained without charge
transfer contributions. The contribution of the charge transfer
is reduced as the two fragments become separated, indicating
that the weight function gα works correctly and that the pa-
rameter ζ is reasonable. By including the charge transfer ef-
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FIG. 7. Temperature dependence of RMS deviation of charge transfer en-
ergy estimated by GC-X-Pol method. The reference charge transfer energy is
obtained by the BLW energy decomposition analysis for ten dimer systems
(see Figure 3).

fect, the distance corresponding to the minimum energy does
not change appreciably; however, the binding energy profile
is generated using the geometries optimized by full QM cal-
culation, and there is possibility that the energy would change
slightly if the angle were relaxed by the GC-X-Pol potential
or if geometries were optimized using an X-Pol calculation
with parameters to best reproduce the accurate results. In the
short distance region, the binding energy profile deviates con-
siderably from the full QM calculation, and this trend is ob-
served for all energy profiles of the dimers calculated by both
0 K X-Pol and GC-X-Pol. The dominant reason for this is the
form of the LJ potential function, that is, the R−12 term in LJ
potential yields repulsive walls that are too steep because the
Lennard-Jones parameters were not optimized for the M06-
2X density functional. The exponential form is more realistic
and may yield improved results. Furthermore, the representa-
tion of the electrostatic interaction by point charges from Mul-
liken population analysis is not accurate enough for quantita-
tive construction of the quantum mechanical force field.6, 84 It
has been shown that the electrostatic interaction can be im-
proved by including the charge penetration effect.84, 85 This
effect originates from the reduction of shielding by the elec-
tron cloud at shorter distances, and it would be interesting to
test whether including charge penetration would improve the

TABLE IV. Charge transfer energy [kcal/mol] calculated by GC-X-Pol with
M06-2X/6-31G(d) at temperature 25 000 K with comparison of that of BLW
with M06-2X/6-31+G(d, p).

GC-X-Pol BLW

(a) H2O· · ·H2O −2.418 −0.916
(b) CH3OH· · ·H2O −1.841 −1.019
(c) CH3NH2· · ·H2O −0.852 −0.498
(d) CH3NH+

3 · · ·H2O −3.765 −4.348
(e) CH3CO−

2 · · ·H2O −3.903 −4.993
(f) NH+

4 · · ·H2O −2.897 −4.938
(g) ClF · · ·NH3 −4.371 −2.801
(h) Cl2· · ·NH3 −3.052 −1.428
(i) ClF· · ·H2O −2.447 −1.487
(j) ClF· · ·C2H4 −0.315 −0.631
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FIG. 8. Binding energy profile calculated by GC-X-Pol with M06-2X/6-
31G(d), 0 K X-Pol with M06-2X/6-31G(d), and full QM calculation
with M06-2X/6-31+G(d, p) for (a) CH3OH · · ·H2O, (b) NH+

4 · · ·H2O, and
(c) ClF · · ·H2O.

results obtained with X-Pol or GC-X-Pol. Nevertheless, it has
been shown that with a single set of optimized Lennard-Jones
parameters, the binding energies for a range of bimolecular
complexes from the X-Pol method using a given DFT method
can be fitted to yield an excellent agreement with values ob-

tained from full coupled cluster singlet and double excitation
(CCSD(T)) optimizations.32

Although Mulliken population analysis can lead to un-
physical results when applied uncritically or with large basis
sets, here it provides a useful measure of the amount of charge
transfer between fragments; for small interfragment separa-
tion, it is useful because we use a small basis set without
diffuse function, and for interfragment separation it is justi-
fiable because the overlaps of orbitals on different fragments
becomes very small. Table V summarizes the charge separa-
tion calculated by Mulliken population analysis for the ten
dimer systems at their equilibrium distances. We can see that
in all ten cases GC-X-Pol provides a direction of the charge
transfer that is consistent with that obtained by Mulliken pop-
ulation analysis of the full QM calculation. Here, as already
specified in Subsection III A, we used the 6-31G(d) basis set
for the X-Pol calculation because 6-31G(d) basis sets provide
the reasonable atomic charge and polarization in the X-Pol
method. We used the 6-31+G(d, p) basis set for the full QM
calculation because it provides more accurate reference data.
We believe that the comparison of the amount of charge trans-
fer with that of full QM calculation is a less definitive mea-
sures of success than the energy stabilization because charges
are not observable quantities, and no rigorous definition of
the atomic charge exists; moreover, atomic charge largely de-
pends to a greater extent on the employed level of theory and
basis set.86

The electronegativity of each fragment is equal for the
water dimer system, and the local difference of the electroneg-
ativity before equalization is a trigger of the charge transfer in
this system. In the linear form of water dimer (see Fig. 3(a)),
the electronegativity of oxygen is larger than that of hydro-
gen, and the charge flows from the water of the proton donor
to the water of the electron acceptor. According to the atomic
polar tensor analysis used by Åstrand et al.,87 the electron
moves from the proton donor to the acceptor, which is con-
sistent with the present direction of charge transfer. The net
effect of intermolecular charge transfer, which is of quantum
mechanical origin, is reflected by increased atomic charges
that enhance Coulomb interactions between the donor and ac-
ceptor molecules. It is noteworthy that intramolecular charge

TABLE V. Charge separation [electron] calculated by GC-X-Pol with M06-2X/6-31G(d) and full QM calculation with
M06-2X/6-31G+(d, p). The charge separation in 0 K X-Pol is listed as a reference.

GC-X-Pol 0 K X-Pol Full QM

ED EA ED EA ED EA

(a) H2O(EDa)· · ·H2O(EAb) 0.046 − 0.046 0.0 0.0 0.012 − 0.012
(b) CH3OH(ED)· · ·H2O(EA) 0.044 − 0.044 0.0 0.0 0.013 − 0.013
(c) CH3NH2(ED)· · ·H2O(EA) 0.040 − 0.040 0.0 0.0 0.012 − 0.012
(d) CH3NH+

3 (EA)· · ·H2O(ED) 0.020 0.980 0.0 1.0 0.050 0.950
(e) CH3CO−

2 (ED)· · ·H2O(EA) − 0.972 − 0.028 − 1.0 0.0 − 0.952 − 0.048
(f) NH+

4 (EA)· · ·H2O(ED) 0.054 0.946 0.0 1.0 0.040 0.960
(g) ClF(EA)· · ·NH3(ED) 0.028 − 0.028 0.0 0.0 0.069 − 0.069
(h) Cl2(EA)· · ·NH3(ED) 0.069 − 0.069 0.0 0.0 0.042 − 0.042
(i) ClF(EA)· · ·H2O(ED) 0.012 − 0.012 0.0 0.0 0.027 − 0.027
(j) C2H4(ED) · · ·ClF(EA) 0.041 − 0.041 0.0 0.0 0.044 − 0.044

aED: electron donor.
bEA: electron acceptor.
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TABLE VI. Molecular orbital energies [eV] around frontier orbitals before(0 K X-Pol) and after(GC-X-Pol) charge transfer.

CH3OH· · ·H2O NH+
4 · · ·H2O ClF· · ·H2O

0 K X-Pol GC-X-Pol 0 K X-Pol GC-X-Pol 0 X-Pol GC-X-Pol

CHCH3OH H2O CH3OH H2O NH+
4 H2O NH+

4 H2O ClF H2O ClF H2O
ED EA ED EA EA ED EA ED EA ED EA ED

HOMO-2 − 12.76 − 16.81 − 13.12 − 16.69 − 23.45 − 21.51 − 23.28 − 22.05 − 14.91 − 16.85 − 14.71 − 17.10
HOMO-1 − 10.19 − 12.99 − 10.55 − 12.92 − 23.44 − 18.37 − 23.28 − 18.86 − 10.15 − 12.92 − 9.91 − 13.17
HOMO − 8.59 − 10.89 − 8.86 − 10.73 − 23.12 − 15.68 − 23.01 − 16.03 − 10.14 − 10.88 − 9.90 − 11.02
LUMO 4.51 2.79 4.25 2.83 − 3.39 − 1.31 − 3.34 − 1.65 − 0.54 2.68 − 1.15 2.51
LUMO+1 5.66 5.16 5.42 5.28 − 1.37 1.08 − 1.25 0.75 10.47 5.06 10.43 4.93
LUMO+2 6.38 22.57 6.16 22.70 − 1.36 17.78 − 1.24 17.40 13.23 22.52 13.17 22.35

redistribution accompanies the charge transfer, for example,
the site charge on the oxygen atom in the electron accep-
tor is qO = −0.803 e as compared to the corresponding ref-
erence charge of qO = −0.755 e; this charge redistribution
�qO = 0.048 e is as great as the interfragment charge separa-
tion, 0.046 e. This result indicates that one should not consider
charge transfer separately from electronic polarization.

As can be seen from Eq. (21), the Fermi–Dirac distribu-
tion of electron density is determined by the configuration of
molecular orbitals at constant coupling strength and chemi-
cal potential. Table VI shows the orbital energies around the
frontier orbitals. We can see that the HOMO and LUMO that
give the lowest energy gap between the electron donor and the
electron acceptor are located on the electron donor and the
electron acceptor, respectively, both before (0 K X-Pol) and
after (GC-X-Pol) charge transfer. This is the dominant reason
that the direction of charge transfer is described correctly by
GC-X-Pol.

VI. CONCLUDING REMARKS

In this work, we proposed a grand canonical X-Pol
method to describe charge transfer in the X-Pol potential. In
this method, the electrons are described by the Fermi–Dirac
distribution. To express dependence of charge transfer on the
fragment separation correctly, we devised a physically moti-
vated form of the chemical potential, and we re-interpreted the
temperature in the distribution function as a coupling strength.

In the GC-X-Pol method, the charge transfer state and
the reference state are characterized by electronic occupation
of virtual orbitals, and it is observed that the electrons dis-
tribute in a broad range of orbitals due to the Fermi–Dirac
distribution. It was found that intramolecular charge redistri-
bution is promoted as well as intermolecular redistribution.
The key validations are that the stabilization energy by charge
transfer is comparable with the charge transfer (delocaliza-
tion) energy calculated by the BLW method, and the calcu-
lated charge separations are close to the values derived by the
Mulliken population analysis of full QM calculations.

Further refinement is possible for this method. One pos-
sible refinement is further optimization of the parameters in
the weight function gα , namely � and ζ . In the present study,
we set the values of these parameters to pre-determined con-
stants, but allowing them to depend on the type of atom should
make the GC-X-Pol method a more quantitative model. The

other possible refinement is further parametrization of the
temperature-like parameter θ . In the present study, θ is
roughly determined for a small number of systems. In future
work, we should parametrize it for a larger number of sys-
tems. In the ten dimer systems, it is found that the charge
transfer energy is overestimated for the neutral–neutral sys-
tems except for C2H4· · ·ClF, and underestimated for the ion–
neutral systems. If such a general trend is revealed by apply-
ing the method to more systems, the temperature parameter
θ can be determined for each system according to its bond
type and charge state to obtain a more accurate charge trans-
fer model.

Although the method has been presented in the context
of X-Pol, many elements of the method are more general, and
the same strategy could be used to include charge transfer into
other fragment methods. This would solve a long-standing
problem by which charge transfer is treated at a lower level
than charge polarization in molecular modeling.

ACKNOWLEDGMENTS

The authors are grateful to Hannah Leverentz for assis-
tance with the calculations. This work is supported by the
NIH (Gant No. NIGMS/1RC1GM091445) and NSF (Grant
No. CHE09-56776).

1R. S. Mulliken, J. Am. Chem. Soc. 72, 600 (1950).
2W. B. Person, R. E. Humphrey, W. A. Deskin, and A. I. Popov, J. Am.
Chem. Soc. 80, 2047 (1958).

3H. Ratajczak and W. J. Orville-Thomas, J. Mol. Struct. 14, 155 (1972)
4M. S. A. Abdou, F. P. Orfino, Y. Son, and S. Holdcroft, J. Am. Chem. Soc.
119, 4518 (1997).

5Y. Zhang and X.-Z. You, J. Comput. Chem. 22, 327 (2001).
6A. Karpfen, Theor. Chem. Acc. 110, 1 (2003).
7K. Kitaura and K. Morokuma, Int. J. Quantum Chem. 10, 325 (1976).
8W. J. Stevens and W. H. Fink, Chem. Phys. Lett. 139, 15 (1987).
9E. D. Glendening and A. Streitwieser, J. Chem. Phys. 100, 2900 (1994).

10Y. Mo, J. Gao, and S. D. Peyerimhoff, J. Chem. Phys. 112, 5530 (2000).
11W. A. Lathan and K. Morokuma, J. Am. Chem. Soc. 97, 6624 (1975).
12G. Nadig, L. C. Van Zant, S. L. Dixon, and K. M. Merz, J. Am. Chem. Soc.

120, 5593 (1998).
13A. van der Vaart and K. M. Merz, Jr., J. Am. Chem. Soc. 121, 9182 (1999).
14A. van der Vaart and K. M. Merz, J. Chem. Phys. 116, 7380 (2002).
15Y. Mo and J. Gao, J. Phys. Chem. B 110, 2976 (2006).
16J. Gao, D. Habibollazadeh, and L. Shao, J. Phys. Chem. 99, 16460 (1995).
17A. Morita and S. Kato, J. Chem. Phys. 108, 6809 (1998).
18T. A. Halgren and W. Damm, Curr. Opin. Struct. Biol. 11, 236 (2001).
19P. Ren and J. W. Ponder, J. Comput. Chem. 23, 1497 (2002).
20G. A. Kaminski, H. A. Stern, B. J. Berne, R. A. Friesner, Y. X. Cao,

R. B. Murphy, R. Zhou, and T. A. Halgren, J. Comput. Chem. 23, 1515
(2002).

Downloaded 21 Sep 2011 to 160.94.96.168. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1021/ja01157a151
http://dx.doi.org/10.1021/ja01542a006
http://dx.doi.org/10.1021/ja01542a006
http://dx.doi.org/10.1016/0022-2860(72)85161-5
http://dx.doi.org/10.1021/ja964229j
http://dx.doi.org/10.1002/1096-987X(200102)22:3<327::AID-JCC1005>3.0.CO;2-Z
http://dx.doi.org/10.1007/s00214-003-0448-0
http://dx.doi.org/10.1002/qua.560100211
http://dx.doi.org/10.1016/0009-2614(87)80143-4
http://dx.doi.org/10.1063/1.466432
http://dx.doi.org/10.1063/1.481185
http://dx.doi.org/10.1021/ja00856a004
http://dx.doi.org/10.1021/ja980564r
http://dx.doi.org/10.1021/ja9912325
http://dx.doi.org/10.1063/1.1466829
http://dx.doi.org/10.1021/jp057017u
http://dx.doi.org/10.1021/j100044a039
http://dx.doi.org/10.1063/1.476096
http://dx.doi.org/10.1016/S0959-440X(00)00196-2
http://dx.doi.org/10.1002/jcc.10127
http://dx.doi.org/10.1002/jcc.10125


084107-13 Grand canonical X-Pol J. Chem. Phys. 135, 084107 (2011)

21A. D. J. MacKerell, J. Comput. Chem. 25, 1584 (2004).
22S. Patel, A. D. Mackerell, Jr., and C. L. Brooks III, J. Comput. Chem. 25,

1504 (2004).
23V. M. Anisimov, G. Lamoureux, I. V. Vorobyov, N. Huang, B. Roux, and

A. D. MacKerell, Jr., J. Chem. Theory Comput. 1, 153 (2005).
24E. Harder, V. M. Anisimov, I. V. Vorobyov, P. E. M. Lopes, S. Y. Noskov,

A. D. MacKerell, Jr., and B. Roux, J. Chem. Theory Comput. 2, 1587
(2006).

25W. L. Jorgensen, J. Chem. Theory Comput. 3, 1877 (2007).
26W. Xie, J. Pu, A. D. Mackerell, Jr., and J. Gao, J. Chem. Theory Comput.

3, 1878 (2007).
27M. Isegawa and S. Kato, J. Chem. Theory Comput. 5, 2809 (2009).
28J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders,

I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, Jr., M. Head-
Gordon, G. N. I. Clark, M. E. Johnson, and T. Head-Gordon, J. Phys. Chem.
B 114, 2549 (2010).

29J. Gao, J. Phys. Chem. B 101, 657 (1997).
30W. Xie and J. Gao, J. Chem. Theory. Comput. 3, 1890 (2007).
31W. Xie, L. Song, D. G. Truhlar, and J. Gao, J. Chem. Phys. 128, 234108

(2008).
32L. Song, J. Han, Y. Lin, W. Xie, and J. Gao, J. Phys. Chem. A 113, 11656

(2009).
33H. Leverentz, J. Gao, and D. G. Truhlar, Theor. Chem. Acc. 129, 3 (2011).
34A. Cembran, P. Bao, Y. Wang, L. Song, D. G. Truhlar, and J. Gao, J. Chem.

Theory Comput. 6, 2469 (2010).
35H. Li, M. S. Gordon, and J. H. Jensen, J. Chem. Phys. 124, 214108 (2006).
36P. N. Day, J. H. Jensen, M. S. Gordon, S. P. Webb, W. J. Stevens, M. Kraus,

D. Garmer, H. Basch, and D. Cohen, J. Chem. Phys. 105, 1968 (1996).
37M. S. Gordon, M. A. Freitag, P. Bandyopadhyay, J. H. Jensen, V. Kairys,

and W. J. Stevens, J. Phys. Chem. A 105, 293 (2001).
38A. J. Stone, Chem. Phys. Lett. 211, 101 (1993).
39N. D. Mermin, Phys. Rev. 137, 1441 (1965).
40D. A. McQuarrie, Statistical Mechanics (Harper Collins, New York, 1976).
41P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).
42K. Shiratori and K. Nobusada, J. Chem. Phys. Lett. 451, 158 (2008).
43T. Biben and D. Frenkel, J. Phys.: Condens. Matter 14, 9077 (2002).
44M. P. Grumbachtll, Detlef Hohl, R. M. Martint, and R. Car, J. Phys.: Con-

dens. Matter 6, 1999 (1994).
45M. Weinert and J. W. Davenport, Phys. Rev. B 45, 13709 (1992).
46R. M. Wentzcovitch, J. L. Martins, and P. B. Allen, Phys. Rev. B 45, 11372

(1992).
47R. T. Sanderson, Science 114, 670 (1951).
48R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Phys. Chem. 68,

3801 (1978).
49W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996).
50W. J. Mortier, S. K. Ghosh, and S. Shankar, J. Am. Chem. Soc. 108, 4315

(1986).
51S. W. Rick, S. J. Stuart, and B. J. Berne, J. Chem. Phys. 101, 6141 (1994).

52A. K. Rappe and W. A. Goddard, III, J. Phys. Chem. 95, 3358 (1994) .
53D. M. York and W. Yang, J. Chem. Phys. 104, 159 (1996).
54H. A. Stern, G. A. Kaminski, J. L. Banks, R. Zhou, B. J. Berne, and

R. A. Friesner, J. Phys. Chem. B 103, 4730 (1999).
55R. Chelli and P. Procacci, J. Chem. Phys. 117, 9175 (2002).
56P. Bultinck, W. Langenaeker, P. Lahorte, F. De Proft, P. Geerlings, C. Van

Alsenoy, and J. P. Tollenaere, J. Phys. Chem. A 106, 7887 (2002).
57P. Bultinck, W. Langenaeker, P. Lahorte, F. De Proft, P. Geerlings, C. Van

Alsenoy, and J. P. Tollenaere, J. Phys. Chem. A 106, 7895 (2002).
58J. Gasteiger and M. Marsili, Tetrahedron 36, 3219 (1980).
59R. Chelli, P. Procacci, R. Righini, and S. Califano, J. Chem. Phys. 111,

8569 (1999).
60J. Morales and T. J. Martinez, J. Phys. Chem. A 105, 2842 (2001).
61J. Chen and T. J. Martinez, Chem. Phys. Lett. 438, 315 (2007).
62D. Mathieu, J. Chem. Phys. 127, 224103 (2007).
63G. L. Warren, J. E. Davis, and S. Patel, J. Chem. Phys. 128, 144110 (2008).
64J. E. Davis, G. L. Warren, and S. Patel, J. Phys. Chem. B 112, 8298 (2008).
65H. S. Smalo, P.-O. Åstrand, and L. Jensen, J. Chem. Phys. 131, 044101

(2009).
66K. Aoki, S. Tanaka, and T. Nakano, Chem-Bio Informatics 9, 30 (2009).
67H. Nakano, T. Yamamoto, and S. Kato, J. Chem. Phys. 132, 044106 (2010).
68H. P. Pritchard, J. Am. Chem. Soc. 85, 1876 (1963).
69P. D. Lyne, M. Hodoscek, and M. Karplus, J. Phys. Chem. A 103, 3462

(1999).
70R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955)
71T. A. Koopmans, Physica 1, 104 (1933).
72Y. Zhao and D. G. Truhlar, Ther. Chem. Acc. 120, 215 (2008).
73W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab initio Molec-

ular Orbital Theory (Wiley, New York, 1986).
74M. Gussoni, M. N. Ramos, C. Castiglioni, and G. Zerbi, Chem. Phys. Lett.

142, 515 (1987).
75J. Li, T. Zhu, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. A 102, 1820

(1998).
76P. Zhang, P. Bao, and J. Gao, Comput. Chem. 32, 2127 (2011).
77J. Gao, ACS Symp. Ser. 569, 8 (1994)
78D. Riccardi, G. Li, and Q. Cui, J. Phys. Chem. B 108, 6467 (2004).
79J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J.

Comp. Chem. 25, 1157 (2004).
80A. Bondi, J. Phys. Chem. 68, 441 (1964).
81E. Ruiz, D. R. Salahub, and A. Vela, J. Phys. Chem. 100, 12265 (1996).
82I. Alkorta, I. Rozas, and J. Elguero, J. Phys. Chem. A 102, 9278 (1998).
83Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 1, 415 (2005).
84B. Wang and D. G. Truhlar, J. Chem. Theory. Comput. 6, 3330 (2010).
85M. A. Freitag, M. S. Gordon, J. H. Jensen, and W. J. Stevens, J. Chem.

Phys. 112, 7300 (2000).
86J. Cioslowski, J. Am. Chem. Soc. 111, 8333 (1989).
87P.-O. Åstrand, K. Ruud, K. V. Mikkelsen, and T. Helgaker, J. Phys. Chem.

A 102, 7686 (1998).

Downloaded 21 Sep 2011 to 160.94.96.168. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1002/jcc.20082
http://dx.doi.org/10.1002/jcc.20077
http://dx.doi.org/10.1021/ct049930p
http://dx.doi.org/10.1021/ct600180x
http://dx.doi.org/10.1021/ct700252g
http://dx.doi.org/10.1021/ct700146x
http://dx.doi.org/10.1021/ct900295u
http://dx.doi.org/10.1021/jp910674d
http://dx.doi.org/10.1021/jp910674d
http://dx.doi.org/10.1021/jp962833a
http://dx.doi.org/10.1021/ct700167b
http://dx.doi.org/10.1063/1.2936122
http://dx.doi.org/10.1021/jp902710a
http://dx.doi.org/10.1007/s00214-011-0889-9
http://dx.doi.org/10.1021/ct100268p
http://dx.doi.org/10.1021/ct100268p
http://dx.doi.org/10.1063/1.2196884
http://dx.doi.org/10.1063/1.472045
http://dx.doi.org/10.1021/jp002747h
http://dx.doi.org/10.1016/0009-2614(93)80058-W
http://dx.doi.org/10.1103/PhysRev.137.A1441
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1016/j.cplett.2007.11.081
http://dx.doi.org/10.1088/0953-8984/14/40/302
http://dx.doi.org/10.1088/0953-8984/6/10/017
http://dx.doi.org/10.1088/0953-8984/6/10/017
http://dx.doi.org/10.1103/PhysRevB.45.13709
http://dx.doi.org/10.1103/PhysRevB.45.11372
http://dx.doi.org/10.1126/science.114.2973.670
http://dx.doi.org/10.1063/1.436185
http://dx.doi.org/10.1021/jp960669l
http://dx.doi.org/10.1021/ja00275a013
http://dx.doi.org/10.1063/1.468398
http://dx.doi.org/10.1021/j100161a070
http://dx.doi.org/10.1063/1.470886
http://dx.doi.org/10.1021/jp984498r
http://dx.doi.org/10.1063/1.1515773
http://dx.doi.org/10.1021/jp0205463
http://dx.doi.org/10.1021/jp020547v
http://dx.doi.org/10.1016/0040-4020(80)80168-2
http://dx.doi.org/10.1063/1.480198
http://dx.doi.org/10.1021/jp003823j
http://dx.doi.org/10.1016/j.cplett.2007.02.065
http://dx.doi.org/10.1063/1.2803060
http://dx.doi.org/10.1063/1.2872603
http://dx.doi.org/10.1021/jp8003129
http://dx.doi.org/10.1063/1.3166142
http://dx.doi.org/10.1273/cbij.9.30
http://dx.doi.org/10.1063/1.3298873
http://dx.doi.org/10.1021/ja00895a043
http://dx.doi.org/10.1021/jp982115j
http://dx.doi.org/10.1063/1.1740588
http://dx.doi.org/10.1016/S0031-8914(34)90011-2
http://dx.doi.org/10.1007/s00214-007-0310-x
http://dx.doi.org/10.1016/0009-2614(87)80654-1
http://dx.doi.org/10.1021/jp972682r
http://dx.doi.org/10.1002/jcc.21795
http://dx.doi.org/10.1021/symposium
http://dx.doi.org/10.1021/jp037992q
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1021/j100785a001
http://dx.doi.org/10.1021/jp9533077
http://dx.doi.org/10.1021/jp982251o
http://dx.doi.org/10.1021/ct049851d
http://dx.doi.org/10.1021/ct1003862
http://dx.doi.org/10.1063/1.481370
http://dx.doi.org/10.1063/1.481370
http://dx.doi.org/10.1021/ja00204a001
http://dx.doi.org/10.1021/jp980574e
http://dx.doi.org/10.1021/jp980574e

