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This paper describes and illustrates a way to construct multidimensional representations of reactive
potential energy surfaces �PESs� by a multiconfiguration Shepard interpolation �MCSI� method
based only on gradient information, that is, without using any Hessian information from electronic
structure calculations. MCSI, which is called multiconfiguration molecular mechanics �MCMM� in
previous articles, is a semiautomated method designed for constructing full-dimensional PESs for
subsequent dynamics calculations �classical trajectories, full quantum dynamics, or variational
transition state theory with multidimensional tunneling�. The MCSI method is based on Shepard
interpolation of Taylor series expansions of the coupling term of a 2�2 electronically diabatic
Hamiltonian matrix with the diagonal elements representing nonreactive analytical PESs for
reactants and products. In contrast to the previously developed method, these expansions are
truncated in the present version at the first order, and, therefore, no input of electronic structure
Hessians is required. The accuracy of the interpolated energies is evaluated for two test reactions,
namely, the reaction OH+H2→H2O+H and the hydrogen atom abstraction from a model of
�-tocopherol by methyl radical. The latter reaction involves 38 atoms and a 108-dimensional PES.
The mean unsigned errors averaged over a wide range of representative nuclear configurations
�corresponding to an energy range of 19.5 kcal/mol in the former case and 32 kcal/mol in the latter�
are found to be within 1 kcal/mol for both reactions, based on 13 gradients in one case and 11 in the
other. The gradient-based MCMM method can be applied for efficient representations of
multidimensional PESs in cases where analytical electronic structure Hessians are too expensive or
unavailable, and it provides new opportunities to employ high-level electronic structure calculations
for dynamics at an affordable cost. © 2010 American Institute of Physics. �doi:10.1063/1.3310296�

I. INTRODUCTION

The analytical representation of potential energy sur-
faces for reactive systems is a problem that has challenged
quantum chemistry since its early days,1,2 and several re-
views and book chapters discussing the subject are
available.1–14 Some particular promising recent methods for
fitting reactive potential energy surfaces are Shepard
interpolation,13,15 spine interpolation,12 interpolating
moving-least-squares,16–18 and least-squares fitting of permu-
tationally symmetrized multinomials of bond-order-like
functions of internuclear distances.19,20 In addition, our group
has developed a method based on Shepard interpolation of
the off-diagonal elements of a configuration interaction
matrix.21–25 We will call this method multiconfiguration
Shepard interpolation �MCSI�. Another name for it, which
we and others have used in the past, is multiconfiguration
molecular mechanics �MCMM�,21–33 and the extension to
combined quantum mechanics and molecular mechanics has
been called electrostatically embedded MCMM
�EE-MCMM�.24,34,35 The MCMM name emphasizes that the
speed of evaluating the potential during dynamics computa-
tions is comparable to that for molecular mechanics. The

MCSI name emphasizes that the method is not a semiempir-
ical model for predicting potential energy surfaces but rather
a method for interpolating electronic structure data. Both
names emphasize that the method is based on two or more
configurations—usually two, with one corresponding to re-
actants and one corresponding to products.

All fitting methods have advantages and disadvantages.
The tradeoff between Shepard interpolation and interpolated
moving least-squares is often seen as follows: Shepard inter-
polation requires input Hessians to carry out the fit, but the
resulting fit is inexpensive to evaluate during dynamics cal-
culations, whereas interpolating moving least-squares has
more flexibility in the input data but requires an expensive
solution of a weighted least-squares problem at every dy-
namics step, storage of fitting parameters at geometries span-
ning the coordinate space, or both. The MCSI method has
been shown to ameliorate the cost of Hessians by greatly
cutting back on the number needed, for example, from hun-
dreds or a thousand in straight Shepard interpolation of the
potential energy surface itself to a few31 or at most a few
dozen23 in MCSI; furthermore, one can substitute partial
Hessians for many of the Hessians.28 In the present article
we cut the cost even more by showing that we can eliminate
the need for Hessians altogether.
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II. KEY ELEMENTS OF THE METHOD

In non-Hermitian MCSI,25 the interpolated potential en-
ergy V at a molecular geometry x is given by the lowest
eigenvalue of a valence bond configuration interaction
Hamiltonian matrix H, defined by

H = �H11�x� ��x�
��x� H22�x�

� , �1�

where H11 and H22 are analytical representations of valence
bond configurations of the reactant and the product �ordi-
narily, molecular mechanics potentials�, and � is an approxi-
mation to the off-diagonal matrix element, H12. H11�x� and
H22�x� and their derivatives are calculated at every geometry
x wherever the dynamics code needs potential energy and its
gradient, whereas � at x is obtained via Shepard interpola-
tion from data at a set of geometries called Shepard points. If
the invariance of the potential energy surface with respect to
the exchange of identical nuclei �nuclear permutation sym-
metry� is required, the matrix elements are symmetrized as
described previously.22

The quantity � is the key variable of the MCSI method.
We obtain � as follows. First, we obtain �o

2 via a Shepard
interpolation step

�o
2 = �

k=1

N

�
i=1

m!

wki�r�T12
2 �r,k,i� , �2�

where wki is a Shepard-interpolation weight function, each
quantity T12

2 �r ,k , i� is a Taylor series expansion of H12
2�k,i� at a

geometry r�x�, and m is the number of identical nuclei to be
treated as permutationally equivalent. At this step, the
nuclear permutation symmetry is imposed as in the method
proposed by Collins,13 with the exception that the interpo-
lated quantity is the coupling term � rather than the potential
energy itself. To maintain orientational invariance, Shepard
interpolation given by Eq. �2� is performed in internal �de-
noted r� rather than in Cartesian coordinates �denoted x� in
the same way as described in Ref. 21. The coupling element
� is then given by

� = � 	�o�x�	; �o
2�x� � 0

iu	�o�x�	; �o
2�x� � 0,


 �3�

where

u = � 1; �o
2�x� � − �2/4

�/�2	�o	�; �o
2�x� � − �2/4,


 �4�

and

� = H11�x� − H22�x� . �5�

In Eq. �3�, the condition �o
2�0 corresponds to a case in

which the target potential energy surface is lower than both
diagonal elements; in this situation, one can always improve
the MCSI fit by choosing an appropriate real �, i.e., by plac-
ing a Shepard point in the vicinity of a given geometry. By
allowing �o

2 to be negative, one extends the range of molecu-
lar geometries at which one can obtain an accurate fit, i.e.,
where one can make the fit agree exactly with the target data,
as explained in Ref. 25. In Eq. �4�, the condition �=�2 /4

corresponds to the limit of where one can make the fit agree
exactly with the target data with imaginary �. This is also
discussed in Ref. 25.

The Taylor series expansions T12
2 around each Shepard

point �k , i� used in Shepard interpolation are obtained as fol-
lows. First, we define a matrix H�k,i� at each geometry �k , i�
by

H�k,i� = � H11
�k,i��r� H12�r,k,i�

H12�r,k,i� H22
�k,i��r�

� . �6�

Using Taylor series reversion for H12, one obtains

H12�r,k,i�2 � �H11
�k,i� − H�k,i���H22

�k,i� − H�k,i��

+ �H22
�k,i� − H�k,i���g11

�k,i� − g�k,i��T�r�k,i�

+ �H11
�k,i� − H�k,i���g22

�k,i� − g�k,i��T�r�k,i�, �7�

where Hnn and gnn�n=1,2� are molecular mechanics energies
and gradients of configurations 1 and 2 at a Shepard point
�k , i�, and H and g are the energy and the gradient obtained
from the electronic structure calculations at the same geom-
etry, T denotes a transpose, and

�r�k,i� = r�x� − r�x�k,i�� . �8�

Note that there are two ways to eliminate the use of Hessians
in the present context. One way is to truncate the Taylor
series expansion at the first order as in Eq. �7�. The other way
is to truncate at the second order, but set all Hessian matrix
elements to zero, in which case, the results will be different
from the former case due to the contribution of the gradient
times gradient term in the second derivatives of H12. The
present paper only considers truncation at the first order. Yet
another way to reduce the number of the input electronic
structure Hessians is by using a combination of the first- and
second-order Taylor series expansions in Eq. �2�. For ex-
ample, one may want to use the second-order expansion at
the reaction saddle point and one of the gradient-only ap-
proaches mentioned above at the other Shepard points. This
may be useful, for instance, in quasiclassical trajectory cal-
culations if one wants to start a trajectory from the reaction
saddle point. The goal of the present article, though, is to
show that we can obtain good results with only gradient data.

The normalized weight function used in Eq. �2� is

wki =

Yki�r�
dki�s�4

�
k=1

�N+2�

�
i=1

m!
Yki�r�
dki�s�4

, �9�

where dki is the generalized distance between s and s�k,i� de-
fined as

dki�s� =��
�=1

	m!

�s� − s�
�k,i��2, �10�

where s�s1 ,s2 , . . .s� , . . .s	� is a set of internal coordinates,
generally different form r.

The scaling coefficients Yki�r� are chosen either as unity
or as a function that ensures that the reactive system is de-
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scribed by pure molecular mechanics in the asymptotic re-
gions. To ensure that, we define Yki at a geometry r as

Yki�r� =
1

1 + �V12� �r,k,i�2 − D�k�

A2 �
 , �11�

where A and m are parameters. In the work presented below,
we used Eq. �11� with A=0.002 Eh and 
=4 in Sec. III.A
and Y =1 in Sec. III.B.

III. INTERPOLATED SURFACES FOR MODEL
SYSTEMS

In the present work, we assess the accuracy of the inter-
polated potential energy surfaces by comparing interpolated
energies to the “accurate” energies obtained directly by the
electronic structure calculations for a representative set of
dynamically important nuclear configurations.

III.A. OH+H2\H2O+H

The first system is OH3 as in the reaction

OH + H2 → H2O + H �R1� .

For this system, we constructed potential energy surfaces
that are invariant under the complete nuclear permutation
�CNP� group, that is, which are invariant under the exchange
of all indistinguishable nuclei. Since there are three identical
nuclei, there are N ·3! terms in the Shepard interpolation of
Eq. �2�, where N is the number of unique Shepard points.
The electronic structure level for the target potential energy
surface and molecular mechanics force field are the same as
in the previous work.23 In particular, the target results for the
present study are obtained using the MPWB1K �Ref. 36�
density functional with the 6-31+G�d,p� basis set.37 Loca-
tions of the Shepard points are the same as in the previous
work;23 the three potential energy surfaces considered in this
paper have been constructed using subsets of the 37 Shepard
points used in Ref. 23. We used 13, 27, and 35 gradients in
the three examples, so these surfaces are labeled MCSI�13g�,
MCSI�27g�, and MCSI�35g�, respectively. In keeping with
the previous work,23,25,31 the number N in parentheses indi-
cates the number of unique electronic structure Shepard
points in Shepard interpolation of H12

2 given by Eq. �2�. The
difference of this work from previous work is that at each
Shepard point, only the gradients �but no Hessian� have been
used, which is indicated by “g” following the number of
Shepard points. Two additional Shepard points representing
reactant and product configurations �see, e.g., Ref. 21� have
also been included in Shepard interpolation. At both of these
points H12 and its gradients are assumed to be zero; there-
fore, these points do not occur in Eq. �2�, but they do occur
in Eq. �9�. Thus, Eq. �2� actually corresponds to an �N
+2� ·3!-point interpolation with N ·3! nonzero terms. The
choice of the force field is the same as in the previous
paper,23 in particular we used a modified MM3 �Ref. 38�
force field with the parameters �set p2� given in Ref. 23.

The sets of internal coordinates r and s used in Eqs. �2�
and �9� involved all six internuclear distances �sr in the
present case� due to the requirement of the invariance of the

surface under the operations of the CNP group. The set of
geometries used to evaluate the accuracy of the interpolated
energies was generated by “saving” a molecular geometry
every 10 fs during quasiclassical trajectory simulations on
interpolated potential energy surfaces and comparing the en-
ergy at this geometry to the potential energy obtained by the
electronic structure calculations at the target level. In this
way, one identifies the dynamically important regions of the
potential energy surface most “visited” by quasiclassical tra-
jectories. Initial conditions for trajectories are the same as in
the previous work.23

Table I summarizes mean unsigned errors �MUEs� for
MCSI�13g�, MCSI�27g�, and MCSI�35g� averaged over the
wide range of dynamically relevant geometries, obtained by
sampling trajectories as explained in the previous paragraph.
The MUEs in this table are given for the energy range from
zero to �34 kcal /mol, with the zero of energy at the reac-
tion product, i.e., at the H2O+H asymptote. The reaction
energy and the forward and reverse barrier heights on each
interpolated surface are �13.6, 4.9, and 18.6 kcal/mol, re-
spectively, for both the target electronic structure level and
the interpolation; the interpolation reproduces these values
precisely because one of the Shepard points is at the reaction
saddle point and because the method involves adjusting the
relative energies of the reactant and of the product asymp-
totes that are described by pure molecular mechanics,38,39 as
described elsewhere.21,40 The energy range covered in Table I
thus goes from zero �actually, the lowest energy point in the
data set is �0.1 kcal /mol� up to 33.6 kcal/mol, that is, up to
15 kcal/mol above the reaction saddle point, which is higher
than needed for studying collisions under thermal conditions,
even at combustion temperatures.

The results in Table I indicate that the MUEs for the
MCSI�27g� and MCSI�35g� surfaces are, on the average,
within chemical accuracy �defined here as 1 kcal/mol� up to
25.6 kcal/mol; the MCSI�13g� surface is equally accurate up
to 19.6 kcal/mol, which corresponds to a range of 19.5 kcal/
mol. Note that no Shepard points have been placed above the
reaction saddle point in the latter case, therefore, the
MCSI�13g� surface is less accurate in the higher-energy
range. Table I also shows that the source of the error for
MCSI�27g� and MCSI�35g� is primarily due to the molecular
mechanics force field because there is no significant im-

TABLE I. MUE for MCSI�13g�, MCSI�25g�, and MCSI�35g� for different
ranges of potential energy �the zero of potential energy corresponds to the
product asymptote; the reaction saddle point is 18.6 kcal/mol higher than the
product asymptote� for the reaction OH+H2, averaged over a number of
dynamically important molecular geometries visited by quasiclassical trajec-
tories.

Energy range MCSI�13g� MCSI�27g� MCSI�35g� N
geom

a

�7.6 0.44 0.40 0.39 133
�10.6 0.55 0.50 0.48 183
�19.6 0.93 0.80 0.80 468
�25.6 1.31 0.98 0.98 623
�33.6 1.78 1.18 1.14 722

aNumber of geometries in the energy range indicated in the first column. The
number of geometries varies from 133 to 722, depending on the upper limit
of the energy range considered.
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provement in going from 27 Shepard points to 35 Shepard
points. The inclusion of Hessians, or, equivalently, the inclu-
sion of a second derivative term into Eq. �7� does not change
this situation. This, again, indicates that the error is domi-
nated by the molecular mechanics. In fact, although we do
not present the details of a fit including Hessians in this
paper, we did carry out such a fit, and we found that at most
points there is a little change in accuracy, in either direction,
but at a few points in a higher energy region the results
actually become worse than for the surface obtained without
using the Hessians. This is not necessarily surprising because
in any computational method that involves several sources of
error, reducing a particular error which is not the dominant
error does not necessarily improve the final result; the overall
error might get better or it might get worse. One therefore
can conclude that if one desires to get a more accurate global
representation of a potential energy surface with an error of a
few tenths of kcal/mol, one has to adopt a better molecular
mechanics force field, which appears to be the dominant
source of error. The latter task involves adjusting the func-
tional forms and/or parameters for one-dimensional func-
tions to describe individual bond stretches, valence angles,
and torsions and for the van der Waals interactions, and as
such, is significantly less involved than conventional fitting
of a full-dimensional potential for a reactive system.

III.B. Hydrogen atom abstraction from
5,7,8-trimethyl-croman-6-ol „a model of �-tocopherol…
by methyl radical

The second reaction studied in the present article is a
hydrogen transfer from a model compound representing a
phenolic antioxidant related to vitamin E. In particular we
consider

CH3
• + ROH → CH4 + RO• �R2� ,

where R is illustrated in Fig. 1 both for the �-tocopherol
molecule and its model used in the present paper. The R
group studied here has 32 atoms so the whole system has
N=38 atoms, and the dimensionality of the potential energy
surface is 3N−6=108. Hydrogen atom abstraction from phe-
nolic antioxidants related to vitamin E has been extensively
studied in the past.41–45 With few exceptions,45 theoretical
studies have primarily been focused on calculations of reac-
tion barrier heights42 or reaction energies.44 In the present
work, we applied the MCMM method to generate the full-
dimensional lowest adiabatic potential energy surface for hy-

drogen atom abstraction from 5,7,8-trimethyl-croman-6-ol
by methyl radical, and we have assessed the accuracy of the
interpolated surface.

Potential energies and gradients at Shepard points have
been obtained using the MPWB1K density functional36 with
the 6-31G�d,p� basis set.37 Since our goal here is to test the
ability of the MCSI method to interpolate potential energy
surfaces rather than to get quantitative results for a particular
reaction, this choice of the electronic structure method is
adequate. Nuclear permutation symmetry has not been im-
posed for reaction R2. We used the MM3 �Ref. 38� molecu-
lar mechanics force field as a starting point for this reaction.
The missing parameters have been roughly optimized to
make the contour plots of the interpolated surface qualita-
tively agree with the contour plots of the target �uninterpo-
lated� surface. Furthermore, a few molecular mechanics pa-
rameters that already exist in MM3 have been roughly
readjusted in a similar way. The new molecular mechanics
atom types and new molecular mechanics parameters, i.e.,
those which are not present in the original MM3 �Ref. 38�
force field, along with the modified parameters, are given in
the supporting information.46

Shepard interpolation �Eq. �2�� has been performed in
nonredundant internal coordinates; the total number of coor-
dinates is 108. The set of coordinates s used in calculation of
the weight function of Eq. �9� involved the three internuclear
distances of the three atoms involved in the hydrogen trans-
fer, namely, the O–Ht, C–Ht, and C–O distances �where the
subscript t denotes the transferring hydrogen atom�.

The electronic-structure Shepard points have been
placed as follows. The first six points have been placed along
the minimum energy path for the reaction calculated in mass-
scaled Cartesian coordinates. When starting from the reac-
tion saddle point and going down toward both the reactants
and the products, the reaction coordinate initially corre-
sponds largely to the motion of the hydrogen atom while the
positions of the rest of the atoms remain nearly unchanged;
and the first six Shepard points correspond to geometries
with varying O–Ht distance with the rest of the internal co-
ordinates being approximately fixed at their values at the
reaction saddle point. In particular, the O–H distance at these
Shepard points changes from 1.02 to 1.45 Å, whereas the
O–C distance is about 2.5 Å at each of these geometries. The
other four Shepard points have been placed at �1.68; 2.70�,
�0.96; 2.70�, �1.11; 2.66�, and �0.97; 2.77�, where the num-
bers in parentheses indicate the O–Ht and C–O distances �in
angstroms�, respectively, with the remaining internal coordi-
nates fixed at their values at the reaction saddle point. Fi-
nally, one Shepard point has been placed in the energy well
of the hydrogen-bonded complex of the products, at a geom-
etry where the gradient calculated at the target level is
relatively small; in particular, where the magnitude of the
largest Cartesian component of the gradient is
5.0�10−5 hartree /bohr. At this geometry, the O–Ht and
C–O distances are 2.58 and 3.67 Å, respectively. Figures 2
and 3 show contour plots of the interpolated and accurate
potential energy surfaces for this system as functions of the
O–Ht and C–O internal coordinates. The molecular geom-
etries used to generate these contour plots have also been

O

O
H

CH3

H3C
H3C

CH3

CH3

O

O
H

CH3

H3C

CH3

CH3

CH3CH3

H3C

CH3

FIG. 1. Structure of the reactant in reaction R2 �top�. Structure of
�-tocopherol �bottom�.
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used to generate statistics on the accuracy of the interpolated
surface. In this 12�12 grid of geometries, the O–Ht dis-
tance changes from 0.88 to 1.76 Å, and C–O changes from
2.38 to 3.22 Å.

The MUEs for the interpolated surface using input of
only energies and gradients at the 11 Shepard points are
given in Table II. For this system, we only considered the
surface up to �9 kcal /mol above the reaction saddle points
due to the possibility of a low-energy conical intersection in
a reaction of this kind.45 For this reason, the higher-energy
nuclear configurations have not been included in the statis-
tics. As one can see from Table I, the MUEs are within the
chemical accuracy over an energy range of 32 kcal/mol, from
14.3 to 46.3 kcal/mol. These are very encouraging results
considering that the molecular mechanics force field has not
been optimized for this reaction and only very rough optimi-
zation was performed for the new parameters. One could
reduce the MUEs further by optimizing reaction-specific mo-
lecular force field.

IV. CONCLUDING REMARKS

In this paper, we have tested an MCSI interpolation
scheme which only uses gradient information �and no Hes-
sians� from electronic structure calculations. The quality of
the interpolated surfaces is assessed by comparing the inter-
polated potential energies to the potential energies obtained
directly from electronic structure calculations for representa-
tive sets of molecular geometries. The assessment is per-
formed for small and medium-sized reactive systems, with
respectively four and 38 atoms, for which the interpolated
potential energy surfaces have been generated from a small
number of Shepard points. In each case the surfaces are
found to be chemically accurate �to within 1 kcal/mol� in the
range of potential energy up to a few kcal/mol above the
reaction saddle point. The accuracy of the surfaces in higher
energy ranges could be improved by placing Shepard points
in these energy ranges, and the overall MUEs of the surfaces
could be reduced by adopting reaction-specific molecular
mechanics force fields. We have also found that the inclusion
of the Hessians does not necessarily improve the surface in
all energy ranges considered. The inclusion of Hessians is
recommended in cases when one is interested in accurate
second derivatives of a potential energy surface at or close to
stationary points �such as, e.g., in the use of the interpolated
surface for variational transition theory calculations� but we
can now conclude that Hessians are not required if the goal is
to obtain reasonable global representations of potential en-
ergy surfaces without necessarily having precisely fitted vi-
brational force constants.

The method presented in this article has significant ad-
vantages for fitting reactive potential energy surfaces for sys-
tems with many degrees of freedom. It requires only a small
number of gradients and no Hessians, the potential can be
evaluated during dynamics calculations without solving lin-
ear equations, and the method is applicable to potential en-
ergy surfaces with many degrees of freedom, such as the
108-degree-of-freedom system considered here. Additional
improvements are still possible. For example, we showed
previously in the Hessian-based version of MCSI that it is
not necessary to use full Hessians,28 and a similar partial-
gradient scheme might be useful. Similarly we showed how
the Hessian-based scheme could efficiently be applied in the
context of electronically embedded combined quantum me-
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FIG. 2. Equipotential contour plot of the interpolated MCSI�11g� potential
energy surface as a function of the OC and OH distances. The remaining
internal coordinates �bond distances, bond angles, and torsions� are fixed at
their values at the reaction saddle point. Contours start at 14.3 kcal/mol and
are equally spaced by 3 kcal/mol with the zero of energy at the product
asymptote. Bond distances are in angstroms.
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FIG. 3. Same as Fig. 2 except for the accurate �uninterpolated� potential
energy surface.

TABLE II. MUE for MCSI�11g� for different ranges of potential energy �the
zero of potential energy corresponds to the product asymptote; the reaction
saddle point is 36.85 kcal/mol higher than the product asymptote, and the
reactant potential energy is 31.33 kcal/mol higher than the product� for
reaction of hydrogen atom abstraction from 5,7,8-trimethyl-croman-6-ol �a
model of �-tocopherol� by methyl radical, averaged over a number of mo-
lecular geometries.

Energy range MCSI�11g� N
geom

a

14.3–37.3 0.67 65
14.3–40.3 0.87 88
14.3–42.3 0.88 94
14.3–46.3 0.98 108

aNumber of geometries in the energy range; this is a subset of the 144
geometries on the grid used for Figs. 2 and 3.
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chanical and molecular mechanical methods,24,34,35 and this
could also be applied to the present gradient-only version.
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