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A recent paper in this journal proposed the conversion of conical intersections to avoided

crossings by lowering the symmetry with an optical field. The article also claimed that the

characters of nonadiabatic transitions caused by avoided crossings and conical intersections are

qualitatively different. The present comment shows that this proposal and this claim result from

an incorrect appreciation of the nature of conical intersections and avoided crossings. Conical

intersections are moved, not removed, by almost all perturbations. Furthermore, there is no

dichotomy between avoided crossing mechanisms and conical intersection mechanisms;

as the parameters of the problem change and the typical locally avoided crossing involved in

nonadiabatic dynamics becomes farther from the conical intersection, there is a gradual shift in

the nature of the nonadiabatic transitions, with a continuum of possible behaviors, not just two.

A recent paper in this journal1 proposed the conversion of

conical intersections to avoided crossings by lowering the

symmetry with an optical field. The article also claimed that

the character of nonadiabatic transitions caused by avoided

crossings and conical intersections are qualitatively different.

This proposal and this claim result from an incorrect apprecia-

tion of the nature of conical intersections and avoided

crossings. We will discuss this in the rest of this comment.

As in ref. 1, we neglect spin–orbit coupling, so that all

electronic wave functions and matrix elements can be taken

as real. Apart from brief remarks, we confine ourselves to

pointing out the error of ref. 1, and we do not attempt an

exhaustive study of the behavior of conical intersections under

perturbations.

A general polyatomic system with N atoms has F = 3N � 6

internal degrees of freedom, and conical intersections occur in

F � 2 degrees of freedom.2 Consider the NO2 system of ref. 1;

in this case a conical intersection can occur along a curve in a

three-dimensional internal-coordinate space. As coordinates,

we may choose (for example) the sum of the N–O distances, x,
their difference, Z, and the ONO angle, y. Ref. 1 employed a

two-state diabatic representation with matrix elements Vij, and

in the notation of ref. 1, a conical intersection will occur

wherever the two criteria

V12 = 0 (1)

and

D � V11 � V22 = 0 (2)

are satisfied. Both V12 and D are continuous real functions of

the three coordinates, so in general there will be regions where

V12 is positive, regions where it is negative, and the borders

(two-dimensional surfaces between those regions) where it is

zero; along the border surfaces the first of the conical inter-

section criteria is satisfied. (In accordance with the universal

practice of Born–Oppenheimer theory, we choose the signs of

the wave functions so that they are continuous as functions of

the nuclear coordinates and therefore undergo no abrupt and

discontinuous sign changes.) The same considerations apply to

D. A zero (border) surface for V12 may intersect with one for

D along a curve, and along this curve there will be a conical

intersection.

In general, these zero-surfaces must be found by calculation.

But in systems like unperturbed NO2, at least one surface

where V12 equals zero can be found by symmetry because V12

vanishes identically on the plane Z = 0 if the two states

transform according to A1 and B1 or A2 and B2 under the

C2v symmetry that holds in this case. On one side of this plane,

say Z > 0, V12 will be positive, and on the other side it will be

negative. There may, of course, be other zero-surfaces for V12,

but these must be found by calculation if they exist. Conical

intersections will occur wherever a zero-surface for D intersects

the plane Z = 0.

Now what happens if we apply a perturbation, such as an

external field? Clearly, the forms of the functions V12 and D
will change, and V12 will no longer necessarily be zero
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wherever Z = 0, but, apart from large and very special

perturbations, both V12 and D will still have the property of

having negative and positive regions, separated by borders

where they are zero. Thus, there will still in general be conical

intersections, with their locations simply shifted by small

amounts by small perturbations, by larger amounts by larger

ones, and removed only by very special large perturbations.

The conclusion of ref. 1 that the conical intersection is

replaced by a totally avoided crossing is thus false because

the CI is shifted in location, not eliminated. An analog would

be a chemical substitution that breaks symmetry; for example,

NaH2 has a conical intersection seam in C2v geometries,

whereas a system with similar valence bond structure, for

example, Na + HCl, would be expected to have corresponding

conical intersections, but at nonsymmetrical geometries. In

this respect, there is not a major distinction between symmetry-

allowed and symmetry-required conical intersections. Another

example of a conical intersection being moved rather than

removed by a perturbation is the case where a molecule is

placed into solution, as in a recent example involving the

photoactive yellow protein chromophore.3

(We also note that although—to make the argument as clear

as possible—much of the present discussion is written for the

case of a triatomic molecule, the general conclusion that

conical intersections are moved, not removed, by perturbations

is true for arbitrarily large polyatomic molecules. In NH3, for

example, where F=6, there isC3v symmetry in a 2-dimensional

subspace, and in this subspace states transforming under the

E representation will be degenerate. This subspace is thus a

subspace of the 4-dimensional CI subspace for these states. A

perturbation that removes the symmetry will complicate the

task of locating the CI, but will not remove it. The situation is

more complicated when spin–orbit coupling is included and

the total electronic spin is half-odd-integer,4 but it is beyond

our scope to discuss that here because it is not relevant to the

error in ref. 1.)

In general, due to the reduced dimensionality, a nuclear

trajectory does not pass precisely through a conical inter-

section, but for trajectories passing near to the conical inter-

section, there will be a locally avoided crossing along the path,

where we define a locally avoided crossing as a local minimum

in the energy gap between two states as a function of distance

along a path, in this case the path being the nuclear trajectory.

Thus, even in the presence of conical intersections, most

nonadiabatic transitions are dominated by passage through

locally avoided crossings that sit, so to speak on the ‘‘shoulder’’

(lower cone) of the conical intersection.

What about the case of a totally avoided crossing, defined as

a case where the energy gap, considered as a function in the

entire nuclear configuration space, experiences a minimum but

is never zero? This case hardly exists. In particular, it has been

shown5 that ‘‘when one encounters a local minimum along a

path of the gap between two potential energy surfaces, almost

always it is the shoulder of a conical intersection.’’ It may be

the case that the lowest-energy point on the seam of conical

intersection is dynamically or even energetically inaccessible

under the conditions of an experiment. In such a case, the

locally avoided crossing may be some distance away from the

conical intersection. But there is no dichotomy between avoided

crossing mechanisms and conical intersection mechanisms; as

the parameters of the problem change and the typical locally

avoided crossing involved in the dynamics becomes farther

from the conical intersection, there is a gradual shift in the

nature of the nonadiabatic transitions, with a continuum of

possible behaviors, not just two.

We conclude that, although we do not question the correctness

of the calculations in ref. 1, the interpretation in terms of the

disappearance of the conical intersection is wrong.

This material is based upon work supported by the National

Science Foundation under grant no. CHE09-56776.
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