Supporting information for

Tests of the RPBE, revPBE, τ-HCTHhyb, ωB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis

Ke Yang, Jingjing Zheng Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA

Yan Zhao Commercial Print Engine Labs, Hewlett-Packard Co. 1501 Page Mill Road Palo, Alto, CA 94304

and Donald G. Truhlar Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA

Date of finalization of supporting information: March, 09, 2010

Number of pages including this page: 16

This supporting information contains the comparison of SCF and post-SCF results for the SOGGA functional, the spin quantum numbers of ground states of V and Zr as calculated by each functional, extended versions of Table 2 to 5, and the gradient enhancement factors F_X as a function the reduced gradient densities *s* for the TPSS, M06-L, VS98, and τ -HCTH meta-GGA functionals, and the expressions of exchange enhancement factors F_X of the GGA and meta-GGA exchange functionals in Figure 1 and Figure S1-S3.

The extended versions of Table 2 to 5 differ from those tables in the main text in two respects: (i) results are rounded to the hundredth of a kcal/mol rather than to the tenth of a kcal/mol; (ii) an additional functional, MOHLYP2, is included. Note that MOHLYP is the original MOHLYP functional of Ref. 4, and MOHLYP2 is a different version presented in Ref. 5; MOHLYP2 was mislabeled as MOHLYP in Ref. 5. MOHLYP2 gives a spin quantum number of 5/2 for the ground state of V and 2 for the ground state of Zr.

Note:

Some of the results differ quantitatively (not enough to change previous conclusions) from previously published numbers. The main sources of these differences are as follows: (i) <u>In some previous work we used fine grids; in the present paper we always use ultrafine grids</u> because we found that the results were not completely converged with fine grids. (ii) <u>In some previous calculations (e.g., the BLYP calculations of the DBH24/08 paper⁵), we used the option <u>SCF=(TIGHT,XQC), whereas in this article we used SCF=(XQC, MAXCONVENTIONALCYCLE=20,TIGHT,INTREP), which ensure the energies to converge to a threshold of 10⁻⁶ Hartree. (iii) <u>Some of the previous calculations were done with a version of the previous calculations were done with a v</u></u></u>

computer code that had a small $(10^{-3}-10^{-4} \text{ hartrees})$ bug in the SOGGA functional.

Contents:

Table S1S	S-3
Table S2S	S-4
Table S3	S-5
Table S4S	S-7
Table S5S	S-9
Table S6S	S-10
Figure S1S	S-11
Figure S2S	S-12
Figure S3S	S-13
Exchange enhancement factors	S-14

Table S1. Comparison of the calculated bond energies (kcal/mol) by SCF calculations and post-SCF calculations with the SOGGA functional

	Bond energy ^a	Bond energy ^b
SCF (V ₂)	82.59	119.05
Post-SCF $(V_2)^c$	82.59	119.05
SCF (VS)	121.53	139.75
Post-SCF $(VS)^c$	121.55	139.79
SCF for (NiCH ₂ ⁺)	98.08	98.08
Post-SCF $(NiCH_2^+)^c$	98.07	98.07

^{*a*}Bond energies calculated by using calculated atomic ground states (V, S = 5/2; Ni⁺, S = 1/2) ^{*b*}Bond energies calculated by using experimental atomic ground states (V, S = 3/2; Ni⁺, S = 1/2). ^{*c*}Post-SCF calculations were done by using the PBEsol densities.

Functional	V	Zr
BP86	5/2	1
BVP86	5/2	1
BLYP	5/2	1
PW91	5/2	2
B3PW91	5/2	2
B3LYP	5/2	1
B3V5LYP	5/2	1
PBE	5/2	2
B98	3/2	1
revPBE	5/2	2
VS98	5/2	1
PBEhole	5/2	2
PBE0	5/2	2
RPBE	5/2	1
τ-ΗСΤΗ	3/2	1
τ-HCTHhyb	3/2	1
TPSS	5/2	1
TPSSKCIS	5/2	1
TPSSh	5/2	1
BMK	5/2	1
TPSS1KCIS	5/2	1
MOHLYP	5/2	1
MOHLYP2	5/2	2
MPWLYP1M	5/2	1
B97-3	3/2	1
M05	3/2	1
WC06	5/2	2
B97-D	3/2	1
M06-L	3/2	1
LC-ωPBE	5/2	2
M06	3/2	1
PBEsol	5/2	2
SOGGA	5/2	2
ωB97X-D	5/2	1
HSE	5/2	2

Table S2. Spin quantum numbers of ground states of V and Zr as calculated by various functionals

$(\text{kcal/mol per bond})^{a, b}$
energies (
prrors in bond
and unsigned ϵ
Mean signed a
Table S3.

-	Ał	9 E	ABD	E4	TMA	E4	MLB	E4	DBI	E 18
Functional	MSE	MUE	MSE	MUE	MSEc	MSE ^c	MSE^{c}	MUEC	AMSEd	AMUEd
BP86	3.32	3.32	-6.07	6.07	7.44/13.77	7.44/13.77	12.49/15.66	12.49/15.66	5.24	7.94
BVP86	2.59	2.59	-7.16	7.16	3.86/10.65	5.12/11.91	10.90/14.30	10.90/14.30	3.68	7.15
BLYP	-0.50	1.40	-10.53	10.53	6.64/9.54	7.04/9.95	9.60/11.05	9.60/11.05	1.59	6.99
PW91	2.66	3.16	-3.71	3.71	5.83/13.76	6.55/14.48	12.99/16.71	12.99/16.71	5.54	7.51
B3PW91	-0.18	0.63	-7.28	7.28	-20.71/-12.45	20.71/12.45	-2.59/1.02	5.69/4.23	-5.54	6.61
B3LYP	-0.60	0.66	-8.62	8.62	-16.56/-14.33	16.56/14.33	-1.63/-0.52	5.52/4.41	-5.79	6.67
B3V5LYP	-0.89	0.92	-9.04	9.04	-17.06/-14.90	17.06/14.90	-2.00/-0.92	5.74/4.66	-6.18	7.02
PBE	2.39	3.04	-3.98	3.98	5.38/13.18	6.79/14.59	12.62/16.28	12.62/16.28	5.19	7.48
B98	-4.75	4.75	-3.15	3.15	-10.47	10.47	-0.04	0.04	-4.78	6.02
revPBE	-1.22	1.77	-10.46	10.46	-2.79/4.67	5.30/12.22	6.98/10.49	6.98/10.49	-0.58	6.80
VS98	-0.03	0.55	-7.87	7.87	4.09/7.64	6.77/10.31	5.42/7.19	5.42/7.19	0.95	5.23
PBEhole	1.93	2.63	-4.77	4.77	4.42/12.20	8.04/15.82	12.84/16.56	12.84/16.56	4.70	7.85
PBE0	-0.06	1.12	-4.98	4.98	-22.58/-15.69	22.58/15.69	-3.27/-0.11	6.35/3.97	-5.75	6.88
RPBE	-1.66	1.97	-11.08	11.08	-2.08/4.07	4.87/10.86	6.60/9.67	6.60/9.67	-0.99	6.67
t-HCTH	-0.31	0.73	-7.91	7.91	22.28	22.28	7.94	7.94	4.85	8.72
τ-HCTHhyb	-0.25	0.82	-4.24	4.24	4.25	5.68	2.55	5.94	0.49	3.80
TPSS	0.71	1.09	-9.39	9.39	0.17/6.38	3.29/9.50	8.56/11.67	8.56/11.67	1.13	6.12
TPSSKCIS	0.89	0.99	-8.25	8.25	1.15/6.90	3.56/9.31	9.49/12.37	9.49/12.37	1.79	6.02
TPSSh	0.03	1.28	-9.35	9.35	-10.51/-4.69	10.51/4.69	0.28/3.18	7.09/8.69	-3.37	5.95
BMK	0.12	0.45	-1.36	1.68	-37.99/-29.64	37.99/29.64	-5.35/-1.17	9.87/10.32	-8.50	10.28
TPSS1KCIS	0.01	0.66	-8.13	8.13	-13.29/-8.04	13.29/8.04	1.54/4.16	4.50/5.21	-3.54	5.47
МОНГҰР	-2.09	2.21	-13.93	13.93	-2.62/0.02	5.15/7.78	4.55/5.87	4.55/5.87	-2.92	6.43
MOHLYP2	-17.44	17.44	-32.09	32.09	-32.58/-27.08	32.58/27.08	-16.26/-13.54	16.26/13.54	-22.88	22.88

S-5

MPWLYP1M	0.0	0.97	-8.56	8.56	1.39/3.37	1.87/3.85	8.06/9.05	8.06/9.05	0.56	4.76
B97-3	-0.18	0.57	-4.63	4.63	-17.25	17.25	-3.11	8.07	-5.61	6.85
M05	-0.02	0.40	-5.78	5.78	-5.91	8.29	-1.62	4.93	-2.96	4.36
WC06e	5.17	5.54	1.48	2.34	8.39/19.84	8.39/19.84	17.20/22.00	17.20/22.00	9.54	9.86
B97-D	-0.11	0.38	-7.66	7.66	17.93	17.93	7.42	7.42	3.89	7.46
M06-L	0.49	0.72	-5.54	5.54	0.52	4.22	7.01	7.01	0.61	3.97
LC-@PBE	-0.41	0.87	-4.70	4.70	-33.55/-26.46	33.55/26.46	-8.07/-4.80	10.09/6.82	-9.28	9.88
M06	0.43	0.57	-1.89	1.89	-8.92	8.92	-1.35	4.35	-2.56	3.56
PBEsol	7.25	7.25	4.15	4.15	13.6/22.93	13.6/22.93	19.41/23.62	19.41/23.62	12.18	12.18
SOGGA	6.97	7.26	5.22	5.22	10.76/21.43	11.79/22.46	19.91/24.46	19.91/24.46	11.99	12.31
00B97X-D	-0.17	0.41	-2.15	2.15	-20.48/-19.84	20.84/19.84	-2.54/-2.22	6.14/5.83	-5.54	6.42
HSE	-0.56	0.88	-5.66	5.66	-21.95/-15.12	21.95/15.12	-4.72/-1.53	7.96/5.56	-6.26	7.17
^u Basis set: N	detals: 1	ZQ; nonm(etals: MU	i3 in MLF	3E4, MU3S IN A.	E6, and 6-311+(J(3dt, 2p) in AB	DE4.		
b A positive bond for AE the mean num	MSE coi 6, as exp mber of 1	rresponds to blained in ro bonds per n	o the func ef. 2, we 1 nolecule.	tional pre first comp It is not 1	edicting too large pute the mean err necessary to divid	of a bond stren or in the atomiz de by the averag	gth. Note that in ation energy, and	computing the m I then we divide ds for TMAE4 b	by 4.83, wh ecause thos	oer ich is e data
are for diato on broken; f MLBE4.	mics wh or that da	ich have on ata set, as e	ıly a sıngı xplained	le bond. N in ref. 4,	MLBE4 has three we divide the err	cases where a s or for Fe(CO) ₅ l	ingle bond is bro by 5 before we co	ken and one case supute the mear	e where five n errors for	ponds
<i>c</i> The bond d ground state calculated w experimenta	lissociati s are diff ith the ca l atomic	on energies ferent than alculated at ground stat	s of molec the exper comic groutes.	cules in T imental a und state:	MAE4 and MLE tomic ground sta s; while the numl	E4 databases wites. The numbe tes. The numbe bers after the sla	ere calculated in rs before the slas sh are the MSEs	two ways if the (h "/" are the MS and MUEs calcu	calculated a Es and MU ılated with 1	tomic Es he
<i>d</i> AMSE and 6/18:4/18:4/ average of the of the of this table	AMUE 18:4/18; ne pre-sla are all or	are the ave for TMAE ash and pos 1 a per bond	rrage of N 4 and MI st-slash ve d basis be	1SEs and BE4 data alues. As fore we a	MUEs for AE6, abases, the MSEs explained in foot iverage them.	ABDE4, TMAE and MUEs used mote b , the mean	34, and MLBE4 of d in AMSE and A n errors averaged	latabases weight AMUE are chose to obtain the fin	ed in to be the ial average	/alues

 e The bond dissociation energy of V₂, NiCH₂⁺, and VS were obtained by post-SCF calculations with PBEsol densities due to the convergence problems for V and Ni⁺ atoms.

1 · · · · · · · · · · · · ·	HAT	BH6	NSB	8H6	UAB	H6	HTB	9Ht	DBH2	4/08
runcuonal -	MSE	MUE	MSE	MUE	MSE	MUE	MSE	MUE	$AMSE^{b}$	AMUE ^b
BP86	-13.99	13.99	-7.12	7.12	-3.40	3.40	-9.22	9.22	-8.43	8.43
BVP86	-14.19	14.19	-7.02	7.02	-3.59	3.59	-9.29	9.29	-8.52	8.52
BLYP	-12.36	12.36	-7.53	7.53	-3.06	3.06	-7.76	7.76	-7.68	7.68
PW91	-13.90	13.90	-7.54	7.54	-2.82	2.82	-9.56	9.56	-8.46	8.46
B3PW91	-6.18	6.18	-2.59	2.59	-0.79	1.87	-4.35	4.35	-3.48	3.75
B3LYP	-6.73	6.73	-3.65	3.65	-1.21	1.69	-4.65	4.65	-4.06	4.18
B3V5LYP	-6.76	6.76	-3.63	3.63	-1.28	1.71	-4.64	4.64	-4.08	4.19
PBE	-13.61	13.61	-7.00	7.00	-2.88	2.88	-9.26	9.26	-8.19	8.19
B98	-4.75	4.75	-3.15	3.15	0.09	1.84	-3.93	3.93	-2.94	3.42
revPBE	-10.89	10.89	-5.84	5.84	-2.33	2.33	-6.52	6.52	-6.40	6.40
VS98	-6.88	6.88	-3.96	3.96	-0.05	1.49	-4.91	4.91	-3.95	4.31
PBEhole	-13.62	13.62	-7.35	7.35	-2.83	2.83	-9.11	9.11	-8.23	8.23
PBE0	-5.81	5.81	-2.06	2.06	-0.63	1.93	-4.55	4.55	-3.26	3.59
RPBE	-10.77	10.77	-5.87	5.87	-2.30	2.30	-6.34	6.34	-6.32	6.32
τ -HCTH	-9.18	9.18	-5.84	5.84	-0.57	1.99	-6.14	6.14	-5.43	5.79
τ-HCTHhyb	-6.23	6.23	-4.68	4.68	0.04	1.84	-4.78	4.78	-3.91	4.38
TPSS	-13.02	13.02	-7.93	7.93	-3.62	3.62	-8.23	8.23	-8.20	8.20
TPSSKCIS	-11.62	11.62	-7.66	7.66	-2.22	2.22	-7.02	7.02	-7.13	7.13
TPSSh	-10.11	10.11	-5.85	5.85	-2.81	2.86	-6.65	6.65	-6.36	6.37
BMK	-0.96	0.96	0.60	0.77	0.97	2.05	-1.12	1.12	-0.13	1.23
TPSS1KCIS	-7.80	7.80	-4.95	4.95	-1.16	1.59	-4.91	4.91	-4.71	4.81
МОНГҮР	-10.24	10.24	-3.76	3.76	-3.06	3.06	-5.50	5.63	-5.64	5.67
MOHLYP2	-1.44	3.01	-0.79	3.11	-0.64	1.83	2.68	4.21	-0.05	3.04
MPWLYP1M	-11.85	11.85	-7.14	7.14	-2.75	2.75	-7.81	7.81	-7.39	7.39

Table S4. Mean signed errors and mean unsigned errors in barrier heights (kcal/mol)^a

S-7

B97-3	-2.29	2.49	-0.48	0.96	0.71	1.63	-2.16	2.20	-1.06	1.82
M05	-3.26	4.80	0.01	0.95	1.00	2.48	-0.63	1.74	-0.72	2.49
WC06	-15.70	15.70	-7.58	7.58	-3.36	3.36	-11.53	11.53	-9.54	9.54
B97-D	-9.40	9.40	-6.19	6.19	-1.25	1.71	-6.01	6.39	-5.71	5.92
M06-L	-5.85	6.87	-3.35	3.35	0.52	1.77	-4.11	4.21	-3.20	4.05
LC-@PBE	1.07	2.42	2.82	2.82	1.30	2.09	-1.01	1.15	1.05	2.12
M06	-3.62	4.06	-1.61	1.64	0.54	1.91	-1.53	1.66	-1.56	2.32
PBEsol	-17.50	17.50	-7.40	7.40	-3.90	3.90	-12.69	12.69	-10.37	10.37
SOGGA	-17.04	17.04	-7.14	7.14	-3.87	3.87	-12.85	12.85	-10.23	10.23
ωB97X-D	-1.31	2.19	0.10	0.67	1.03	2.04	-2.04	2.24	-0.56	1.79
HSE	-6.10	6.10	-2.58	2.58	-0.65	1.87	-4.56	4.56	-3.47	3.78

^aSingle-point calculations with MG3S basis set with QCISD/MG3 geometries.

^bAMSE and AMUE are the average of MSEs and MUEs for the HATBH6, NSBH6, UABH6, and HTBH6 databases.

Functional	AECE
M06	2.94
M05	3.42
M06-L	4.01
τ- HCTHhyb	4.09
ωB97X-D	4.10
B97-3	4.33
B98	4.72
VS98	4.77
TPSS1KCIS	5.14
B3PW91	5.18
PBE0	5.23
B3LYP	5.43
HSE	5.47
B3V5LYP	5.60
BMK	5.75
LC-ωPBE	6.00
MOHLYP	6.05
MPWLYP1M	6.08
TPSSh	6.16
RPBE	6.50
TPSSKCIS	6.58
revPBE	6.60
B97-D	6.69
TPSS	7.16
τ- HCTH	7.25
BLYP	7.33
BVP86	7.84
PBE	7.84
PW91	7.98
PBEhole	8.04
BP86	8.19
WC06	9.70
SOGGA	11.27
PBEsol	11.28
MOHLYP2	12.96

Table S6. Mean sign	led errors and	mean unsign	led errors in	barrier heigh	ts for two b	asis sets (kca	al/mol)		
Method	HA' MSE	TBH6 MUE	NSB MSE	H6 MUE	UA MSE	BH6 MUE	HTI MSE	BH6 MUE	DBH24/08 AMUE
MG3S									
M06-2X	-0.02	0.73	0.60	0.86	0.37	1.09	-0.49	1.24	0.98
M08-SO	-0.57	1.08	0.19	0.69	0.23	1.43	-0.81	1.00	1.05
BMK	-0.96	0.96	0.60	0.77	0.97	2.05	-1.12	1.12	1.22
@B97X-D	-1.31	2.19	0.10	0.67	1.03	2.04	-2.04	2.24	1.78
B97-3	-2.29	2.49	-0.48	0.96	0.71	1.63	-2.16	2.20	1.82
LC-@PBE	1.07	2.42	2.82	2.82	1.30	2.09	-1.01	1.15	2.12
M06	-3.62	4.06	-1.61	1.64	0.54	1.91	-1.53	1.66	2.32
maug-cc-p ^v	V(T+d)Z								
M06-2X	-0.20	0.41	0.84	0.84	0.19	1.13	-0.50	1.26	0.91
M08-SO	-0.62	0.68	0.80	0.80	0.15	1.32	-0.77	0.91	0.93
BMK	-1.44	1.44	0.72	0.94	0.80	1.93	-1.07	1.47	1.45
ωB97X-D	-1.34	1.73	0.73	0.82	0.89	1.98	-1.87	2.31	1.71
B97-3	-2.65	2.69	-0.14	1.30	0.48	1.56	-2.16	2.27	1.95
LC-@PBE	1.01	2.22	3.43	3.43	1.12	2.10	-0.90	1.16	2.23
M06	-3.55	3.99	-0.91	1.30	0.47	1.76	-1.36	1.69	2.18

S-10

Figure S1. Exchange enhancements factors F_X as function of reduced gradient *s* ($\alpha = 0$). (the numbers in the parentheses are the MSEs and MUEs of meta-GGA functionals for the ABDE4 database in units of kcal/mol)

Note: *s* and α are two dimensionless variables defined as following:

$$s = \frac{|\nabla n|}{2(3\pi^2)^{1/3}n^{4/3}}$$
$$\alpha = \frac{\tau - \tau^W}{\tau^{LDA}}$$

where *n* is the electron density, τ is the kinetic energy density, τ^W is the von Weizsäcker kinetic energy density, and τ^{LDA} is the kinetic energy density of uniform electron gas.

Figure S2. Exchange enhancements factors F_X as function of reduced gradient *s* ($\alpha = 0.5$). (the numbers in the parentheses are the MSEs and MUEs of meta-GGA functionals for the ABDE4 database in units of kcal/mol)

Figure S3. Exchange enhancements factors F_X as function of reduced gradient *s* ($\alpha = 1.0$). (the numbers in the parentheses are the MSEs and MUEs of meta-GGA functionals for the ABDE4 database in units of kcal/mol)

Exchange enhancement factors F_X of popular GGAs:

$$\begin{split} F_X^{B88} &= 1 + \frac{1.07466 \times 0.25237s^2}{1 + 0.196448s \sinh^{-1} 7.79555s} \\ F_X^{PW91} &= 1 + \frac{1.07466 \times \left(0.25237s^2 - 0.14038024s^2 e^{-100s^2} - 0.00369307s^4\right)}{1 + 0.196448s \sinh^{-1} 7.79555s - 0.00369688s^4} \\ F_X^{PBE} &= 1 + 0.804 - \frac{0.804}{1 + 0.21951s^2/0.804} \\ F_X^{revPBE} &= 1 + 1.245 - \frac{1.245}{1 + 0.21951s^2/1.245} \\ F_X^{RPBE} &= 1 + 0.804 \left(1 - e^{-0.21951s^2/0.804}\right) \\ F_X^{PBEsol} &= 1 + 0.804 - \frac{0.804}{1 + 0.12346s^2/0.804} \\ F_X^{SOGGA} &= 1 + 0.552 \left(1 - \frac{0.5}{1 + 0.12346s^2/0.552} - 0.5e^{-0.12346s^2/0.552}\right) \\ F_X^{WC06} &= 1 + 0.804 - \frac{0.804}{1 + 0.21951x/0.804} \\ x &= \frac{10}{81}s^2 + (0.21951 - \frac{10}{81})s^2e^{-s^2} + \ln(1 + 0.0079325s^2) \end{split}$$

Exchange enhancement factors F_X of 4 Meta-GGAs: TPSS[.]

$$F_X^{TPSS} = 1 + 0.804 - \frac{0.804}{1 + 0.21951x/0.804}$$

$$x = \{ [\frac{10}{81} + 1.5906 \frac{z^2}{(1+z^2)^2}] s^2 + \frac{146}{2025} q_b^2 - \frac{73}{405} q_b \sqrt{\frac{1}{2}} (\frac{3}{5}z)^2 + \frac{1}{2}s^4} + \frac{1}{0.804} (\frac{10}{81})^2 s^4 + 2\sqrt{1.537} \frac{10}{81} (\frac{3}{5}z)^2 + 1.537 \times 0.21951s^6 \} / (1 + \sqrt{1.537}s^2)^2$$

$$q_b = \frac{9}{20} \frac{\alpha - 1}{(1 + 0.40\alpha(\alpha - 1))^{1/2}} + \frac{2}{3}s^2$$

$$z = \frac{5s^2}{3\alpha + 5s^2}$$

M06-L:

$$F_X^{M06-L} = F_X^{PBE} f(\omega) + h(x,z)$$

$$\omega = 1 - \frac{2\alpha + 10s^2/3}{1 + \alpha + 5s^2/3}$$

$$x = 7.79555s$$

$$z = \frac{3}{5}(6\pi^2)^{2/3}(\alpha + 5s^2/3 - 1)$$

$$\gamma(x,z) = 1 + 0.001867(x^2 + z)$$

The expressions of $f(\omega)$ and h(x, z) are in the M06-L paper. See: Y. Zhao and D. G. Truhlar, J. Chem. Phys. **125**, 194101 (2006).

VS98:

$$F_X^{VS98} = -1.07466 \left(\frac{-0.9800}{\gamma(x,z)} + \frac{-0.003557x^2 + 0.006250z}{\gamma^2(x,z)} + \frac{-0.00002354x^2 - 0.0001283x^2z + 0.0003575z^2}{\gamma^3(x,z)} \right)$$

$$x = 7.79555s$$

$$z = \frac{3}{5} (6\pi^2)^{2/3} (\alpha + 5s^2/3 - 1)$$

$$\gamma(x,z) = 1 + 0.001867(x^2 + z)$$

τ-HCTH:

$$F_X^{\tau-HCTH} = g_{local} + g_{non-local} f(\omega)$$

$$u(s) = \frac{0.004 \times (7.795554s)^2}{1 + 0.004 \times (7.795554s)^2}$$

$$\omega = 1 - \frac{2\alpha + 10s^2/3}{1 + \alpha + 5s^2/3}$$

The expressions of g_{local} and $g_{non-local}$ is in the τ -HCTH paper. See: A. D. Boese and N. C. Handy, J. Chem. Phys. **116**, 9559 (2002).