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Many methods for correcting harmonic partition functions for the presence of torsional motions

employ some form of one-dimensional torsional treatment to replace the harmonic contribution

of a specific normal mode. However, torsions are often strongly coupled to other degrees of

freedom, especially other torsions and low-frequency bending motions, and this coupling can

make assigning torsions to specific normal modes problematic. Here, we present a new class of

methods, called multi-structural (MS) methods, that circumvents the need for such assignments by

instead adjusting the harmonic results by torsional correction factors that are determined using

internal coordinates. We present three versions of the MS method: (i) MS-AS based on including

all structures (AS), i.e., all conformers generated by internal rotations; (ii) MS-ASCB based on all

structures augmented with explicit conformational barrier (CB) information, i.e., including explicit

calculations of all barrier heights for internal-rotation barriers between the conformers; and

(iii) MS-RS based on including all conformers generated from a reference structure (RS) by

independent torsions. In the MS-AS scheme, one has two options for obtaining the local

periodicity parameters, one based on consideration of the nearly separable limit and one based on

strongly coupled torsions. The latter involves assigning the local periodicities on the basis of

Voronoi volumes. The methods are illustrated with calculations for ethanol, 1-butanol, and

1-pentyl radical as well as two one-dimensional torsional potentials. The MS-AS method is

particularly interesting because it does not require any information about conformational barriers

or about the paths that connect the various structures.

I. Introduction

Torsional motion constitutes an especially challenging

form of vibrational anharmonicity for which the harmonic

approximation is often highly inaccurate. Furthermore, the

presence of multiple torsional degrees of freedom often results

in many low-energy conformers that contribute significantly to

the partition function. Feynman path integral methods1,2

provide an accurate and straightforward way to include

torsional effects in quantum mechanical partition functions,

and while they have already provided important benchmark

results for small systems,3–5 more affordable methods are

needed for many applications involving complex molecules.

A variety of separable approximations are available6–20 that

replace the harmonic contribution of specific normal modes by

solutions of one-dimensional (1-D) torsional treatments, and

nonseparable treatments have also been advanced.9,14,16,21–25

In many instances torsions are strongly mixed with other

torsions and/or with other low-frequency motions such as

bending, and in such cases one cannot identify them with

specific normal modes. We divide the nonseparable treatments

into two classes, those that do not assume a one-to-one

correspondence between torsions and individual normal

modes, and those that do; we call these mixed torsion models

and normal mode substitution models. The only widely

discussed model that allows mixed torsions is the Pitzer–Gwinn

approximation.21 This requires evaluating the full-dimensional

classical configuration integral,26 which—although less expensive

than a path integral—is still too expensive for routine use on

large molecules because it requires either extensive Monte

Carlo sampling by direct dynamics (electronic structure

calculations on the fly) or the careful fitting of an analytic

nonseparable potential function. Reduced-dimensional path

integrals23,27–29 and classical configuration integrals covering

only torsional degrees of freedom9,16 have also been considered
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but are more expensive than the methods to be proposed

here. On the other hand, methods employing normal mode

substitution7–10,12–14,22 are not general enough for our purpose.

In this article we will consider a family of new torsional

approximations that employ internal-coordinate correction

factors to the harmonic treatment that avoid not only the

separability assumption but also the restriction associated with

assigning torsions to specific normal modes.

In many cases, the thermochemical properties of a chemical

substance can be reasonably estimated by using the group

additivity method—the assumption that the thermodynamic

properties of a given species can be obtained by summing the

contributions from each group comprising that species. The

most widely employed version of group additivity was

formulated by Benson,30 and established general group

additivity values through a two-step process involving first

compartmentalizing similar molecules with known thermo-

dynamic properties into their constituent groups—where a

group is defined as a polyvalent atom and all of its ligands—

and then deriving the contribution to various thermodynamic

properties due to each group through multivariable linear

regression fits to the available experimental data.30 The

original group additivity values established by Benson for

stable molecules were later adapted to several classes of free

radical species by O’Neal and Benson,31,32 and were subsequently

updated by Cohen33 to account for new experimental and

theoretical findings. More recently, Lay et al.34 developed an

alternative technique for estimating bulk thermodynamic

properties, often with improved accuracy, from a single group

called the H atom bond increment (HBI) group. We used these

various group additivity techniques to estimate the entropies

of the species studied in this work and compare them to our

methods.

For the convenience of the reader, we use a consistent set of

acronyms for frequently repeated phrases and methods.

A glossary of these acronyms is provided in Appendix A.

II. Theory

II. A Overview

The most direct consequence of internal rotation is the

occurrence of multiple conformational minima. A conventional

approach35,36 to calculating partition functions in such cases is

to use the harmonic approximation for the minimum-energy

structure and to replace contributions from certain normal

modes with a hindered rotor treatment by using the tables of

Pitzer and Gwinn21 or an analytic hindered rotor,7,10 or free

rotor approximation. A somewhat more complicated case

occurs when a torsion is unsymmetrical (or isotopically

substituted) so that the minima encountered along the torsion

are distinguishable. Then, if one assumes that the vibrational

modes are separable, the partition function for each of the

unsymmetrical torsional motions has contributions from each

distinguishable conformer. However the treatment of torsions

as separable can be very unrealistic.12,37–41 A better approach

is to start with a list of distinguishable structures (i.e.,

distinguishable conformers) and to sum their contributions,

including at least torsional anharmonicity. We call such

methods multi-structural (MS) approximations, and these

are the subjects of the present paper.

II. B MS-AS method

II.B.1 Theory for nearly separable torsions. Let Q denote a

multidimensional partition function and q denote the partition

function for a single degree of freedom. In the convention used

in this article, all partition functions have their zero of energy

at their local minimum (rather than being normalized to unity

at 0 K). We will consider J distinguishable structures, i.e.,

conformational minima, j = 1, 2,. . .,J, and we will include

anharmonicity in several torsions labeled t = 1, 2,. . .,t; we

note that t has the same value for all structures. Let the

energies of the minima be Uj where U1 has a value of zero,

and all other Uj are positive. We divide the t torsions into two

types: nearly separable (NS) and strongly coupled (SC). For

NS torsions, we may define a parameter Mj,t to be the total

number of minima, whether distinguishable or not, along

torsional coordinate t of structure j (each of these minima

correspond to another structure).

In our initial presentation we shall focus on the special case

that all the torsions are nearly separable and we will further

assume that theMj,t minima may be reasonably approximated

as being evenly distributed along the torsional coordinate t. In
section II.B.2 we will present an alternative derivation of the

MS-AS approximation based on a different rationale for

assigning the Mj,t parameters and that may be useful in more

general contexts, including some cases of strong coupling

between the torsions. The alternative derivation explicitly

accounts for cases where the minima are not approximately

evenly distributed along a given torsional coordinate. In

section II.C we will present a variation of the multi-structural

method that utilizes explicit barrier information instead of the

Mj,t parameters, and in section II.D we will consider a

variation of the method designed to treat the most challenging

cases of strong coupling wherein parameters are obtained by

Voronoi tessellation.42–44 In general we can use a hybrid

scheme for obtaining Mj,t; for example, we use the notation

NS : SC = n :m to denote that n torsions are treated as nearly

separable and m torsions are treated as strongly coupled. In

this language, the present section (II.B.1) is devoted to the

case t : 0.

We will denote the torsional symmetry numbers as st and
the number of distinguishable minima for torsional coordinate

t of structure j as Pj,t where

Pj,t = Mj,t/st. (1)

The symmetry numbers st can be determined by treating the

least symmetric of the two rotating fragments as a fixed frame

and counting the number of identical structures obtained when

the more symmetrical top is rotated from 0 to 360 degrees and

relaxed (for example, the symmetry numbers for methanol,

nitromethane, and 1,2 dichloroethane are 3, 3, and 1,

respectively). Once all the structures are found, the number,

Pj,t, of unique structures connected to structure j (including

itself) by internal rotation t may often be identified by

counting the structures that have similar torsion angles for

all other internal rotations; when strong torsional coupling
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exists additional considerations may be necessary as will be

discussed further below. Attempts have been made12,45 to fully

automate the assignment of the Pj,t (or equivalently the Mj,t),

but such approaches are beyond the scope of the present

study.

In general, the internal moment of inertia, Ij,t, associated

with rotation about a specific axis t is a continuous function of

geometry, but we will approximate it as a constant within the

domain of each specific structure and will assign values Ij,t that

are calculated for rotation about the bond axis associated with

torsion t at the minimum-energy geometry of structure j using

the method of Pitzer.46 (In previous articles,13,14 we denoted

Pitzer’s method for calculating the internal moment of inertia

for an internal rotation as the curvilinear method, abbreviated

C.) Pitzer46 has pointed out that the geometry dependence of

the moments of inertia approximately compensates for the

change in the product of the vibrational frequencies as a

function of the internal rotation angle. This justifies holding

the internal moments of inertia fixed at their values at the

minimum-energy geometry when the vibrational motions are

approximated by a classical harmonic treatment; however, we

include quantum effects, and we use this approximation even

when the classical harmonic approximation is not valid.

Pitzer’s method46 for calculating internal moments of inertia

assumes that all molecular fragments that undergo internal

rotation are attached to a unique fixed frame; for cases with

more than one torsion the scheme is approximate unless a

determinant-based approach is used to fully account for

intermode coupling. A more-general treatment is available in

the work of Kilpatrick and Pitzer47 that accounts for the

coupling between torsional motions and removes the requirement

of a unique fixed frame. In the following, when we refer to

Pitzer moments we are referring to moments calculated in the

absence of intermode coupling; approaches that include

intermode coupling have only rarely been employed in earlier

work, but here, in addition to the uncoupled Pitzer moments,

we also employ the general treatment of Kilpatrick and

Pitzer.47 The Kilpatrick and Pitzer47 treatment leads to the

calculation of a kinetic energy matrix for internal rotation

denoted as D (alternatively one may work with the kinetic

energy matrix S associated with overall rotation and internal

rotation) which may be diagonalized to yield moments

associated with linear combinations of coupled torsions. The

moments of Pitzer46 are the diagonal elements of the D matrix

and in the limit of weak torsional coupling (where D is

strongly diagonally dominant) torsional motion is well

represented by rotation about a single bond. Our torsional

approximation scheme begins by approximating torsional

motions as being uncoupled within the domain of a specific

structure so we begin by employing the approximate Pitzer

moments. However, in the high-temperature limit the partition

function scales as the square root of the determinant of D, and

we gradually switch to the Kilpatrick–Pitzer coupled moments

as the temperature is increased.

The torsional coordinate associated with the Pitzer internal

moments of inertia describes the rotation of a rigid top against

a fixed frame, and various considerations have been used to

define physical torsion coordinates for flexible systems.48–50

In our internal-coordinate treatment, we approximate the

torsional coordinate by a single dihedral angle. Thus, our

torsional force constants and other results have a small

dependence on the choice of coordinate system, i.e., on which

dihedral angle we choose. One consequence of using internal

coordinate torsion angles is that subtle deviations from

expected symmetries may be observed; for example, methyl

groups may deviate very slightly from the expected three-fold

symmetry. In such cases we use values of Mj,t, Pj,t, and st that
would have been obtained from the more symmetrical

structures. All of the methods presented here assume that

the domains of different conformers do not significantly

overlap; in cases where slight symmetry lowering leads to

strongly overlapping structures it may be best to include only

one of the strongly overlapping structures and treat this

conformer using a symmetry number that would have been

appropriate in the absence of symmetry lowering.

If there is only one conformer and we neglect coupling

between electronic, vibrational, and rotational degrees of

freedom, the total partition function of a system can be

written as

Qtotal ¼ QtransQelecQrot

YF
m¼1

qvib;m ð2aÞ

where Qtrans is the translational partition function, Qelec is the

electronic partition function, Qrot is the rotational partition

function, F = 3N � 6 for a nonlinear molecule (where N is

number of atoms in the system), and qvib,m is the vibrational

partition function of mode m. However, we do not use that

simplification; instead, we write

Qtotal = QtransQelecQcon-rovib (2b)

where Qcon-rovib is the conformational-rovibrational partition

function. In this article, the translational and electronic

partition functions are not discussed. We mainly focus on

the vibrational partition function, but eqn (2b) also allows for

a conformational average and for the change of rotational

partition function from structure to structure. Thus, we do not

assume that rotation is separable in an overall sense because

the rotational partition function depends on the structure.

Special consideration is needed with considering symmetry

numbers for systems with internal rotations. The overall

torsional symmetry number associated with the torsion-only

degrees of freedom is

storsion ¼
Yt
t¼1

st ð3Þ

and is the same for all structures. However, the structures can

include cases both with and without rotational symmetry so

that the rotational symmetry numbers srot,j depends on j. It

should be realized that the rotational symmetry elements that

transform symmetrical structures into themselves transform

unsymmetrical structures into other unsymmetrical structures

that appear in the list of the J structures that are distinguishable

when only considering torsional symmetry, and therefore srot,j
depends on how these structures are treated. We can make this

clear by an example. Consider pentane,51 which has 11

torsional conformers; eight of these structures have no

rotational symmetry and thus have srot,j equal to 1, whereas
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three of them have srot,j = 2. Of the eight structures with

srot,j = 1, only four are distinguishable when rotation is

considered because each structure may be transformed into

one other structure by an overall rotation. Thus, if all eleven

structures are included in the MS-AS partition function

calculations each of the rotational partition functions should

use a symmetry number of 2. Alternatively, one could include

only the seven structures that are distinguishable after

considering both rotational and torsional symmetries, in

which case the rotational partition functions would use the

structure-dependent srot,j values.
We propose a new family of approximations to be called

multi-structural methods. The first member of the family is the

MS-AS method in which we include all structures. The

conformational-rovibrational partition function is given in

the MS-AS method by

QMS-AS
con-rovib ¼

XJ
j¼1

Qrot;j expð�bUjÞQHO
j Zj

Yt
t¼1

fj;t ð4Þ

where Qrot,j is the rotational partition function of structure j

(here we use the classical approximation for rotational

partition functions, see eqn (B4)), b is 1/kBT where kB is

Boltzmann’s constant and T is temperature, QHO
j is the usual

normal-mode harmonic oscillator vibrational partition

function calculated at structure j, Zj is a factor (specified

below) designed to ensure that the MS-AS scheme reaches

the correct high-T limit (within the parameters of the model),

and fj,t is an internal-coordinate torsional anharmonicity

function that, in conjunction with Zj, adjusts the harmonic

result of structure j for the presence of the torsional motion

associated with coordinate t.
We use MS-HO to denote the partition function calculated

without Zj and fj,t, that is, with all Zj and all fj,t equal to unity.

One can use normal-mode analysis to obtain frequencies to

calculate QHO
j . A key advantage of eqn (4) over the MS-HO

approximation is that it includes torsional anharmonicity, but

it is not necessary to assign each torsional motion to a specific

normal mode. The MS-HO approximation is already an

improvement over treatments that include only the lowest-

energy conformation, and the importance of including a

conformational average when computing enthalpies has

recently been emphasized.36,52

We define the torsional correction functions fj,t as the ratio

of a partition function for some accurate method to treat a

given torsion divided by a harmonic partition function for a

frequency �oj,t, where the frequency �oj,t is defined as the

harmonic frequency obtained using internal coordinates rather

than a normal-coordinate frequency. This scheme avoids

identifying each torsional mode with a specific normal mode.

The internal-coordinate torsional frequency is obtained by

�oj;t ¼
ffiffiffiffiffiffiffi
kj;t

Ij;t

s
ð5Þ

kj;t �
@2V

@f2
t

�����
ft¼ft;eq:j

ð6Þ

where kj,t is the force constant of a specific torsion t at

structure j, V is the potential energy, and the torsion t is

represented by a dihedral angle ft whose equilibrium value is

ft,eq.j.

The internal-coordinate force constants can be calculated

either by numerical finite differences or by transforming force

constant matrices expressed in Cartesian coordinates into force

constant matrices in non-redundant internal coordinates.53–58 In

the numerical finite difference method, one rotates one of the

two tops with respect to the other by a small amount and uses

central differences to calculate the second derivative from the

equilibrium energy and single-point energies of the two slightly

distorted geometries. In the transformation method, one has

to be careful to select an appropriate set of 3N � 6 independent

internal coordinates. The strategy we employ to select the

3N � 6 independent internal coordinates is that (i) all bond

stretching coordinates are included, (ii) only one dihedral

angle is selected for each torsional mode, and (iii) the rest of

the coordinates are bond angles and other dihedral angles not

related to torsions (e.g., dihedral angles for out-of-plane

motion in a ring structure) that are selected while avoiding

redundant choices. By using such a set of 3N � 6 independent

internal coordinates, the second partial derivative of V with

respect to the dihedral angle is the force constant for this

torsion. In this paper, all the torsional force constants are

calculated by the transformation method.

The reference Pitzer–Gwinn (RPG) method14,21 denotes the

use of a one-dimensional Pitzer–Gwinn approximation

applied to a reference potential (rather than the true potential

as in the Pitzer–Gwinn method) where the reference

potential is obtained from limited information. The reference

potential was previously taken as7,14,21,46

Vm ¼
Wm

2
½1� cosðMmfmÞ� ð7Þ

where Vm is the potential of normal mode m, fm is a torsion

coordinate, Mm is the number of minima in mode m, and

Wm is a torsional barrier height. If all the torsional barriers do

not have the same height, Wm would be an effective or average

height. Here we instead use

Vj;t ¼ Uj þ
Wj;t

2
½1� cosMj;tðft � ft;eq:jÞ�;

�p
Mj;t

� ft � ft;eq:j �
p

Mj;t

ð8Þ

where Wj,t is an effective barrier height associated with

structure j. When the RPG method is applied to eqn (8), fj,t
can be written as

fj;t ¼ st
qRC
j;t

qCHO
j;t

" #
ð9Þ

where qCHO
j,t and qRC

j,t are the classical harmonic oscillator and

reference classical partition functions of the torsion t for

structure j, respectively, given by

qCHO
j;t ¼ 1

�hb�oj;t
ð10Þ
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and14

qRC
j;t ¼

1

Mj;t
qFRj;t expð�bWj;t=2ÞI0ðbWj;t=2Þ ð11Þ

where �h is Planck’s constant divided by 2p, I0 is a modified

Bessel function, and the free rotor (FR) partition function is

given by

qFRj;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pIj;t=b

p
�hst

ð12Þ

Eqn (7) assumes that all barriers along a torsional coordinate

have the same height Wm or at least may be represented by a

single average barrier, and that all of the minima have the

same energy, whereas eqn (8) provides the flexibility for each

structure to have an independent minimum and barrier height.

TheWj,t can be chosen as the average of the barrier heights on

either side of this minimum. However, we next make a

simplification so that we do not need to know these barriers.

The simplification takes advantage of the fact that for a

potential of the form of eqn (8) and a geometry-independent

internal moment of inertia, the barrier heights, internal

moment of inertia, and the torsional frequency are interrelated

by7,14

Wj;t ¼
2Ij;t �o2

j;t

M2
j;t

ð13Þ

Using this relation, eqn (11) and (9) are rewritten as

qRC
j;t ¼

1

Mj;t
qFRj;t expð�bIj;t �o2

j;t=M
2
j;tÞI0ðbIj;t �o2

j;t=M
2
j;tÞ ð14Þ

and

fj;t ¼
�oj;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbIj;t

p
Mj;t

expð�bIj;t �o2
j;t=M

2
j;tÞI0ðbIj;t �o2

j;t=M
2
j;tÞ

ð15aÞ

Notice that eqn (15a) can be rearranged to

fj;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbkj;t

p
Mj;t

expð�bkj;t=M2
j;tÞI0ðbkj;t=M2

j;tÞ ð15bÞ

which shows that fj,t is independent of Ij,t. This situation

results because both the numerator and denominator of

eqn (9) have the same functional dependence on Ij,t. The

inclusion of the Zj factor (discussed next) restores the expected

dependence of the partition function on the moments of inertia

as the high-T limit is approached. Note also that the modified

Bessel function I0(x) approaches
expðxÞffiffiffiffiffiffi

2px
p as x approaches infinity;

therefore, when the temperature approaches zero, i.e., b
approaches infinity, all the fj,t become 1, and the MS-AS

partition function reduces to the MS-HO partition function.

Consequently, the MS-AS and MS-HO methods yield the

same zero-point energy (ZPE).

Next we consider two corrections, both introduced via the

factor Zj, which ensure that we reach a correct high-temperature

limit. One is to replace the normal-mode partition function in

the high-T limit by an internal-coordinate (local-mode)59,60

one, and the other is to correct for kinetic energy coupling of

the torsions to one another. The factor Zj is written for this

purpose as

Zj ¼
gjQrot;jQ

HO
j þ ð1� gjÞQimp

j

Qrot;jQ
HO
j

ð16Þ

where Qimp
j is an improved approximation, gj - 1 at low T

where the effects of rotational-vibrational coupling are

minimal, and gj - 0 at high T. We will approximate Qimp
j as

Qimp
j = Qrot,jQ

HO
j Zint

j Zcoup
j (17)

where the Zint
j replace the normal-mode vibrational partition

functions in the high-T limit by internal-coordinate ones, and

Zcoup
j replaces the uncoupled moments of inertia for individual

torsions by values that account for their coupling.

Before considering the approximations used for gj, Z
int
j , and

Zcoup
j we need to consider the high-T limit of the denominator

of eqn (16):

lim
T!1

Qrot;jQ
HO
j ¼

ffiffiffi
p
p

srot;j

2

�h2b

� �3=2

det Irotj

��� ���1=2 1

�hb

� �FYF
m¼1

o�1j;m

ð18Þ

where Irotj is the 3 � 3 moment of inertia matrix for overall

rotation of structure j and om,j is a normal-mode frequency.

We do not factor the vibrational part of eqn (18) into a

stretch-bend factor and a torsion factor because we avoid

assigning torsions to specific normal modes.

At high-temperature the torsions become more separable

from the other vibrations and it is reasonable to replace the

product of normal-mode frequencies in eqn (18) by the

product of the �oj,t torsional frequencies and F � t

stretch-bend frequencies ��oj;��m in the space orthogonal to the

torsions. Note that ��m is a generalized mode label that is not

based on normal modes. In particular we take

Zint
j ¼

QF�t
��m¼1

��o�1j;��m

Qt
t¼1

�o�1j;t

QF
m¼1

o�1j;m

ð19Þ

where the ��oj;��m are obtained from the Wilson GF matrix

method53–58

GFL = LK (20)

where the dimensions of the G and F matrices are reduced to

(F � t) � (F � t), L is the matrix of the generalized normal

mode eigenvectors, K is the eigenvalue matrix and its diagonal

elements are the square of the vibrational frequencies. The F

matrix in internal coordinates is obtained by

F = ATFCartA (21)

where A is the generalized inverse of the Wilson Bmatrix, FCart

is the force constant matrix in Cartesian coordinates, and T

denotes a transpose. The Wilson B matrix constructed here

only contains the non-torsional internal coordinates and the

rows for torsional internal coordinates are removed; therefore

its dimension is (F � t) � 3N. The G matrix is given by

G = BuBT (22)

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
in

ne
so

ta
 -

 T
w

in
 C

iti
es

 o
n 

02
 J

un
e 

20
11

Pu
bl

is
he

d 
on

 1
1 

M
ay

 2
01

1 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0C
P0

26
44

A
View Online

http://dx.doi.org/10.1039/c0cp02644a


10890 Phys. Chem. Chem. Phys., 2011, 13, 10885–10907 This journal is c the Owner Societies 2011

where u is a diagonal matrix with the reciprocals of the atomic

masses on the diagonal. We note that whereas the fj,t do not

depend on the moments of inertia, as shown in eqn (15b), the

product QHO
j Zint

j

Qt
t¼1

fj;t approaches the uncoupled-torsion

high-T limit given by
QF�t
��m¼1

�hb��oj;��m

� ��1 Qt
t¼1

qFRj;t =Pj;t.

Next, we consider Zcoup
j . In eqn (5) and (12)–(15), we

employ the torsional moment-of-inertia approximation of

Pitzer,46 which is the best one can do for a torsion uncoupled

to other torsions; however, we can obtain a more accurate

result by allowing the torsions to be coupled to one another.

To account for this coupling in the free-rotor high-T limit we

need a correction factor equal to

Zcoup
j ¼ j detDj jQt

t¼1
Ij;t

0
BB@

1
CCA

1=2

ð23Þ

where D is the kinetic energy matrix for internal rotation of

Kilpatrick and Pitzer.47

Finally we consider gj. A simple expression having the

correct limits and the approximately correct functional

form7 is

gj ¼
Yt
t¼1

tanh
qFRj;t

Pj;tq
CHO
j;t

 !1=t

ð24aÞ

and eqn (24a) can be rearranged to

gj ¼
Yt
t¼1

tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkj;tb

p
Mj;t

 !1=t

ð24bÞ

From a computational point of view we note that the partition

function is independent of |detDj| and �oj,t when gj - 1.

Eqn (4), (15b), (16) and (24b) constitute our final result for

the MS-AS method. Therefore, the MS-AS method does

not require any saddle point optimization or scanning to

determine torsional barriers, and one only needs information

for each minimum.

The thermodynamic functions for the free energy, average

energy, and entropy using the MS-AS method are given in

Appendix B. Alternative variants of the MS-AS method are

given in Appendix C.

II.B.2 Alternative derivation. In section II.B.1 the MS-AS

method was introduced via an ansatz in which we assumed

that the spacing between structures along a particular

torsional coordinate t was approximately uniform. We now

present a derivation of the MS-AS approximation from an

alternative point of view.

If we assume that the torsional motion is uncoupled to the

remaining degrees of freedom, the partition function would

factor as

Q E Q>Qtorsions (25)

where Q> denotes the contribution to the total partition

function from all non-torsional degrees of freedom. The

quantum mechanical torsional partition function could be

approximated by a classical mechanical (CM) configuration

integral scaled by a Pitzer–Gwinn quantum mechanical (QM)

correction factor, FPG,

Qtorsions E FPGQtorsions,CM (26)

and the classical mechanical torsional partition function could

be approximated as47

Qtorsions;CM ¼ 1

2pb�h2

� �t=2

ðdetfDgÞ1=2

Z2p=s1
0

� � �
Z2p=st
0

df1 � � � dft exp½�bVðf1; . . . ;ftÞ�

ð27Þ

where the torsional kinetic energy matrix, D, is evaluated at

the global minimum and its coordinate dependence has been

neglected. We now assume that the topography of the

torsional subspace is characterized by J distinct basins each

characterized by a (local-)minimum-energy structure. We

further assume that we can subdivide the torsional space into

a set of disjoint subdomains Oj. If we relax the requirement of

eqn (25) so that the torsional motion is only uncoupled

from the remaining degrees of freedom within a particular

subdomain we obtain the approximation

Q ¼
XJ
j¼1

Qj?
1

2pb�h2

� �t=2

ðdetfDjgÞ1=2FPG
j

Z
Oj

df1 � � � dft exp½�bVðf1; . . . ;ftÞ�

ð28Þ

We proceed by approximating the subdomains Oj as

�p
�Mj;t
� ft � �fj;t �

p
�Mj;t

; t ¼ 1; . . . ; t ð29Þ

where
�
Mj,t can be integer or non-integer, and �fj,t denotes

the center of the subdomain j. The requirement that the

subdomains span the entire torsional subspace leads to the

result that

XJ
j¼1

Yt
t¼1

st
�Mt;j
¼ 1 ð30Þ

We further assume that the potential is separable in the

torsional coordinates within a subdomain, i.e., that

Vðf1; . . . ;ftÞ �
Xt
t¼1

Vj;tðftÞ ð31Þ

and that the separable 1-D potentials may be approximated as

Vj;t ¼ Uj þ
Wj;t

2
½1� cos ~Mj;tðft � ft; eq: jÞ� ð32Þ

where the ft,eq.j denote, as before, the equilibrium torsion

angles of structure j, the M̃ are periodicity parameters, and the

remaining parameters are the same as discussed in section II

B.1. We define

�Pj ¼
�Mj

st
ð33Þ
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and

~Pj;t ¼
~Mj;t

st
ð34Þ

The expression in eqn (28) reduces to the MS-AS approximation

if we take

Qj? ¼ Qrot;j expð�bUjÞQHO
j

Zj

Zcoup
j

Yt
t¼1

1

qQHOð�oj;tÞ
ð35Þ

where qQHO(�oj,t) is a quantum mechanical harmonic oscillator

partition function for an oscillator with a frequency �oj,t given

by eqn (5), the Pitzer–Gwinn correction factors are calculated

via

FPG
j ¼

Yt
t¼1

qQHOð�oj;tÞ
qCHOð�oj;tÞ

ð36Þ

and if we take
�
Mj,t = M̃j,t = Mj,t, (37)

From the above derivation we can see that the parameter Mj,t

plays three roles in the MS-AS method. Firstly, it controls the

local periodicity by means of eqn (8) and (32). Secondly, it

determines the implicit barrier height by eqn (13). Thirdly, it

determines the volume of the torsional subspace spanned by a

particular structure.

II.C MS-ASCB method

In this section we present a higher-level MS method that

explicitly includes the conformational barrier (CB) heights

and barrier positions in the fj,t by using the segmented

reference Pitzer–Gwinn14,61 (SRPG) approximation; this is

called the MS-ASCB method, where ASCB denotes ‘‘based

on all structures and conformational barriers’’. In the SRPG

approximation, a more realistic reference potential is obtained

by interpolating the region between each barrier and well with

its own reference potential. This yields a continuous torsional

potential given by

Vj;t ¼
Uj þ

WL
j;t
2

1� cos
ðft�ft;eq:jÞp
ðft;eq:j�fL

j;tÞ

� �� 	
; fL

j;t � ft � ft;eq:j

Uj þ
WR

j;t
2

1� cos
ðft�ft;eq:jÞp
ðfR

j;t�ft;eq:jÞ

� �� 	
; ft;eq:j � ft � fR

j;t

8>>>><
>>>>:

ð38Þ

This scheme yields

fMS-ASCB
j;t ¼ st

qSRC
j;t

qCHO
j;t

" #
ð39Þ

where

qSRC
j;t ¼ qFRj;t

ðft;eq:j � fL
j;tÞ

2p
expð�bWL

j;t=2ÞI0ðbWL
j;t=2Þ

"

þ
ðfR

j;t � ft;eq:jÞ
2p

expð�bWR
j;t=2ÞI0ðbWR

j;t=2Þ
#

ð40Þ

the zero of energy is taken as Uj,W
L
j,t and WR

j,t are the left and

right barrier heights, respectively, for torsion mode t of

structure j, and fL
j,t and fR

j,t are the locations of these barriers.

In contrast to the MS-AS scheme, the barrier heights in the

SRPG method have to be calculated by scans or by optimizing

all saddle points connecting all the structures, which adds

significant computational cost and human effort.

II.D MS-AS method for strongly coupled torsions

Occasionally a subset of the torsional coordinates may be so

strongly coupled that it is difficult or impossible to assign a set

of Mj,t parameters in the MS-AS method, even when allowing

for non-integer values as suggested in II.B.2. For such cases we

present a strongly coupled option for the MS-AS method that

is parameterized by Voronoi tessellation.42–44

In the strongly coupled MS-AS scheme we partition the

torsional space into a set of nearly separable (NS) coordinates

and a set of strongly coupled (SC) coordinates. In general, the

strongly coupled coordinates may be further partitioned into

two or more subspaces, with each subspace involving only

those coordinates that are strongly coupled to each other.

However, for simplicity in the following discussion, we will

outline only the case for a single subspace of SC coordinates;

the generalization to treat multiple subspaces of SC coordinates

is straightforward. We will denote the number of NS

coordinates as tNS and the number of SC coordinates as tSC,

where tNS + tSC = t, and we will label particular coordinates

in these subspaces by subscripts tNS and tSC, respectively.
Voronoi tessellation divides a space into cells around a

discrete set of points. In our application, the space to be

tessellated is described by the dihedral angles f1,f2,. . .,ftSC

and the points correspond to structures. Each cell corresponds

to a specific structure and consists of all torsional configurations

closer to this structure than to any other structure when only

the tSC strongly coupled degrees of freedom are considered.

We used the Euclidean norm for our distance metric. In

principle, we could work with only the symmetry unique

portion of the torsional space; however, because we choose

to work with ordinary dihedral angles rather than symmetrized

coordinates, and (as discussed earlier) these coordinates can

display slight deviations from the true symmetry of the system,

we do not exploit symmetry in this portion of the calculation.

Thus, in order to tessellate the space we include two kinds of

points. The first kind is the coordinates (sets of tSC dihedral

angles) of the distinguishable structures; the second kind is the

coordinates of minima of the potential energy function that

correspond to indistinguishable structures but where the

angles are determined by adding 2p/stSC to selected angles of

the associated distinguishable structure. We label the points

j˜ = 1, 2,. . ., J̃, where J̃ is greater than or equal to J. For

example, if we were treat the torsions of propane as strongly

coupled (actually they are nearly separable), we would have

J = 1 and J̃ = 9. We label the points as j˜= 1, 2,. . ., J for

distinguishable structures and j˜ = J + 1, J + 2,. . ., J̃ for

indistinguishable structures. One may then calculate the

volume OSC
j˜ of each cell and associate that volume with that

point. We calculate the cell volumes using the convex hull code

hull of Clarkson.62,63 In order to properly handle the periodic

nature of the coordinates, we include periodic replicas in the

tessellation calculation.
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By definition, the volume of the SC torsional subspace

neglecting indistinguishability of identical particles is

OSC;tot ¼
X~J

~j¼1
OSC

~j
¼ ð2pÞtSC ð41Þ

After accounting for indistinguishability, the total volume of

the SC torsional subspace may be calculated by

OSC ¼
XJ
~j¼1

OSC
~j

ð42Þ

we should find that

OSC

OSC;tot
¼ 1

s1s2:::stSC
ð43Þ

but slight deviations may occur due to symmetry distortions

resulting from the limitations of working in a coordinate

system of ordinary dihedral angles. In such cases it may be

desirable to rescale the distinguishable volumes so that this

equality holds exactly or to work with volumes that are

averages of selected structures that are related by additional

symmetries (see the later discussion of mirror image structures

of pentyl radical for an example).

When the torsional subspace is so strongly coupled that we

cannot assign Mj,tSC by considerations based on considering

each torsion separately, then we replace all Mj,tSC for strongly

coupled torsions of a given j by a single MSC
j equal to

MSC
j ¼

2p

ðOSC
j Þ

1=tSC
ð44Þ

When this is done, eqn (30) with
�
Mj,t replaced by Mj,t is

automatically satisfied if eqn (43) holds.

When the SC method is used, the intrinsically separable

effective potentials of eqn (8) are no longer defined. The

strongly coupled MS-AS scheme is not a classical partition

function, augmented by a Pitzer–Gwinn quantum correction,

for a particular effective torsional potential. Instead, it is an

interpolation scheme that yields correct values in the low- and

high-temperature limits and gives reasonable values between

these limits.

If one treats all the coordinates as if they constitute a single

set of strongly coupled coordinates, then the Voronoi

tessellation, together with the equations above, provides a

fully automatable way of assigning the M parameters.

However, grouping nearly separable degrees of freedom together

with strongly coupled ones results in an approximation in

which the contribution to the partition function of the nearly

separable torsions is not expected to be as accurate as when

one uses the method of section II.B.1 for these torsions. Thus,

we recommend keeping the dimensions of the SC subspaces as

small as is feasible. That is, we recommend assigning torsions

to SC subspaces only when they are coupled so strongly that

we cannot assign Mj,tSC values based on considering each

torsion separately.

II.E MS-RS method

Although wherever feasible we strongly recommend the

inclusion of all structures in the partition function calculation,

as is done in the MS-AS scheme, we recognize that a lower

level of treatment is needed in some circumstances where the

harmonic approximation is qualitatively incorrect and where

finding and optimizing all structures requires too much work.

In such instances, we propose a reference-structure treatment

involving the generation of structures by independent torsions.

To apply this method, one chooses one structure as a reference

structure, and one considers only the other structures that can

be generated by independently rotating the torsions, one at a

time. One can start from any reasonable reference structure. If

any structure among the generated structures is found to have

a lower energy than the starting structure, one can optionally

start over taking this lower-energy structure as the new

reference structure. The number of structures that needs to

be optimized for this approach scales linearly with the number

of torsions, t, so for large molecules it can be much more

affordable than the MS-AS scheme where the number of

structures scales exponentially with t.

Label the reference structure as j = 1, and number the

distinguishable structures, which are denoted j[t, i(t)],
generated by rotating about torsional coordinate t in the

reference structure as i(t) = 1,. . ., P1,t We adopt the convention

that i(t) = 1 corresponds to a null rotation, which leads to

the reference structure for every t. We define the multi-

structure reference-structure (MS-RS) approximation to the

conformational-rovibrational partition function as

QMS-RS
con-rovib ¼ Qref

Yt
t¼1

XP1;t

iðtÞ¼1

QIT
j½t; iðtÞ�

QIT
j¼1

ð45Þ

where

Qref ¼ Qrot;1 expð�bU1ÞQHO
1 Z1

Yt
t0¼1

f1;t0 ð46Þ

QIT
j ¼ Qrot;j expð�bUjÞQHO

j Zj

Yt
t0¼1

Pj;t0 fj;t0 ð47Þ

and the remaining quantities are the same as those discussed

for the MS-AS method. Notice that in eqn (46) we set j = 1,

which denotes the reference structure. If the reference

structure is not the lowest-energy structure included, then U1

need not be zero (as it was in the MS-AS and MS-ASCB

methods); in general, Uj is 0 for the lowest-energy structure

included in eqn (45), and for all the other structures, Uj is the

equilibrium potential energy relative to the lowest-energy

structure included. The inclusion of the Pj, factor in eqn (47)

results in the QIT
j being scaled by a quantity proportional to

the volume of the torsional subspace spanned by this structure;

thus, the ratio of factors in eqn (45) properly accounts for the

differences in the domain sizes of the various structures.

Notice Pj,t used in MS-RS method is obtained from Mj,t

and st by eqn (1).

Notice that the Pj,t and st are not directly needed for the

MS-AS method (unlike Mj,t, they cancel out in the final

equations, although their knowledge is useful for ascertaining

whether or not all the structures are accounted for); however,

the MS-RS method explicitly requires the Pj,t (or the st from
which they may be calculated by eqn (1)) as well as Mj,t.
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Except for the Pj,t, the MS-RS method requires no information

that is not needed for MS-AS calculations, and it requires

information for only a subset of the structures. In cases where

a subset of torsional motions are strongly coupled the MS-RS

scheme may not perform as well as when the coupling is small;

in such instances one may seek extensions of the MS-RS

scheme that, for instance, treat the NS torsions independently

but which include additional structures obtained by modifying

the reference structure by two or more simultaneous rotations

from within the SC torsional subspace. Such extensions may

provide additional accuracy while retaining the desirable

computational scaling of the MS-RS approach, but they are

beyond the scope of the present study.

III. Calculations and results

To illustrate the MS methods, we apply the MS-HO, MS-AS,

and MS-ASCB methods to two one-dimensional (1-D) model

potentials and to ethanol. Note that the MS-AS and MS-RS

methods are identical for some simple cases such as ethanol

and 1-D potentials. However, we will compare the MS-HO,

MS-AS, and MS-RS methods for 1-butanol and 1-pentyl

radical in the present study.

The M06-2X64 density functional was used for calculating

the geometries and energetics of ethanol and the 1-pentyl

radical, and the MPW1K65 density functional was used for

1-butanol. The 6-311+G(2df,2p) basis set66,67 was used for all

the calculations. All density functional calculations were

performed using the Gaussian 09 program.68

Because meta-GGA density functionals are sensitive to

integration grids, we performed a grid-convergence analysis

on the frequencies of ethanol and 1-pentyl radical using the

M06-2X/6-311+G(2df,2p) method. As shown in Table 1, the

frequencies calculated by M06-2X/6-311+G(2df,2p) are well

converged when one uses the density functional integration

grid that has 99 radial shells around each atom and 974

angular points in each shell. Therefore this grid (99,974) was

used for all M06-2X calculations in this article. The pruned

(99,590) grid, which is called ultrafine in Gaussian09, was used

for calculations with the MPW1K functional, which are less

sensitive to the fineness of the integration grids.

All the minima of ethanol, 1-pentyl radical, and 1-butanol

are fully optimized and confirmed by normal-mode analysis.

The saddle points of ethanol that connect the minima are also

optimized and are confirmed to have one imaginary frequency.

Table 2 shows the notation that is used for torsion angles in

this paper. This notation is based on standard notation but is

also specialized to the needs of the present study.

Partition functions are calculated from 100 K to 50 000 K.

The 50 000 K result is tabulated not because this is an

accessible temperature, but rather to illustrate the high-

temperature limit for formal purposes.

The frequencies (oj,m, �oj,t, and ��oj;��m) used in the calculations

(except in the 1–D cases) are all scaled, and the scaling factors

designed to give accurate ZPEs are used.69

We also employed Benson’s group additivity (GA)

method30,31,70 to calculate entropies of ethanol, 1-pentyl radical,

and 1-butanol for comparison. For this purpose we use not

only Benson’s30 group parameters but also those of Cohen31

and Lay et al.34

III.A 1-D models

In order to better understand the proposed methods, we first

apply them to two 1-D torsion models. One is an artificial 1-D

model potential designed to show the effect of a shallow

minimum, and the other is the 1-D torsion potential of

H2O2 from the work of Koput et al.71 that has been used in

a prior study14 of torsional methods.

The first 1-D model potential is given by

V/cm�1 = 121.352549 + 90.0 cos(2f) + 60.0 cos(3f)
(48)

where f is the torsion angle. This potential has three minima

in the range of [0, 2p) and we assume they are all distinguishable,

i.e., M = P = 3. This potential is plotted in Fig. 1, and the

rotational barrier heights and the locations of minima are

also given in the figure. The internal moment of inertia is

assumed to be 1.53618 amu Å2 and to be independent of f.

Table 1 Normal-mode frequencies (cm�1) calculated by M06-2X/
6-311+G(2df,2p) accompanied various integration grids

Grids Ethanol (structure: E–t), 3 lowest frequencies
Ultrafinea 224 269 423
(99,590)b 224 268 423
(99,770)b 247 292 423
(99,974)b 238 278 422
(96,32,64)c 236 275 423

1-Pentyl radical (structure: P–stt), 5 lowest frequencies
Ultrafinea 53i 84 126 225 287
(99,590)b 75 85 127 225 287
(99,770)b 64 85 128 228 287
(99,974)b 76 87 129 228 287
(120,974)b 75 87 129 228 287
(150,974)b 75 87 129 229 287
(96,32,64)c 71 87 128 228 287

a Ultrafine denotes the pruned (99,590) grid provided in the

Gaussian09 package. b The first number indicates the number of radial

quadrature nodes, and the second denotes the number of Lebedev

angular quadrature nodes. c A spherical product grid with the first

number specifying the number of radial quadrature nodes and the next

two specifying the numbers of angular quadrature nodes.

Table 2 Notation for torsion anglesa

Abbreviation Dihedral angle range (deg)

Antiperiplanar a+ [140, 163]
a� [�163, �140]

Gauche for 1-pentyl g+ [55, 80]
g� [�80, –55]

Or
Gauche for 1-butanol g+ [57, 76]

g� [�76, �57]
Cross for 1-butanol only x+ [80, 90]

x� [�90, �80]
Syn for 1-pentyl only s [80, 100] or [�100, �80]
Trans t [�173, �180] and [180, 173]

a The dihedral angles used for torsions are H–O–C(1)–C(2),

O–C(1)–C(2)–C(3), and C(1)–C(2)–C(3)–C(4) for 1-butanol,

H–C(1)–C(2)–C(3), C(1)–C(2)–C(3)–C(4), and C(2)–C(3)–C(4)–C(5) for

1-pentyl, and H–O–C–C and O–C–C–H for ethanol.
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The harmonic frequencies calculated using eqn (5) are 126.41

and 62.85 cm�1 for the deep and shallow minima, respectively.

The small barriers and the presence of a very shallow

minimum for this potential make it an interesting model to

test the proposed methods. The accurate partition functions

were calculated by the torsional eigenvalue summation

(TES) method.14 The calculated partition functions and the

percentage errors of the approximate schemes relative to the

TES values are listed in Table 3.

Table 4 shows the errors of the multi-structural methods

when the shallow minimum is ignored (because the MS-ASCB

method requires information for all the barriers, it is not

included in Table 4.). When ignoring this shallow well, we

set M = P = 2 which alters the effective barrier heights of the

reference potential.

The 1-D torsional potential for H2O2 is given by71

V/cm�1 = 811.3053546 + 1037.4 cos(f) + 674.2 cos(2f)

+ 46.9 cos(3f) + 2.7 cos(4f) (49)

This potential energy curve is plotted together with the

heights and locations of the barriers in Fig. 2. The minima

are mirror-image structures and are therefore distinguishable

(J = P = M = 2). The internal moment of inertia is

0.423202 amu Å2 and the harmonic frequency of each

minimum is 382.6 cm�1. This 1-D potential has been studied

in a previous paper14 in which the effective barrier height used

in the RPG scheme was chosen as the average of the two

barrier heights. In the MS-AS method (which also uses the

RPG scheme for torsions), the effective barrier height is

calculated by eqn (13).

Table 5 lists the calculated partition functions and the

percentage errors of the approximate schemes relative to the

TES values for the 1-D potential of H2O2.

III.B Ethanol

The ethanol molecule has two torsions. One involves internal

rotation about the C–C bond, and the other involves internal

rotation about the C–O bond. If the torsions are considered

separately, they each have 3 minima along their torsion

coordinates. The torsion around the C–C bond only has one

distinguishable minimum because the three hydrogen atoms of

the methyl group are identical whereas the torsion around the

C–O bond leads to 3 distinguishable minima. Although two of

these structures are isoenergetic, they are mirror images and

Fig. 1 A model potential (eqn (48)) representing a torsional motion.

Table 3 Calculated partition functions and their percentage errors
compared to TES values for the 1-D model potential of eqn (48)

T/K

MS-HO MS-AS MS-ASCB
TES

q % error q % error q % error q

60 0.4776 �17 0.5247 �9 0.5356 �7 0.5751
100 1.083 �14 1.236 �2 1.229 �3 1.266
150 1.935 �10 2.174 1 2.132 �1 2.159
200 2.863 �5 3.078 2 3.006 �1 3.025
300 4.848 5 4.703 2 4.596 �0 4.600
400 6.922 16 6.106 2 5.983 0 5.979
600 11.18 35 8.447 2 8.315 0 8.303
1000 19.87 67 12.06 1 11.93 0 11.92
1500 30.83 100 15.55 1 15.44 0 15.42
2000 41.82 128 18.43 1 18.33 0 18.31
2400 50.62 149 20.46 1 20.36 0 20.34
3000 63.83 177 23.17 0 23.08 0 23.07
4000 85.87 218 27.11 0 27.03 0 27.02
7000 152.0 318 36.48 0 36.42 0 36.41
50 000 1100 1007 99.43 0 99.40 0 99.40

Table 4 Percentage errors of various methods compared to TES
values for the torsion potential of eqn (48) when the shallow minimum
on the model potential is ignored

T/K MS-HO MS-AS

60 �20 �17
100 �24 �19
150 �28 �20
200 �30 �20
300 �29 �17
400 �27 �15
600 �21 �11
1000 �8 �7
1500 7 �5
2000 20 �4
2400 30 �3
3000 43 �3
4000 63 �2
7000 111 �1
50 000 453 �0

Fig. 2 The potential energy curve (eqn (49)) of the 1-D torsional

motion in H2O2.
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thus distinguishable. Therefore, as shown in Fig. 3, the ethanol

molecule, with two torsions, has three distinguishable

structures that contribute to the total partition function.

Table 6 lists the information used in the MS-AS and

MS-ASCB calculations for ethanol. Table 7 lists the partition

function calculated using the MS-HO, MS-AS, and MS-ASCB

methods.

Fig. 4 shows the percentage difference of the partition

functions of structure E–t from that of E–g+ or E–g� using

the harmonic approximation. Note that each harmonic

partition function used here takes its own minimum as the

zero of energy.

Fig. 5 shows the ratio of the partition function of ethanol

calculated by the multi-structural method to that calculated by

the single-structure HO (SS-HO) approximation (J, Zj, and

fj,t are equal to 1) at the global minimum (E–t).

III.C 1-pentyl radical

The 1-pentyl radical has four torsions that are associated with

internal rotation about each of the four C–C bonds. We

label the five carbon atoms as: H2C
(1)–H2C

(2)–H2C
(3)–

H2C
(4)–H3C

(5), and the four torsions are around the 1–2,

2–3, 3–4, and 4–5 C–C bonds, respectively. The 1-pentyl

Table 5 Calculated partition functions and their percentage errors
compared to TES values for the 1-D model potential of H2O2

T/K

MS-HO MS-AS MS-ASCB
TES

q % error q % error q % error q

60 0.02036 �34 0.02061 �33 0.01999 �35 0.03071
100 0.1281 �23 0.1308 �21 0.1281 �23 0.1654
150 0.3276 �18 0.3386 �15. 0.3364 �16 0.3990
200 0.5395 �16 0.5656 �12 0.5655 �12 0.6442
300 0.9509 �15 1.03 �8 1.018 �9 1.116
400 1.345 �14 1.501 �3 1.443 �7 1.555
600 2.105 �11 2.443 4 2.223 �6 2.359
1000 3.588 �5 4.199 11 3.616 �5 3.787
1500 5.419 1 6.089 13 5.187 �4 5.383
2000 7.244 6 7.707 13 6.621 �3 6.827
2400 8.701 10 8.856 12 7.684 �3 7.893
3000 10.88 16 10.4 11 9.158 �2 9.366
4000 14.52 26 12.63 9 11.35 �2 11.56
7000 25.43 51 17.86 6 16.65 �1 16.83
50 000 181.7 255 51.67 1 51.08 �0 51.17

Fig. 3 Newman projections of the three structures of ethanol.

Structure E–t is the global minimum and structures E–g� and E–g+

are isoenergetic but distinguishable. Note that E denotes ethanol,

t denotes trans, and g denotes gauche.

Table 6 Information used for the ethanol partition function calcula-
tions using the MS-AS and MS-ASCB methodsa

Torsion �o Wb WL WR I M P

Structure E–t (U1 = 0)
C–O 258.7 328.9 385.7 385.7 0.7456 3 3
C–C 253.9 1108.6 1108.7 1108.7 2.610 3 1
Structure E–g+ & E–g� (U2 = U3 = 27.4 cm�1)
C–O 278.5 379.0 358.6 372.0 0.7416 3 3
C–C 264.5 1206.2 1194.9 1194.9 2.616 3 1

a The units are cm�1 for the barrier heights and frequencies and

amu Å2 for the internal moments of inertia. b W is used in the

MS-AS method and is calculated by eqn (13).

Table 7 Calculated conformational-rovibrational partition function
of ethanol using multi-structural methods

T/K MS-HO MS-AS MS-ASCB

100 4.12E�104 4.47E�104 4.37E�104
150 5.45E�68 6.21E�68 6.08E�68
200 8.13E�50 9.64E�50 9.46E�50
300 1.95E�31 2.43E�31 2.39E�31
400 4.77E�22 6.06E�22 6.00E�22
600 2.94E�12 3.73E�12 3.70E�12
1000 1.62E�03 1.90E�03 1.89E�03
1500 3.60E+02 3.65E+02 3.65E+02
2000 7.76E+05 6.84E+05 6.83E+05
2400 7.65E+07 6.06E+07 6.06E+07
3000 1.74E+10 1.19E+10 1.19E+10
4000 1.56E+13 8.67E+12 8.67E+12
7000 6.07E+18 2.15E+18 2.15E+18
50 000 1.13E+38 6.34E+36 6.34E+36

Fig. 4 Percentage difference between partition functions of structures

E–t and E–g� (or E–g+) using the harmonic approximation. The zero

of energy is at each structure’s local minimum.

Fig. 5 Ratio of the rovibrational partition function of ethanol

calculated by multi-structural methods to that calculated by the

single-structure HO approximation at the global minimum.
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radical constitutes an example of a system displaying significant

torsional coupling, in particular involving the t= 1 (C(1)–C(2))

and t = 2 (C(2)–C(3)) internal rotations; assigning Mj,t

parameters in such circumstances merits special care. In the

absence of steric hindrance effects,37–39 torsion involving a

–CH2 radical group is expected to have 6-fold periodicity and

low barrier heights yielding three distinguishable minima. The

4–5 torsion is expected to have three total minima, only one of

which is a distinguishable minimum, and the other two torsions

are expected to have three total minima, all distinguishable.

Thus, an uncoupled model would lead one to expect a total of

27 distinguishable structures. However, the total number of

distinguishable structures of 1-pentyl radical is found to be

only 15 as shown in Fig. 6. The 15 structures include seven

pairs of mirror-image structures (which of course have the

same energy and vibrational frequencies); therefore we only

need to perform electronic structure calculations on eight of

the 15 structures. In larger systems steric effects can lead to

either a larger or smaller number of structures than would be

expected based on a separable approximation.40,51

In the absence of strong coupling the structures should

correspond closely to minima encountered when the system

is rotated about a single torsional coordinate. In this limit, Pj,t

assignments (and thusMj,t assignments after taking account of

the torsional symmetry) may be made by starting with a

particular structure, choosing a t, and counting all

structures (including the starting structure) that have similar

torsional angles to the starting structure for every torsion

except the t torsion. This approach confirms the expected results

of Pj,t=3 = 3 and Pj,t=4 = 1 for all values of j. A similar exercise

for the t=1 torsion leads to 9 structures with expected values of

Pj,t=1 = 3 and six structures (P–a�g+t, P–a+g�t, P–a�g+g+,

P–a+g�g�, P–a�g+g�, P–a+g�g+) with Pj,t=1 = 1.

Relaxed scans starting from each of these six latter

structures reveal a single broad structure spanning the entire

180 degrees of the symmetry-unique t = 1 torsional degree of

freedom each with a relatively large barrier—the effective

barriers estimated by eqn (13) range from 451 to 654 cm�1

(using M = 2) as compared to values of 29 to 44 cm�1 (using

M = 6) for the other 9 structures. The occurrence of these

broad minima may be considered to arise from steric

hindrance effects that outweigh the small barriers that one

would anticipate existing between 3 expected structures in the

absence of such steric effects. Thus, each of the 3 structures

with broad features along the t = 1 coordinate may be

thought of as aggregations of 3 expected structures and therefore

these structures span a torsional subspace with a volume that

is approximately 3 times as large as that spanned by the

remaining 9 structures having assignments of Pj,t=1 = 3.

In the absence of steric effects we would anticipate

assignments of Pj,t=2 = 3 for each of the structures, and such

assignments would be consistent with the sum of the torsional

subspace volumes of each of the structures totalling to the

total volume (see eqn (30)), which serves as a convenient

consistency check of possible assignments. Rigid scans along

the t = 2 torsional coordinate reveal 3 distinct minima, but

due to strong coupling with the t = 1 torsional degree of

freedom, not all of these minima correspond closely with other

structures. In particular, if we select a particular structure and

look for all other structures having similar torsional angles for

all torsional coordinates other than t= 2, we find either 0 or 1

additional structures and this suggests that the simple

scheme for assigning Pj,t values breaks down in the presence

of strong torsional coupling. For example, if we start by

considering the P–a�g+t structure we find only the P–a�tt

structure corresponds closely to the starting structure via a

rotation about the t = 2 coordinate. In the presence of strong

torsional coupling we need to generalize our criteria for

assigning Pj,t so that instead of looking only for structures

having similar torsional angles to that of the structure

undergoing assignment along t � 1 coordinates we look for

structures for which the spans of the torsional minima strongly

overlap with each of the spans of the torsional minima of the

starting structure along t � 1 coordinates. Under this relaxed

set of criteria we see that the P–a+g�t structure, which is one

of the structures having a single broad minima along t = 1,

overlaps with the torsional spans of P–a�g+t along the

required t � 1 coordinates even though the t = 1 torsional

angles of these two structures differ by about 54 degrees.

Under this relaxed set of search criteria we are easily able to

identify two other structures that are sufficiently similar to

each structure undergoing assignment to yield assignments of

Pj,t=2 = 3 for all structures.

When employing the MS-RS method we need to identify all

structures obtained by independent rotations from a reference

structure. In this context, if we consider the reference structure

to be P–a�g+t, the structures most consistent with independent

Fig. 6 Fifteen structures of the 1-pentyl radical. Structures separated

by a dashed vertical line are mirror images, e.g., P–a�g+t and

P–a+g�t.
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rotation about the t = 2 coordinate are the P–a�tt and

P–a+g�t structures. One of these is the mirror image structure

of the reference structure, which shows that the concept

of an independent internal rotation about a single torsional

coordinate must be considered as highly approximate in the

presence of strong torsional coupling. As we will see in the

following, the results for the MS-RS and MS-AS methods

show good consistency suggesting that both methods can, at

least sometimes, yield reasonable partition functions even for

cases where we have strong torsional coupling.

We also consider two variants of the strongly coupled option

of theMS-AS scheme, one (denoted NS :SC= 2 : 2) which treats

the 1–2 and 2–3 torsions as strongly coupled and one (denoted

NS :SC = 1 : 3) which treats the 1–2, 2–3, and 3–4 torsions as

strongly coupled. These methods not only take account of the

strong coupling, but they eliminate the need for much of the

analysis presented in the proceeding four paragraphs.

In the NS : SC = 2 : 2 scheme, the 15 structures are divided

into 3 groups with the structures in each group having the

same torsional conformation for the 3–4 torsion. In particular,

the group with the 3–4 torsion in a trans conformation

includes the structures P–a�g+t, P–a+g�t, P–a+tt, P–a�tt,

and P–stt; the group with the 3–4 torsion in a g+ conforma-

tion includes the structures P–a�g+g+, P–a+g�g+, P–a+tg+,

P–a�tg+, and P–stg+; and the group for with the 3–4 torsion

in a g� conformation includes the structures P–a+g�g�,

P–a�g+g�, P–a�tg�, P–a+tg�, and P–stg�. The Voronoi

tessellation is performed considering each group separately.

In the Voronoi tessellation calculations, some indistinguishable

structures are generated by symmetry. For example, if the

P–a+tt struture is denoted by its first three torsional angles as

(159.7, 178.8, 179.9) its corresponding indistinguishable

structure is (�20.3, 178.8, 179.9) due to the 2-fold symmetry

of the –CH2 radical group. The angles 159.7 degrees and

�20.3 degrees refer to the dihedral angle Ha–C
(1)–C(2)–C(3)

and Hb–C
(1)–C(2)–C(3). However, the optimized structure has

the Hb–C
(1)–C(2)–C(3) angle as�30.4 degrees. This discrepancy

is caused by using a dihedral angle to represent the torsion,

Table 8 Information used for the 1-pentyl radical partition function using the multi-structural methoda

Torsion �o I

NS : SC = 2 : 2 NS : SC = 1 : 3 NS : SC = 4 : 0

Wb M P Wb M P Wb M P

Structure P–a�g+t & P–a+g�t (U = 0)
C(1)–C(2) 133 1.714 281 2.53 1.27 254 2.67 1.33 451 2 1
C(2)–C(3) 142 10.91 2047 2.53 2.53 1846 2.67 2.67 1458 3 3
C(3)–C(4) 99 15.98 1040 3 3 1316 2.67 2.67 1040 3 3
C(4)–C(5) 228 2.917 998 3 1 998 3 1 998 3 1
Structure P–a�g+g+ & P–a+g�g� (U = 27.0 cm�1)
C(1)–C(2) 161 1.713 426 2.48 1.24 380 2.63 1.31 654 2 1
C(2)–C(3) 131 17.09 2819 2.48 2.48 2512 2.63 2.63 1924 3 3
C(3)–C(4) 108 18.38 1418 3 3 1852 2.63 2.63 1418 3 3
C(4)–C(5) 247 3.054 1228 3 1 1228 3 1 1228 3 1
Structure P-a�g+g� & P–a+g�g+ (U = 349.4 cm�1)
C(1)–C(2) 157 1.713 382 2.56 1.28 336 2.73 1.36 625 2 1
C(2)–C(3) 132 15.88 2521 2.56 2.56 2216 2.73 2.73 1831 3 3
C(3)–C(4) 110 14.79 1188 3 3 1437 2.73 2.73 1188 3 3
C(4)–C(5) 254 3.057 1297 3 1 1297 3 1 1297 3 1
Structure P–a+tg+ & P–a�tg� (U = 229.8 cm�1)
C(1)–C(2) 126 1.670 81 4.40 2.20 107 3.84 1.92 44 6 3
C(2)–C(3) 110 14.45 533 4.40 4.40 698 3.84 3.84 1146 3 3
C(3)–C(4) 125 11.48 1177 3 3 717 3.84 3.84 1177 3 3
C(4)–C(5) 229 3.039 1049 3 1 1048 3 1 1049 3 1
Structure P–a+tt & P–a�tt (U = 73.8 cm�1)
C(1)–C(2) 118 1.661 76 4.28 2.14 94 3.82 1.91 38 6 3
C(2)–C(3) 119 11.40 523 4.28 4.28 655 3.82 3.82 1063 3 3
C(3)–C(4) 117 11.91 1079 3 3 664 3.82 3.82 1079 3 3
C(4)–C(5) 227 2.871 976 3 1 976 3 1 976 3 1
Structure P–a+tg� & P–a�tg+ (U = 257.4 cm�1)
C(1)–C(2) 109 1.668 64 4.30 2.15 81 3.82 1.91 33 6 3
C(2)–C(3) 107 14.518 536 4.30 4.30 679 3.82 3.82 1098 3 3
C(3)–C(4) 123 11.34 1135 3 3 701 3.82 3.82 1135 3 3
C(4)–C(5) 228 3.040 1041 3 1 1041 3 1 1041 3 1
Structure P–stg+ & P–stg� (U = 294.9 cm�1)
C(1)–C(2) 103 1.670 82 3.57 1.79 92 3.36 1.68 29 6 3
C(2)–C(3) 109 15.34 845 3.57 3.57 954 3.36 3.36 1196 3 3
C(3)–C(4) 124 11.53 1161 3 3 925 3.36 3.36 1161 3 3
C(4)–C(5) 229 3.039 1051 3 1 1051 3 1 1051 3 1
Structure P–stt (U = 124.6 cm�1)
C(1)–C(2) 108 1.650 90 3.56 1.78 100 3.39 1.69 32 6 3
C(2)–C(3) 121 11.88 816 3.56 3.56 901 3.39 3.39 1150 3 3
C(3)–C(4) 116 11.96 1068 3 3 837 3.39 3.39 1068 3 3
C(4)–C(5) 232 2.878 1024 3 1 1024 3 1 1024 3 1

a The units are cm�1 for barrier heights and frequencies and amu Å2 for internal moments of inertia. b W is used in the MS-AS method and is

calculated by eqn (13).
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which also has the effect that some mirror images have slightly

different volumes (e.g. the volumes of P–a+tt and P–a+tt have

about a 1% difference). If the two mirror images have different

volumes, we used the averaged volume to calculate M values.

The structure P–a�g+t (the global minimum) is chosen as

the reference structure in the MS-RS calculations. Independent

rotations starting from this reference structure generate the

structures P–a�g+g+, P–a�g+g�, P–a�tt, and P–a+g�t.

These five structures are used in the MS-RS calculations.

Table 8 lists information for each structure of 1-pentyl

radical that is used for the partition function calculations

using various schemes for M values. Table 9 lists the partition

functions of 1-pentyl radical calculated by the MS-HO,

MS-AS, and MS-RS methods.

Fig. 7 shows the percentage differences of the harmonic

oscillator partition functions of three structures relative to that

of structure P–a�g+t or P–a+g�t (each harmonic oscillator

partition function takes its own minimum as the zero of

energy). Fig. 8 shows the ratios of the partition function of

1-pentyl radical calculated by multi-structural methods to

those calculated by the SS-HO approximation at the global

minimum (P–a�g+t or P–a+g�t).

III.D 1-Butanol

We label the carbon atoms in 1-butanol as HO–H2C
(1)–H2C

(2)–

H2C
(3)–H3C

(4). The four torsions in 1-butanol are associated with

internal rotation around each of the three C–C bonds and one

C–O bond. Each torsion, with the exception of the methyl

torsion, is expected to generate 3 distinguishable structures,

and a total of 27 distinguishable structures is expected to be

generated. However, due to steric hindrance between the

terminal hydroxyl and methyl groups, the expected structures

g+g�g+ and g�g+g� are saddle points that connects g+x�g+/

g+g�x+ and g�x+g�/g�g+x� structures, respectively. A similar

effect has also been observed in alkanes.17,51 Therefore, 1-butanol

has a total of 29 structures. The 29 structures include 14 pairs

of mirror-image structures; therefore, electronic structure

calculations only needed to be performed for 15 structures.

Two previous conformational studies72,73 of 1-butanol only

observed 27 structures with the structures assigned as g+g�g+

and g�g+g� being similar to our g+x�g+ and g�x+g�

structures. The g+x�g+ structure has torsional angles (for

torsions 1–2, 2–3, and 3–4, respectively) of 60.0, 82.3, and 59.8,

the g�g+x� structure has torsional angles of 73.4, �63.3, and
88.2, and the intervening transition state has torsional angles of

73.2, –68.9, and 81.9 degrees. The g+x�g+ and g�g+x�

structures lie 149 and 8 cm�1 below the intervening transition

state, respectively.

The structure B–tg+t is chosen as the reference structure in

the MS-RS calculations. Starting from this reference structure,

one can generate the structures B–g+g+t, B–g�g+t, B–ttt,

B–tg�t, B–tg+g�, and B–tg+g+ by independent rotation of

each C–C bond or C–O bond. These seven structures are used

in the MS-RS calculations.

If there were no steric hindrance effect in 1-butanol such

that the torsions only generated 27 structures, the parameter

Mj,t would be 3 for each torsion. However, it is not trivial to

set reasonable integer values of Mj,t for the 29 structures that

satisfy eqn (30). Therefore, we use the MS-AS method with

NS : SC = 1 : 3 to determine the Mj,t values by treating only

the methyl group torsion as NS.

Table 9 Calculated conformational-rovibrational partition function
of 1-pentyl radical using multi-structural methods

T/K MS-HO

MS-AS

MS-RS2 : 2a 1 : 3a 4 : 0a

100 5.11E�190 6.02E�190 6.10E�190 5.53E�190 6.32E�190
150 1.83E�124 2.22E�124 2.27E�124 1.93E�124 2.09E�124
200 2.04E�91 2.50E�91 2.59E�91 2.11E�91 2.16E�91
300 6.69E�58 8.22E�58 8.61E�58 6.72E�58 6.45E�58
400 1.05E�40 1.28E�40 1.35E�40 1.04E�40 9.66E�41
600 1.14E�22 1.34E�22 1.42E�22 1.12E�22 1.01E�22
1000 2.20E�06 2.21E�06 2.31E�06 1.97E�06 1.78E�06
1500 2.74E+04 2.13E+04 2.20E+04 1.99E+04 1.82E+04
2000 6.18E+10 3.71E+10 3.81E+10 3.56E+10 3.29E+10
2400 4.06E+14 2.01E+14 2.05E+14 1.95E+14 1.82E+14
3000 1.37E+19 5.17E+18 5.27E+18 5.07E+18 4.78E+18
4000 6.57E+24 1.69E+24 1.71E+24 1.67E+24 1.59E+24
7000 4.08E+35 4.37E+34 4.40E+34 4.35E+34 4.22E+34
50 000 7.38E+72 1.98E+70 1.98E+70 1.97E+70 1.96E+70

a NS : SC.

Fig. 7 Percentage difference between harmonic oscillator partition

functions of the global minimum structure and selected other struc-

tures of the 1-pentyl radical. The zero of energy is at each structure’s

local minimum. The three cases with the largest difference are

presented in this figure.

Fig. 8 Ratio of the partition function of the 1-pentyl radical calculated

by multi-structural methods to that calculated by the single-structure HO

approximation using the global minimum structure.
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Given that the g+x�g+/g+g�x+ (g�x+g�/g�g+x�)

structures overlap very strongly and the g+g�x+ (g�g+x�)

structure is extremely shallow (being bound by only 7.9 cm�1)

it is reasonable to only include the lower energy structure of

each pair in an MS-AS calculation involving 27 structures.

Table 10 lists the information for each structure of

1-butanol that is needed for the partition function calculations.

Table 11 gives the calculated conformational-rovibrational

partition functions of 1-butanol.

Table 12 lists the standard state entropy of ethanol, 1-pentyl

radical, and 1-butanol calculated from SS-HO, MS-HO, and

MS-AS partition functions including contributions from

electronic and translational degrees of freedom, and also

calculated using Benson’s group additivity method; the global

minimum structure is used for the SS-HO method. Table 12 also

contains experimentally derived values74,75 for comparison.

Table 13 lists the calculated correction factors Zint and Zcoup

for structures of ethanol, 1-butanol, and 1-pentyl radical.

Fig. 9 shows the two cases with the largest percentage

difference of structure-specific harmonic oscillator partition

functions relative to that of the global minimum (each

harmonic oscillator partition function takes its own minimum

as the zero of energy). Fig. 10 plots the temperature dependence

of the ratio of the partition function of 1-butanol calculated by

the multi-structural methods to that calculated by the SS-HO

approximation at the global minimum.

IV. Discussion

We will begin by comparing the newMS-AS methods to accurate

results of 1-D models so that we can demonstrate their accuracy

for treating intra-mode anharmonicity without complications

from mode-mode coupling and anharmonicities of other vibra-

tional modes. We have already extensively studied14 methods to

treat the intra-mode anharmonicity; herein we will only compare

to the accurate values from torsional eigenvalue summation.

Expansion of a torsional potential in terms of a Fourier series,

along with the assumption of a constant moment of inertia, leads

to a banded symmetric matrix that may be diagonalized with

negligible computational expense. This technique has a long

history14,19,20,76–81 and it might seem tempting to apply it when-

ever the additional energy evaluations needed for fitting the

Fourier potential are affordable. However, there is little benefit

to treating the intramode anharmonicity to a much higher degree

of accuracy than we can treat the intermode anharmonicity; this is

especially true in applications19,20 where multiple torsional modes

are so treated because coupling between torsional degrees of

freedom is often very important. Treatment of the inter-mode

anharmonicity, which we achieve primarily by including multiple

structures, is a much harder task and the primary goal of the new

methods presented herein, but we begin by demonstrating that the

methods also treat intramode anharmonicity well.

Table 3 clearly shows that the MS-HO approximation

significantly overestimates the torsional partition function at

high temperature and modestly underestimates the torsional

partition function at low temperatures for the 1-D model of

eqn (48). For this model torsion and most typical torsional

potentials where the barriers are not very low, the MS-HO

approximation is adequate for practical work at low

temperatures. Due to cancellation of error, the MS-HO

approximation may have quite small errors at some

temperatures (e.g., 300 K for this 1-D model potential).

The MS-AS and MS-ASCB methods both use the Pitzer–

Gwinn approximation based on a reference classical partition

function, but they require different information about the

torsional potential. They both need the energies, frequencies,

and geometries of all structures that are local minima of the

potential energy surface, and the MS-ASCB method also needs

the locations and magnitudes of the torsional barriers. For this

1-D potential, the barriers of the deep wells are 271 cm�1 and

1678 cm�1 for each side, respectively; the shallow well has a

symmetric barrier of 16 cm�1. Eqn (13) gives effective barriers

of 1612 cm�1 and 40 cm�1 for the deep and shallow wells,

respectively. Although the MS-AS and MS-ASCB methods use

different effective barriers, they both have errors of less than 3%

for the potential of eqn (48) at temperatures above 100 K.

The predominant source of errors of both methods at low

temperatures (e.g., 60 K) is the Pitzer–Gwinn approximation,

which only puts the quantum effects in at a harmonic level.

For the 1-D model potential of eqn (48), there is a very

shallow minimum as shown in Fig. 1. On the potential energy

surface of a real molecule, the geometry of such a shallow

minimum may be hard to find and optimize. Also for complex

molecules, finding all possible shallow minima may prove

difficult, so we consider the consequences of neglecting them

for this model problem. When the shallow minimum is

ignored, the calculated effective barrier using eqn (13) is

364 cm�1 with M = P = 2. Table 4 shows that for

T o 1000 K the two multi-structural methods (MS-HO and

MS-AS) both underestimate the partition function when using

two minima compared to that calculated by using three

minima. At higher temperatures the MS-AS method has errors

smaller than 7% when the shallow minimum is ignored. In the

high-temperature limit (illustrated by 50 000 K), the error of

the MS-AS method is negligible even without explicitly

accounting for the shallow minimum because the torsional

partition function approaches a free rotor partition function,

which is independent of the potential. These results suggest

that accounting for shallow minima can be important if their

energies are low (151.36 cm�1 in the 1-D model potential of

eqn (48)) especially at temperatures of 400 K and lower.

The exact barrier heights on the two sides of each minimum

for the 1-D torsional potential of H2O2 (eqn (49)) are 2545 cm�1

and 377 cm�1, and this large difference presents a significant

challenge for the MS-AS method as it assumes a single barrier

height. The effective mean barrier height calculated by eqn (13)

and used in the MS-AS method is 919 cm�1. Although this

value is quite different from the exact ones, Table 5 shows that

the MS-AS method has errors no larger than 13% from 200 to

3000 K, with the largest error at 1500 K, where the error

corresponds to an error of only 0.36 kcal mol�1 in the free

energy. This 1-D case shows that accurate barrier height

information does improve the accuracy of the calculated

partition function through the use of the MS-ASCB method,

but that the calculated partition function is not too sensitive to

the barrier heights. Because one of the two barriers on this

potential energy surface is very high, the MS-HO approximation

gives adequate results from 300 to 2400 K.
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Table 10 Information used for the 1-butanol conformational-rovibrational partition function using multi-structural methodsa

Torsion �o I

NS : SC = 1 : 3 27-structures, NS : SC = 4 : 0

Wb M P Wb M P

Structure B–ttt (U = 16.6 cm�1)
O(1)–C(1) 244 0.763 281 3.10 3.10 300 3 3
C(1)–C(2) 122 10.800 989 3.10 3.10 1057 3 3
C(2)–C(3) 112 11.391 881 3.10 3.10 942 3 3
C(4)–C(5) 231 2.832 995 3 1 995 3 1
Structure B–ttg+ & B–ttg� (U = 329.5 cm�1)
O(1)–C(1) 250 0.755 307 3.02 3.02 310 3 3
C(1)–C(2) 107 13.624 1012 3.02 3.02 1023 3 3
C(2)–C(3) 119 10.829 1000 3.02 3.02 1010 3 3
C(4)–C(5) 218 3.001 944 3 1 944 3 1
Structure B–tg+t & B–tg�t (U = 0.0 cm�1)
O(1)–C(1) 243 0.759 273 3.12 3.12 296 3 3
C(1)–C(2) 143 10.368 1284 3.12 3.12 1391 3 3
C(2)–C(3) 98 15.608 914 3.12 3.12 990 3 3
C(4)–C(5) 229 2.879 994 3 1 994 3 3
Structure B–tg+g+ & B–tg�g� (U = 229.9 cm�1)
O(1)–C(1) 247 0.766 320 2.94 2.94 308 3 3
C(1)–C(2) 114 16.178 1433 2.94 2.94 1378 3 3
C(2)–C(3) 91 17.732 1008 2.94 2.94 970 3 3
C(4)–C(5) 220 3.007 960 3 1 960 3 1
Structure B–tg+g� & B–tg�g+ (U = 605.4 cm�1)
O(1)–C(1) 259 0.757 326 3.04 3.04 335 3 3
C(1)–C(2) 124 13.514 1345 3.04 3.04 1379 3 3
C(2)–C(3) 105 15.789 1116 3.04 3.04 1145 3 3
C(4)–C(5) 223 3.030 989 3 1 989 3 1
Structure B–g+tt & B–g�tt (U = 16.1 cm�1)
O(1)–C(1) 261 0.757 320 3.09 3.09 340 3 3
C(1)–C(2) 128 10.938 1105 3.09 3.09 1176 3 3
C(2)–C(3) 112 11.538 889 3.09 3.09 946 3 3
C(4)–C(5) 231 2.833 1000 3 1 1000 3 1
Structure B–g+tg+ & B–g�tg� (U = 359.0 cm�1)
O(1)–C(1) 252 0.760 301 3.08 3.08 318 3 3
C(1)–C(2) 110 13.915 1040 3.08 3.08 1100 3 3
C(2)–C(3) 118 10.981 949 3.08 3.08 1004 3 3
C(4)–C(5) 217 3.001 933 3 1 933 3 1
Structure B–g+tg� & B–g�tg+ (U = 314.4 cm�1)
O(1)–C(1) 265 0.770 356 3.00 3.00 357 3 3
C(1)–C(2) 112 13.886 1146 3.00 3.00 1149 3 3
C(2)–C(3) 119 11.012 1019 3.00 3.00 1022 3 3
C(4)–C(5) 217 3.003 934 3 1 934 3 1
Structure B–g+g+t & B–g�g�t (U = 40.6 cm�1)
O(1)–C(1) 261 0.786 345 3.03 3.03 354 3 3
C(1)–C(2) 146 10.378 1415 3.03 3.03 1448 3 3
C(2)–C(3) 96 15.648 924 3.03 3.03 946 3 3
C(4)–C(5) 230 2.882 1000 3 1 1000 3 1
Structure B–g+g+g+ & B–g�g�g� (U = 251.2 cm�1)
O(1)–C(1) 264 0.783 382 2.91 2.91 359 3 3
C(1)–C(2) 114 16.244 1471 2.91 2.91 1381 3 3
C(2)–C(3) 89 17.861 991 2.91 2.91 930 3 3
C(4)–C(5) 220 3.008 961 3 1 961 3 1
Structure B–g+g+g� & B–g�g�g+ (U = 598.4 cm�1)
O(1)–C(1) 259 0.790 355 3.00 3.00 349 3 3
C(1)–C(2) 128 13.858 1514 3.00 3.00 1491 3 3
C(2)–C(3) 105 15.615 1154 3.00 3.00 1136 3 3
C(4)–C(5) 236 3.031 1113 3 1 1113 3 1
Structure B–g+x�g+ & B–g�x+g� (U = 770.4 cm�1)
O(1)–C(1) 260 0.770 272 3.37 3.37 343 3 3
C(1)–C(2) 149 15.428 1785 3.37 3.37 2253 3 3
C(2)–C(3) 112 13.917 904 3.37 3.37 1141 3 3
C(4)–C(5) 284 3.021 1603 3 1 1603 3 1
Structure B–g+g�t & B–g�g+t (U = 70.6 cm�1)
O(1)–C(1) 254 0.767 301 3.12 3.12 326 3 3
C(1)–C(2) 140 10.435 1253 3.12 3.12 1355 3 3
C(2)–C(3) 101 15.489 966 3.12 3.12 1045 3 3
C(4)–C(5) 230 2.876 999 3 1 999 3 1
Structure B–g+g�g� & B–g�g+g+ (U = 343.7 cm�1)
O(1)–C(1) 237 0.766 293 2.96 2.96 285 3 3
C(1)–C(2) 112 16.267 1379 2.96 2.96 1342 3 3
C(2)–C(3) 95 17.744 1094 2.96 2.96 1065 3 3
C(4)–C(5) 219 3.006 947 3 1 947 3 1
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Ethanol is a simple molecule that has two torsions. As

shown in Table 3, the two torsions around the C–O and

C–C bonds have very close frequencies when modeled using

internal coordinates. In the normal mode analysis, the two

torsional motions are strongly coupled, and consequently the

two lowest-frequency modes are mixtures of two torsional

motions. The normal mode with the lowest frequency is the

antisymmetric combination of two torsions, and the mode

with the second lowest frequency is the symmetric combination.

Therefore, even such a simple molecule as ethanol provides a

case where it is impossible to assign the torsions to specific

normal modes. The barrier heights calculated by eqn (13) are

1109, 329, 1206, and 379 cm�1 and agree very well with the

normal modes optimized by the M06-2X/6-311+G(2df,2p)

method, which are 1109, 386, 1195, and 359 cm�1.

To apply the MS-ASCB method to ethanol, one needs to

calculate the torsion angle difference ft,eq.j�fL
j,t or fR

j,t�ft,eq.j.

For the ethanol calculations, we use a single dihedral angle to

represent a torsion angle although one could also construct a

torsion coordinate involving a top rotating about a fixed frame

from a combination of several related dihedral angles.48–50

The DfR and DfL of the C–C torsion are set to 60 degrees

due to the symmetry. The DfR and DfL of C–O is measured

by the dihedral angle H–O–C–C; they are both 61.8 and

degrees for structure E–t and are both 59.1 degrees for structures

E–g+ and E–g�.

When conformational structures change by internal rotations,

the other vibrational frequencies (e.g. stretching and bending

modes) also change correspondingly. One of advantages of the

multi-structural methods is that anharmonicities and couplings

due to conformational changes are partially accounted for by

the use of a different harmonic analysis at each structure. To

illustrate the effect of conformational changes on partition

functions, Fig. 4 shows the percentage difference of the ethanol

E–g+ or E–g� HO partition function from that of the global

minimum E–t. Although the E–t and E–g+ (or E–g�)

Table 10 (continued )

Torsion �o I

NS : SC = 1 : 3 27-structures, NS : SC = 4 : 0

Wb M P Wb M P

Structure B–g+g�x+ & B–g�g+x� (U = 911.5 cm�1)
O(1)–C(1) 272 0.783 271 3.55 3.55
C(1)–C(2) 115 12.330 761 3.55 3.55
C(2)–C(3) 117 17.289 1110 3.55 3.55
C(4)–C(5) 202 3.012 810 3 1

a The units are cm�1 for barrier heights and frequencies and amu Å2 for internal moments of inertia. b W is used in the MS-AS method and is

calculated by eqn (13).

Table 11 Calculated conformational-rovibrational partition function
of 1-butanol using multi-structural methods

T/K MS-HO

MS-AS

MS-RSaNS : SC = 4 : 0b NS : SC = 1 : 3

100 1.09E�179 1.24E�179 1.25E�179 1.10E�179
150 1.28E�117 1.57E�117 1.58E�117 1.43E�117
200 2.44E�86 3.17E�86 3.20E�86 2.95E�86
300 1.25E�54 1.79E�54 1.80E�54 1.69E�54
400 2.24E�38 3.44E�38 3.48E�38 3.31E�38
600 2.39E�21 3.91E�21 3.98E�21 3.85E�21
1000 5.18E�06 7.99E�06 8.20E�06 8.12E�06
1500 1.55E+04 1.94E+04 1.99E+04 2.01E+04
2000 1.38E+10 1.35E+10 1.39E+10 1.41E+10
2400 5.11E+13 4.15E+13 4.27E+13 4.35E+13
3000 8.66E+17 5.39E+17 5.53E+17 5.65E+17
4000 1.74E+23 7.32E+22 7.49E+22 7.68E+22
7000 2.01E+33 3.49E+32 3.55E+32 3.65E+32
50 000 1.00E+68 4.29E+65 4.31E+65 4.42E+65

a The reference structure is taken as B–tg+t. b Using only 27

structures, see text for further details.

Table 12 Standard state entropy (in cal mol�1 K�1) calculated using
SS-HO, MS-HO, and MS-AS partition functions and group additivity
methoda

T/K SS-HO MS-HO MS-AS GA Ref. data

Ethanol
298.15 64.79 66.85 67.47 67.10 67.31b

400 69.96 72.02 72.59 72.17
600 79.26 81.33 81.68 81.16
1000 94.99 97.06 96.85 96.28
1-butanol
298.15 80.04 85.97 87.17c 85.94 86.8d

400 88.54 94.78 96.07c 94.65
600 104.25 110.77 111.86c 110.22
1000 131.29 138.00 138.14c 136.48
1-pentyl radical
298.15 83.75 89.08 89.48e 86.32

88.48f

88.13g

400 93.04 98.54 98.87e 95.86
97.87f

97.40g

600 110.09 115.71 115.71e 112.64
114.55f

114.02g

1000 139.20 144.88 143.95e 141.08
143.06f

142.21g

1500 167.96 173.64 171.62e 169.22
171.50f

a The SS-HO calculations only account the contribution from the global

minimum and all the vibrational modes (including torsional modes) are

approximated as harmonic oscillator (J, Zj, and fj,t are all equal to 1).

All the calculated entropies include electronic and translational

contributions. Frequencies used in the calculations are all scaled (see text

for details). The calculations by GA method use the parameters in ref. 30

except those in footnote f and g. b From ref. 74. c The data are calculated

using NS : SC = 3 : 1. d Experimental data from ref. 75. e The data are

calculated using NS : SC = 2 :2. f The parameters used in the

calculations were taken from Cohen.33 g The parameters used in the

GA calculations were taken from Lay et al.34
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structures have quite similar conformations, this difference can

be as large as 12%. The differences are larger for 1-pentyl

radical and 1-butanol. Because many conformational

structures of 1-pentyl radical are quite different from the

global minimum, the effects of conformational changes on

partition functions are very large as shown in Fig. 7. Even

larger effects are observed for 1-butanol as shown in Fig. 9.

Therefore, treating torsions as separable with the frequencies

of the other modes fixed at their values for the global

minimum structures can introduce large errors.

When the harmonic approximation is applied to calculate

partition functions in the literature, often only one structure

(the global minimum) is considered. Therefore we compared the

ratio of partition functions calculated by multi-structural

methods to those calculated by the harmonic approximation

for the global minimum. Because ethanol has three conforma-

tional structures, the partition functions calculated by multi-

structural methods are larger than those calculated by the HO

approximation using one structure, and the factors are between

1.9 and 3.4 in the temperature range 200–3000 K as shown in

Fig. 5. Because the 1-pentyl radical and 1-butanol have many

more conformational structures, the partition functions

calculated by the multi-structural methods are much larger than

the harmonic ones obtained using only the global minimum

structure as shown in Fig. 8 and 10, respectively. For example, at

T= 1000 K, the MS-AS partition function of 1-butanol is larger

than that of the SS-HO approximation by a factor of 31.

Standard state entropies calculated from the SS-HO,

MS-HO, and MS-AS partition functions for ethanol, 1-pentyl

radical, and 1-butanol are compared to each other and to the

GA method and reference data in Table 12. The reference data

for ethanol is based on spectroscopic data and a reference

structure treatment of anharmonicity; the reference data for

1-butanol is based on experimental heat capacities and heats

of fusion and vaporization; and there is no available reference

data for the 1-pentyl radical. The entropies calculated by

the MS-HO method are in much better agreement with the

reference data than is the single-structure HO data, and the

entropies calculated by the MS-AS method give even better

agreement for both ethanol and 1-butanol at the temperature

studied. The entropies calculated by various parametrizations

of the GA method are also listed in Table 12 for comparison.

For ethanol and 1-butanol we only calculate entropies up to

1000 K because the heat capacities Cp are available only up to

1000 K for an OH group, and extrapolation may not be

reliable. All the GA calculations use the parameters from the

Benson’s tables30 except some calculations for 1-pentyl radical

also use the parameters from Cohen’s33 and Lay et al.’s34

work. Benson has estimated30 that ‘‘Values of Cp and

Table 13 The calculated correction factors Zint and Zcoup for structures of ethanol, 1-butanol, and 1-pentyl radical

Structure Zint Zcoup Structure Zint Zcoup

Ethanol 1-butanol
E–t 0.954 1.000 B–ttt 0.920 0.937
E–g+/E–g� 0.974 0.993 B–ttg+/B–ttg� 0.790 0.962

B–tg+t/B–tg�t 0.886 0.941
1-pentyl radical B–tg+g+/B–tg�g� 1.024 0.758
P–a�g+t�P–a+g�t+ 0.834 0.935 B–tg+g�/B–tg�g+ 0.642 0.948
P–a�g+g+/P–a+g�g� 1.115 0.737 B–g+tt/B–g�tt 0.912 0.938
P–a�g+g�/P–a+g�g+ 0.721 0.928 B–g+tg+/B–g�tg� 0.789 0.954
P–a+g+g+/P–a�g�g� 0.785 0.944 B–g+tg�/B–g�tg+ 0.818 0.946
P–a+tt/P–a�tt 0.866 0.935 B–g+g+t/B–g�g�t 0.922 0.909
P–a+tg�/P–a�tg+ 0.700 0.945 B–g+g+g+/B–g�g�g� 1.027 0.744
P–stg+/P–stg� 0.608 0.938 B–g+g+g�/B–g�g�g+ 0.770 0.908
P–stt 0.783 0.933 B–g+x�g+/B–g�x+g� 0.716 0.917

B–g+g�t/B–g�g+t 0.868 0.936
B–g+g�g�/B–g�g+g+ 1.020 0.759
B-g+g�x+/B–g�g+x� 0.554 0.934

Fig. 9 Percentage difference between harmonic oscillator partition

functions of selected 1-butanol structures and the harmonic oscillator

partition functions of the global minimum. The zero of energy is at

each structure’s local minimum. The two cases with the largest

differences are presented in this figure.

Fig. 10 Ratio of the partition function of 1-butanol calculated by

multi-structural methods with NS : SC= 1 : 3 to that calculated by the

single-structure HO approximation at the global minimum.
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S estimated from these groups are on the average within

	0.3 cal mol�1 K�1 of the measured values. . .’’ and ‘‘for

heavily substituted species, deviations in Cp and S may go as

high as 	1.5 cal mol�1 K�1. . .’’ We find that the difference of

the GA data from the MS-AS data and the reference data

sometimes exceed these estimated uncertainties. The GA

calculations for 1-pentyl radical obtained using Cohen’s

parameters agree better with the MS-AS values than those

obtained using Benson’s or Lay et al.’s parameters.

In the intermediate-temperature region, the values of the

MS-AS partition functions of ethanol, 1-pentyl (using the

2 : 2 scheme), and 1-butanol (using the 1 : 3 scheme) are larger

than those of the MS-HO partition functions. However, the

MS-AS partition functions of 1-pentyl radical with all four

torsions treated as nearly separable are almost the same as or

lower than the MS-HO partition functions. This is because the

torsion around the C(1)–C(2) bond in the 1-pentyl radical has a

very low barrier predicted byM= 6, and its torsional correction

factor fj,t is already smaller than 1 in the intermediate

temperature region. Fig. 11 shows the temperature dependence

of fj,t for several relevant cases. In the low-temperature limit the

correction factors fj,t are 1, and they initially rise above 1 as

temperature increases. Eventually the correction factors achieve a

relative maximum and then subsequently monotonically

decrease. This behavior is quite different from that predicted

by the switching functions advocated in earlier work.7

The three sets of Mj,t values (or equivalently the domain

volumes) for 1-pentyl radical all have larger volumes (smaller

Mj,t values) for the first three pairs of structures in Table 8 than

for the others, and the three sets of MS-AS partition functions

have similar magnitudes. While it is difficult to judge which set of

Mj,t values is more accurate, this indicates that the Mj,t values

determined by Voronoi tessellation lead to reasonable results.

The ratio of the largest to the smallest of the three sets of MS-AS

partition functions at 400 K is only 1.30. It is interesting to

compare the effective barrier heights calculated from the three

sets of Mj,t values. The radical –CH2 group rotation barrier is

around 250 cm�1 for the global minimum P–a�g+t obtained by

a relaxed scan. The effective barrier heights calculated by

M = 2.67 (254 cm�1) and M = 2.53 (281 cm�1) have better

agreement with the barrier height obtained by a relaxed scan

than that calculated byM = 2 (451 cm�1). However, for the

structure P–stt, the effective barrier height obtained by a relaxed

scan (around 30–40 cm�1) is much lower than that calculated

withM=3.39 (100 cm�1) andM=3.56 (90 cm�1), but it agrees

very well with the barrier height calculated with M = 6

(32 cm�1). Despite these differences between the effective barrier

heights calculated by the three different sets of Mj,t values, all of

the calculated effective barrier heights fall into reasonable ranges

for all the torsions considered here. The three sets of MS-AS

partition functions of 1-pentyl radical have the same high–T limit

because the torsional partition function is independent of theMj,t

values in the high–T limit as long as eqn (30) is satisfied.

For 1-butanol the 27-structures partition functions and

29-structures partition functions have differences of less than

3% because the two addtitional structures have high energies

and small subdomain volumes. This result shows that missing

some structures with high energies need not lead to large errors

in applying the MS-AS method.

For 1-butanol, the MS-AS partition functions and MS-RS

partition functions agree with each other within about 3% for

600 K and above, but the deviation rises to 6% and 8% at

300 K and 200 K, respectively. For the 1-pentyl radical, the

deviations between the MS-AS andMS-RS partition functions

are larger than those for 1-butanol but are still within 10% for

temperatures above 200 K when both are calculated with

integer Mj,t. The differences between the 1-pentyl MS-RS

and MS-AS partition functions when one uses the Mj,t

schemes designed for strong coupling are larger. With the

(2 : 2) and (1 : 3) schemes, the ratios of the MS-AS to the

MS-RS partition functions are 1.33–1.41 from 400 K to

600 K. The deviations are a consequence of the MS-RS scheme

being designed as an affordable approximation to the nearly

separable MS-AS method. The levels of agreement between

the results of the methods confirm the principle behind the

design of the reference-structure method.

Because the MS-ASCB method uses the most information

about the potential energy surface, it is expected—in the

absence of cancellation of errors—to be the most accurate of

the methods presented here. The good agreement observed

between the results of the MS-AS and MS-ASCB methods

suggests that the simpler MS-AS method is capable of

providing reliable results. Finally, the comparable accuracy

and reduced cost of the MS-RS method make it particularly

well suited for accounting for the torsional anharmonicity of

systems with a large numbers of torsions.

V. Concluding remarks

In this article, we proposed a new family of approximations

called multi-structural methods for including torsional

anharmonicity in thermodynamics calculations. These

methods can be applied to molecules with multiple torsions

coupled with each other or with other low-frequency

vibrational modes. A key feature of the methods is the use

of internal coordinates to correct for torsional anharmonicity

so that assigning a torsion to a specific normal mode is not

required in the multi-structural methods. These methods only

require geometry optimizations and frequency calculations

(i.e., no scans) and are easily implemented. The MS-ASFig. 11 Temperature dependence for the fj,t for several relevant cases.
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method is designed to be as accurate as possible without

requiring any information about the conformational barriers

or the paths connecting the structures. We recommend

the MS-AS method based on its good balance between

computational cost, simplicity, and accuracy. The simpler

MS-RS method, which is an approximation to the MS-AS

method for the cases of nearly separable torsions, is also found

to perform well in our tests and is recommended for large

systems when the cost and effort of the MS-AS method are not

affordable or not justified.

A portable and documented FORTRAN package for

computing the MS partition functions conveniently is under

preparation, and it will be made available at no cost when it

is ready.

Appendix A

Glossary of acronyms

CHO Classical harmonic oscillator

CM Classical mechanical

CO An interpolation scheme for torsional

anharmonicity based on Pitzer’s

approximation for the moment of inertia along

the curvilinear torsion (denoted C for

curvilinear) and on the torsional frequency o
(denoted O for omega).

FR Free rotor

GA Group additivity (method)

HO Harmonic oscillator

MS Multi-structural

MS-AS Multi-structural method including all

structures

MS-AS(I) MS-AS method with approximation I

MS-AS(M) MS-AS method with approximation M

MS-AS(S) MS-AS method with approximation S

MS-ASCB Multi-structural method including all

structures and conformational barrier heights

MS-HO Multi-structural harmonic-oscillator method

MS-RS Multi-structural method using a reference-

structure treatment involving the generation of

structures by independent torsions

NS Nearly separable torsions

QHO Quantum mechanical harmonic oscillator

QM Quantum mechanical

RC Reference classical (approximation)

RPG Reference Pitzer–Gwinn (approximation)

SC Strongly coupled (torsions)

SRC Segmented reference classical (approximation)

SRPG Segmented reference Pitzer–Gwinn

(approximation)

TES Torsional eigenvalue summation, that is,

evaluation of torsional partition functions by

summing Boltzmann factors based on

numerically computed eigenvalues of separable

torsions

ZPE Zero-point energy

Appendix B

The thermodynamic functions for the internal (i.e., neglecting

translational contributions) free energy, average energy, and

entropy are

G = �ln(Q)/b (B1)

E ¼ � @ lnðQÞ
@b

ðB2Þ

S ¼ kB lnQ�
1

T

@ lnQ

@b

� �
V

ðB3Þ

If we use the classical expression for the rotational partition

function

Qrot;j ¼
ffiffiffi
p
p

srot;j

2

�h2b

� �3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IAIBIC

p
ðB4Þ

where IA, IB, and IC are the principal moments of inertia, the

partial derivative of the MS-AS partition function with respect

to b is

� @

@b
lnðQMS-AS

con-rovibÞ

¼ 1

QMS-AS
con-rovib

XJ
j¼1

e�bUjQrot;jQ
HO
j Zj

Yt
t¼1

fj;t
3

2b
þUj

� �(

þ
XF
m¼1

�hoj;m

2

1þ e�b�hoj;m

1� e�b�hoj;m

� g
ð1�Zint

j Zcoup
j Þ

2t
ffiffiffi
b
p

Zj

Xt
t¼1

�oj;t
ffiffiffiffiffiffiffiffiffiffiffi
2pIj;t

p
Mj;t

sech2ð�oj;t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pIj;tb

p
=Mj;tÞ

tanhð�oj;t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pIj;tb

p
=Mj;tÞ

( ) !

þ
Xt
t¼1

Ij;t �o2
j;t

M2
j;t
� 1

2b
�
Ij;t �o2

j;t

M2
j;t

I1ðbIj;t �o2
j;t=M

2
j;tÞ

I0ðbIj;t �o2
j;t=M

2
j;tÞ

 !)
ðB5Þ

Note that the ZPE corresponding to the MS-AS partition

function is the same as for the MS-HO method, i.e.,

EMS-HO
0 ¼ min

j
fEHO

j;0 þUjg ðB6Þ

where EHO
j,0 is the harmonic oscillator zero-point energy of

structure j with the zero of energy at its local minimum, and

which is given by

EHO
j;0 ¼

�h

2

XF
m¼1

oj;m ðB7Þ

Appendix C

In this appendix, three alternative versions of the MS-AS

method are presented; they are labeled MS-AS(I), MS-

AS(S), and MS-AS(M).
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MS-AS(I)

An alternative method similar to prior work13,14 would be

f
ðIÞ
j;t ¼

st
Mj;t

qMC-HO
t;j

qQHO
j;t

tanh
qFRj;t

qMC-I
t;j

 !
ðC1Þ

where

qMC-I
t;j ¼

XMj;t=st

i¼1
expð�b½Ui �Uj �ÞqCHO

i;t ðC2Þ

qMC�HO
t;j ¼

XMj;t=st

i¼1
expð�b½Ui �Uj �ÞqHO

it ðC3Þ

and where the sums in eqn (C2) and (C3) runs over only the

minima connected to minimum j by torsion t. However, in

practice this scheme may be difficult to apply because it

requires the user to identify which minima are generated by

a specified torsion. Therefore, we will instead consider two

simple approaches that do not have this requirement.

MS-AS(S)

A simple conformation-specific interpolation function similar

to those advocated previously13 may be used to obtain correct

high and low temperature limits, yielding

f
ðSÞ
j;t ¼ tanh

st
Mj;t

qFRj;t

qCHO
j;t

 !
ðC4Þ

MS-AS(M)

An alternative approach would be to seek a correction factor

of the form

f
ðMÞ
j;t ¼ tanh

N 0qFRj;t
qMS-CHO
t

 !
ðC5Þ

where

qMS�CHO
t ¼

XJ
j¼1

expð�bUjÞqCHO
j;t ðC6Þ

and where N0 is chosen to get a reasonable high-temperature

limit. This may be accomplished by choosing

N0 = N1/t (C7)

where

N ¼

Qt
t¼1

PJ
j¼1

e�bUj qCHO
j;t

PJ
j¼1

e�bUj
Qt
t¼1

qCHO
j;t

¼

Qt
t¼1

qMS�CHO
t

PJ
j¼1

e�bUj
Qt
t¼1

qCHO
j;t

ðC8Þ

Results

Partition functions calculated by the last two alternative

versions for the two 1-D models and for ethanol and 1-pentyl

radical are tabulated in Table S1 to S5 of the electronic

supporting information. Fig. A1–A4 plot the ratio of

the partition function calculated by the multi-structural

approximations to that calculated by the multi-structural

HO approximation for the 1-D models, ethanol, and 1-pentyl

radical. Unlike the MS-AS and MS-ASCB results, the

Fig. A1 Ratios of the partition function of the 1-D potential of

eqn (48) calculated by multi-structural methods or the TES method to

that calculated by the single-structural HO approximation at the

global minimum.

Fig. A2 Ratios of partition functions of the 1-D potential of H2O2

calculated by multi-structural methods or the TES method to those

calculated by the single-structural HO approximation at the global

minimum.

Fig. A3 Ratio of the partition functions for ethanol calculated by

multi-structural methods including torsional anharmonicity to those

calculated by the MS-HO approximation at the global minimum.
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MS-AS(S) and MS-AS(M) results are always below the

MS-HO result. They agree well with the MS-HO results at

low T and with the MS-AS and MS-ASCB results in the

high-temperature limit. The MS-AS(M) scheme leads to every

torsion approaching the free-rotor limit at the same rate,

which is unnecessarily restrictive. While the MS-AS(S) scheme

performs adequately, the MS-AS scheme has the potential to

lead to superior results at intermediate temperatures; as a

consequence, these alternative schemes are not recommended

for future use.

Appendix D

Previous papers13,14 presented several methods that use

normal mode substitution treat each torsion separately by

using various schemes, e.g., CO, RPG, SPRG, and TES, and

treat the other vibrational degrees of freedom based on

information from one structure. Because these methods all

need to identify each torsion with one of the normal modes,

they are not applicable to the molecules considered here.

For the systems studied in this paper, 1-pentyl radical and

1-butanol have torsional modes that are coupled with each

other and with low frequency bending modes, and in ethanol

the two torsional motions are completely mixed in the two

lowest normal modes. Table 14 illustrates the use of the CO,

SRPG, RPG, and TES approximations for ethanol where the

calculations are performed by assigning the lowest normal

mode frequency to C–C torsion and the second lowest normal

mode frequency to C–O torsion. The normal-mode torsional

frequencies and internal moment of inertial used in the CO

method are calculated for each conformer instead of using an

averaged value as advocated previously,13 and the RPG

method implemented here uses an effective barrier height that

is taken as the average of the left and right barriers rather than

that obtained using eqn (13). The TES values were obtained by

fitting 40 points along each torsion to a 10-term Fourier cosine

series.

Comparison of the results in Table 14 to the MS-ASCB

results in Table 7 shows that for 400 K and above there is

excellent agreement of the TES results, very good agreement of

the SRPG results, and good agreement of RPG results; the

agreement deteriorate at lower temperatures. However, there

is no straightforward way to assign the torsions to individual

normal modes for 1-butanol or 1-pentyl radical, and so these

methods are not generally applicable.
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