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Homogeneous nucleation with magic numbers: Aluminum
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Homogeneous nucleation of clusters that exhibit magic numbers is studied numerically, using as an
example aluminum at 2000 K, based on recent calculations of free energies [Li et al., J. Phys. Chem.
C 111, 16227 (2007)] and condensation rate constants [Li and Truhlar, J. Phys. Chem. C 112, 11109
(2008)] that provide a database for Al;, up to i=60. The nucleation behavior for saturation ratios
greater than about 4.5 is found to be dominated by a peak in the free energy change associated with
the reaction iAl— Al; at i=55, making it the critical size over a wide range of saturation ratios.
Calculated steady-state nucleation rates are many orders of magnitude lower than predicted by
classical nucleation theory (CNT). The onset of nucleation is predicted to occur at a saturation ratio
of about 13.3, compared to about 5.1 in CNT, while for saturation ratios greater than about 25 the
abundance of magic-numbered clusters becomes high enough to invalidate the assumption that
cluster growth occurs solely by monomer addition. Transient nucleation is also predicted to be
substantially different than predicted by CNT, with a much longer time required to reach steady
state: about 10~ s at a saturation ratio of 20, compared to about 10~7 s from CNT. Magic numbers
are seen to play an important role in transient nucleation, as the nucleation currents for clusters of
adjacent sizes become equal to each other in temporally successive groups, where the largest cluster

in each group is the magic-numbered one. © 2009 American Institute of Physics.

[doi:10.1063/1.3239469]

I. INTRODUCTION

In the theory of homogeneous nucleation of condensed-
phase particles from a supersaturated vapor, a key role is
played by the change in Gibbs free energy AG; associated
with the formation of a molecular cluster of size i (an
“i-mer”) from i molecules of the monomer vapor. In classical
nucleation theory (CNT)'™ AG; is a smooth function of i,
with a single maximum at a size known as the “critical size”
which determines the thermodynamic bottleneck to nucle-
ation. While CNT and its variants have provided a qualita-
tively powerful description of homogeneous nucleation, ex-
perimental tests of the theory have mostly involved liquids
such as water and organic molecules.

On the other hand, it is less clear that CNT is relevant to
the nucleation of various inorganic substances that exhibit
magic numbers, meaning that clusters of specific sizes (the
“magic numbers”) are more abundant, at equilibrium, than
clusters of adjacent sizes. Magic numbers have been ob-
served, for example, in substances such as silicon,5 carbon,6
metals,””" and noble gatses.14 In particular, AG; may have
multiple local minima at the locations of the magic numbers,
and local maxima at the locations of the “antimagic num-
bers.” This observation may have profound implications for
nucleation theory, yet with few exceptions it has been ig-
nored. A key objective of this paper is to explore these
implications.

Magic numbers can be identified in various ways. In
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experiments, if a particular size cluster is found with espe-
cially high probability, relative to clusters with one more or
one less monomer, experimentalists often label that size as a
magic number,™'® and cluster sizes with especially low
abundance are sometimes called antimagic.17 Depending on
the experiment, the concentrations observed for various clus-
ter sizes may be controlled by either thermodynamics or ki-
netics; in the former case, these magic numbers correspond
to minima in the free energy as a function of cluster size.'®
Theoretical models are often used to “explain” magic num-
bers, and these are usually based on a special stability for the
lowest-energy structure of a given cluster size. This special
stability may in turn be explained by geometric or electronic
arguments, such as perfect polyhedral symmetry or the filling
of a closed shell of orbitals, and these arguments lead to
predictions of the magic numbers.'* " (Note though that not
all studies of the size dependence of the electronic structure
of metal clusters emphasize magic numbers.”?) However, the
experiments are always at finite temperature and sometimes
at a high temperature, and one needs to consider thermal
energy and entropy as well as the energy of the lowest-
energy structure.” " Thus the magic numbers determined
from the energy of the lowest-energy structure need not
agree with the magic numbers determined from free energies
or from kinetically controlled experiments.18 In the present
work we use the term “magic numbers” always to refer to
local minima of the profile of free energy versus cluster size.
The local maxima of the free energy profile will be called
“antimagic numbers.”

Bahadur and MCClurg13 considered homogeneous nucle-
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ation of monovalent metals (Li, Na, K, Rb, Cs, Cu, Ag, and
Au), all of which have magic numbers. Using an approxi-
mate jellium model to account for the effects of electronic
shell structure they obtained estimates of AG; as a multi-
peaked function of i, and used these estimates to calculate
steady-state nucleation rates. Their model produced much
better agreement than CNT with experimental data on nucle-
ation of sodium®' and cesium.***

In this paper we consider nucleation of aluminum, a
trivalent metal. Our focus on aluminum is motivated by re-
cent work of Li et al.,23 who calculated the standard Gibbs
free energy of stepwise addition AG?_U, i.e., the free energy
change at standard pressure p° for the condensation reaction

(Rl) Ali—l + Al — Ali,

up to size i=60, for temperatures in the range 1500-3000 K.
Since our goal is to elucidate the qualitatively new features
that arise when one uses such realistic data as input, rather
than to make quantitative studies as a function of tempera-
ture, it is sufficient for our purposes to consider a single
temperature, and we chose 2000 K, near the midpoint of the
range where the calculations of Ref. 23 are most complete.
The calculations of Ref. 23 involved Monte Carlo direct
simulation of equilibrium constants, employing four vali-
dated potential energy functions. High-level terms were used
to correct for known deficiencies in these functions with re-
gard to the potential energy differences of the global minima
and the contributions of electronic excitation and isomeric-
rovibrational terms. These calculations are in general more
accurate than the jellium model used by Bahadur and
McClurg,13 as the latter considers only the electronic shell
structure and ignores vibrational contributions and geometric
configuration. At a temperature of 2000 K, all the clusters
considered here are above their melting temperature34 (at
least for i >9; for smaller clusters it becomes meaningless to
discuss phase). Thus they are liquidlike particles not solid
particles. A key element of the work of Li et al.” is that the
results for given size of cluster do not correspond simply to
small vibrations around the lowest-energy equilibrium struc-
ture, as if one had assumed the clusters to be nanosolids; the
free energy computations include isomeric contributions
from all structures low enough in energy or high enough in
entropy to contribute to an equilibrium ensemble average.23
In fact the magic numbers from the point of view of free
energy are not the same as those ones would infer from the
internal energies of the lowest-energy structures.'®"” One
should keep in mind that the current state of practical theo-
retical methods does not allow one to produce fully reliable
free energies. Nevertheless, to our knowledge, the Li et al®
results constitute both the most accurate and most extensive
database of cluster Gibbs free energies that is currently avail-
able for any metal. Furthermore, they lead to qualitatively
new features in the character of the nucleation process, and
the existence and character of these features does not depend
strongly on the precise values of the free energy data. They
depend mainly on the free energy not being a smooth or
monotonic function of cluster size.

By detailed balance, the ratio of the forward to the back-
ward rate constant is the equilibrium constant, which can be
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calculated from the free energy of reaction. The free energies
obtained by Li et al.” include contributions from higher-
energy isomers and higher electronic states as well as correc-
tions for the difference between the highest-level affordable
electronic structure calculations and the electronic energies
implicit in the analytic potentials used for the molecular dy-
namics simulations. Recently Li and Truhlar*’calculated val-
ues of rate constants of condensation reactions of Al clusters.
While that work also included calculations of free energies,
the emphasis was on rate constants, and no attempt was
made to include all significant contributors to the free ener-
gies. The association rates are expected to be relatively in-
sensitive to these higher-level corrections, but the dissocia-
tion rate constants would not be insensitive. Thus the most
accurate results are obtained by combining the association
rate constants of Li and Truhlar® with the equilibrium con-
stants of Li et al.,23 which can then be used to calculate the
dissociation rate constants from the association ones.

In this work we use these data to predict steady-state
nucleation rates as well as the transient homogeneous nucle-
ation behavior of aluminum at 2000 K. We compare these
results to the predictions of classical theory, and we draw
general conclusions regarding the homogeneous nucleation
behavior of magic-numbered substances.

Homogeneous nucleation of aluminum is of practical in-
terest, because aluminum nanoparticles are used for applica-
tions such as electronics,36’37 detection of biomolecules,38
plasmonics,39 as a solid fuel,**™** and to enhance the proper-
ties of various nanocomposites.“s’47 A number of high-
temperature gas-phase processes are used to synthesize alu-
minum nanoparticles, including electric arcs,”®  thermal
plasrnas,49 inert gas condensation® and aerosol flow
reactors,51 and aluminum nanoparticles can be inadvertently
produced as metal fumes in processes such as Welding52 and
high-speed milling.53

Several investigators have modeled the homogeneous
nucleation of aluminum from its Vapor.51’54’56 These models
have used either CNT*"* or a size-dependent surface ten-
sion that is a monotonically increasing function of particle
size, or only considered low-temperature conditions where
evaporation from clusters is negligible.56 These previous
models ignore the fact that aluminum clusters exhibit magic
numbers. To our knowledge, no experimental studies of
homogeneous nucleation rates of aluminum have been
reported.

Il. HOMOGENEOUS NUCLEATION
IN THE CONDENSATION-EVAPORATION REGIME

Most homogeneous nucleation theory is concerned with
the “condensation-evaporation regime,” in which cluster
growth can be assumed to occur only by addition of single
monomers, and cluster growth reactions up to some critical
size are reversible. The boundaries of this regime are deter-
mined by the vapor saturation ratio
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S P1 , (1)
ps(T)

where p; is the partial pressure of the monomer vapor and
p,(T) is its equilibrium vapor pressure at temperature 7. The
condensation-evaporation regime exists for values of S
greater than unity but not so high as to cause all condensa-
tion reactions down to dimerization to become effectively
irreversible.”’ High supersaturations can also cause the as-
sumption that cluster growth occurs only by monomer addi-
tion to break down, as the abundance of clusters larger than
the monomer can become comparable to or larger than that
of the monomer. The upper bound on § for the condensation-
evaporation regime to apply depends on the substance and on
temperature.

Assuming that one is in the condensation-evaporation
regime, then cluster growth proceeds through a series of re-
actions of the form given by (R1). Let A, represent an i-mer
of a condensable substance A. The forward rate R;; of reac-
tion (R1), applied to substance A, can be written as

Rfai = kfyl-ni_lnl, = 2, (2)

where ky; is the rate constant for the reaction in the forward
direction and n; represents the number density of A;. The
reverse or backward rate R;,; of (R1) can likewise be written
as

Rb,i = kb)lni, l = 2, (3)

where k,, ; is the reverse rate constant for reaction (R1). Here
(and throughout) we assume that the system total pressure is
sufficiently high that (R1) is in the high-pressure limit where
ky;» the rate constant for unimolecular decomposition, is not
affected by pressure falloff effects. Similarly isothermal
nucleation is assumed. That is, it is assumed that the total
pressure is sufficiently high, and the condensable vapor suf-
ficiently dilute with respect to an inert background gas, that
the heat of condensation is rapidly accommodated by colli-
sions with molecules of the background gas.
The nucleation current J; for each size i, defined by

Ji=kpniing —kyn, 0 =2, 4)

represents the net transfer rate from out of size (i—1) and
into size i, due solely to condensation/evaporation reactions
of the form (R1). Then the net rate of change of the i-mer
number density attributable to all such condensation/
evaporation reactions is given by

%=Ji_‘]i+1’ =2 (5)
For values of i up to some arbitrarily large size M, Eqgs. (4)
and (5) constitute (M —1) coupled differential equations for
the variables n; and J; that, with appropriate initial and
boundary conditions, can be integrated in time to predict the
transient nucleation behavior, that is, the evolution of the
cluster number densities and nucleation currents at each size.
If M is sufficiently large, then for the case of fixed monomer
concentration one has the condition that n,, becomes vanish-
ingly small in comparison to n;, and the choice of the value
of M makes negligible difference in the results.
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If the monomer number density and temperature are held
constant then the system eventually reaches a steady state,
such that

dn;

— = O, = 1. 6

P i (6)
From Eqgs. (5) and (6) it follows that the steady-state nucle-
ation currents for all sizes i are equal to each other

J2=J3=‘]4="'=Ji="'=JM=JSS’ (7)

where J is the steady-state nucleation rate.
One can define an equilibrium constant for (R1) in di-
mensionless form by

P _ n,-/n0 (8)
USRIV
where n° is defined as
0
)4
n(T) = E" 9)
From thermodynamics,
AGY .
Kiy= eXP(‘ k[T_l l>, (10)

where k is the Boltzmann constant. From the law of mass

action the forward and reverse rate constants of (R1) are

related to each other by
kri  Kiii

kb,i no

(11)

Using these relations to substitute for the reverse rate con-
stants in (R1) in favor of the equilibrium constants, and, with
the aid of a recursion relation, summing all such equations
for values of i up to M, one obtains an expression for the
steady-state nucleation rate in the form of a summation that
can be written as™®

M -1

AG(p) !

Jss=n% E |:kf,i+l 6Xp<— kTpl >:| > (12)
i=1

where AG; is the free energy change associated with the
overall reaction

(R2) iA, — A, i=1.

We refer to AG; as the “free energy of multary association,”
as “multary” is the generalization of binary, ternary, quater-
nary, etc.

In CNT, Eq. (12) is an intermediate result for the steady-
state nucleation rate. This theory assumes the capillarity
model as a means to estimate AG;. In the “self-consistent”
version of the theory59 assumed herein, which sets AG; for
the monomer to 0, the result for AG; is given by

AG(S.T)

T (P -1)O-(i-1DnS. (13)

Here O is a dimensionless surface tension defined by
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FIG. 1. Standard Gibbs free energy of multary association AG; of Al clus-
ters at 2000 K. Symbols show results based on calculations in Li et al.
(Ref. 23). Solid line shows self-consistent classical model, Eq. (13), at
p1=p°=1 atm, corresponding to S=156.4.

g8,
0o=—1 14
kT’ ( )

where o represents surface tension, assumed in CNT to be
the same as for the bulk liquid in equilibrium with its vapor,
and s, is the surface area of a monomer.

For the condensation rate constants k;, CNT assumes
that the monomer flux to an i-mer is given by hard sphere
gas kinetic theory for the flux of molecules to a stationary
surface, and assumes unity sticking coefficients. It then con-
verts the summation over discrete variables in Eq. (12) to an
integral over an assumed continuous function. The final re-
sult can be written

2 3
n 4 06
Jo=A2expl © - ——— |, 15

s SeXp{ 27(1nS)2] (15)

where A is a constant (for a given substance at given tem-
perature) given by

& 2
A=, 2 (16)
6 my

where d, and m are respectively the monomer diameter and
mass.

If more accurate data than given by CNT are available
for AG; and ky;, these can be used directly in Eq. (12) to
calculate the steady-state nucleation rate.

lll. PROPERTIES OF ALUMINUM CLUSTERS

As (R2) is equivalent to a sequence of monomer addition
reactions, the free energy of multary association, AG; of
(R2), can be related to the free energies of stepwise addition,
AG,;_;,; of (R1), by the relationship
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FIG. 2. Gibbs free energy of multary association AG; of Al clusters relative
to vapor at 2000 K and a saturation ratio of 1, based on either Li et al.
(Ref. 23) or CNT.

: i=2. (17)

AG; =2 AG; .
=2

The standard free energies of stepwise addition calculated by
Li et al.” can thus be used in this equation to calculate AG?.
Figure 1 shows the results for aluminum at 2000 K, and
compares these results to CNT, Eq. (13). For the CNT cal-
culation, values from the literature were used for the surface
tension™ and mass density61 of aluminum at 2000 K.

The reason that AG? is negative except at the smallest
cluster sizes is that p® corresponds to a high saturation ratio.
Considering the effect of pressure on the Gibbs free energy
of an ideal gas, and using Eq. (1), AG; at any saturation ratio
can be related to AG? by

AG(S) = AG® - (i — kT ln(S%) (18)

Alternatively one can relate AGZ, at any saturation ratio to its
value for the saturated vapor, using

AG(S)=AG,(p,) - (i— DkT In S. (19)

The equilibrium vapor pressure of aluminum at 2000 K
equals about 648 Pa, based on an extrapolation of the ana-
lytical relationship for p,(T) recommended by Alcock er al.®*
up to 1800 K. Thus p;=1 atm (the value of p° assumed by
Li e al.™) corresponds to a saturation ratio of approximately
156. At such high saturation ratios AG; is dominated by the
second term on the right-hand side of Eq. (19). A more re-
vealing comparison of AG; calculated from the Li et al?
data to CNT is obtained by setting S=1. In this case AG; in
CNT is given simply by the surface tension term in Eq. (13),
which represents the essence of the capillarity model. This
comparison is shown in Fig. 2. It can be seen that the values
of AG(p,) obtained from the Li er al.” data lie close to the
CNT values up to i=25, but for larger sizes they increase
more rapidly than i?*, which is the power law corresponding
to the capillarity model.
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FIG. 3. Gibbs free energy of multary association AG; of Al clusters relative
to vapor at 2000 K and a saturation ratio of 20, based on Li ef al. (Ref. 23)
up to cluster size 60, and extrapolated beyond i=60 using the CNT expres-
sion for the free energy of stepwise addition, Eq. (20).

At intermediate saturation ratios the comparison be-
comes more interesting. For example, Fig. 3 shows AG; at
2000 K for §=20. Whereas CNT gives a smooth curve with
a single maximum at i~ 12.6 (neglecting the fact that i is an
integer), the values of AG,; based on Li et al.® are highly
nonmonatonic, exhibiting numerous local maxima and
minima, with a strong global maximum at i=55.

Here one confronts a limitation in using atomistic data in
Eq. (12). The summation in Eq. (12) is dominated by terms
close to the critical size. Indeed, if AG; has a sharp maxi-
mum, as is shown in Fig. 3, then to close approximation the
summation will be given by the single term associated with
that maximum. Yet, as the calculations of Li er al.”® extend
only to =60 it is unknown whether a higher maximum ex-
ists for i>60. If such a higher maximum in AG; does exist,
then the steady-state nucleation rate will be lower. For ex-
ample, magic numbers have been observed for sodium up to
size 2500," although it should be noted that the second term
on the right-hand side of Eq. (19) makes it unlikely that AG;
would have a global maximum at such large sizes for satu-
ration ratios that are large enough to result in observable
homogeneous nucleation. In any case it therefore follows
that J calculated using the Li et al.” data in Eq. (15) can
only be said to represent an upper bound, to within the ac-
curacy of the Li et al.” data. Inevitably such atomistic cal-
culations must be truncated at some finite cluster size. As a
cluster grows it must eventually approach bulk behavior, as
represented by the capillarity model of CNT (assuming that
the cluster is liquidlike). In this limit the free energy of step-
wise addition is given by

AGi—l,i

e [~ (i-1)"’]®@-InS. (20)

This expression is used in Fig. 3 to extrapolate AG; based on
Li et al.” to sizes larger than i=60. The specific form of this
extrapolation will have negligible effect on J as long as
i=55 does in fact represent the global maximum of AG,.
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FIG. 4. Forward rate constants of (R1) at 2000 K, calculated either by
classical molecular dynamics trajectory simulations of Li and Truhlar
(Ref. 35) or by CNT.

However some such extrapolation is needed for the transient
nucleation calculations in the next section.

The reason for the peak in AG; at i=55 in Figs. 1-3 is
closely related to the fact that the lowest-energy structure of
Alss is particularly stable for symmetry reasons. Thus it has a
low thermodynamic energy, but this does not translate into a
low thermodynamic free energy. The free energy also con-
tains important contributions from isomeric and vibrational
ent1r0py.23’24 For example, Alsq has 53 isomers within 0.2 eV
of the global minimum energy structure.”* Three of these
correspond to one Al atom adsorbed on the surface of the
particularly stable Alss structure, and the other 50 correspond
to insertion of one Al into the surface of this Alss structure.?
A similar entropically favorable multitude of low-energy
structures can explain that Als; is also particularly stable, as
shown in Figs. 2 and 3. The existence of a peak at i=55 is
also sensitive to the accuracy of the electronic structure cal-
culations in that a change in cohesive energy on the order of
5% can cause this kind of structure; ordinarily one would
hope that any errors in the electronic structure calculations
would be smooth functions of 7, but in the vicinity of magic
numbers, the dominant structures can be markedly different
from one value of i to the next, so it is difficult to estimate
the uncertainties even in relative energies.

In addition to the free energies AG,, Egs. (4) and (11)
require the forward rate constants of (R1). Li and Truhlar®
calculated these using classical molecular dynamics trajec-
tory simulations, for temperatures in the range 1100-3300 K.
The results of these simulations for k; at 2000 K are shown
in Fig. 4, together with the CNT values. Differences in k;;
are less important for steady-state nucleation than are differ-
ences in AG,, as the latter are exponentiated in Eq. (11).
Nevertheless, it is noteworthy that the values of k;; calcu-
lated by Li and Truhlar® are seen in Fig. 4 to be several
times higher than the corresponding CNT values. This differ-
ence can be attributed mainly to the neglect of attractive
forces in the hard sphere model. Such forces are especially
important for open-shell atoms such as Al.
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FIG. 5. Steady-state nucleation rate versus saturation ratio at 2000 K, using
either self-consistent CNT, Eq. (15), or Eq. (12) using thermodynamic data
of Li et al. (Ref. 23) and kinetic data of Li and Truhlar (Ref. 35).

IV. RESULTS: STEADY-STATE NUCLEATION

The free energy data of Li ef al. 3 together with the data
on condensation rate constants of Li and Truhlar”® were used
in Eq. (15) to calculate steady-state nucleation rates at
2000 K over a range of saturation ratios. The results are
shown in Fig. 5, where they are compared to the self-
consistent CNT values given by Eq. (15). It is evident that
there is not only a large quantitative difference but also an
important qualitative difference between the two curves.

The quantitative difference is caused mainly by the
strong peak in AG; at size 55 based on the Li er al.® data,
which causes J to be many orders of magnitude lower than
predicted by CNT for values of saturation ratio below about
30. Indeed the discrepancy may be even greater, because, as
discussed in the previous section, the values of J calculated
from the Li er al.”>* data represent an upper bound. The
saturation ratio required for the onset of observable nucle-
ation, conventionally defined as the saturation ratio at which
Ji equals 1 cm™s7!, is much higher based on the Li
et al.™** data than from CNT: it equals about 5.1 based on
CNT but about 13.3 based on Li er al.?>*

The qualitative difference, which concerns the slopes of
the curves, can be attributed to the existence of magic num-
bers for Al clusters. With J(S) plotted on a log-log plot, as
in Fig. 5, the linearity of the curve for the calculations based
on the Li er al.”?*® data is an illustration of the Nucleation
Theorem,63 together with the fact that the global maximum
in AG, at i=55 exists over a wide range of saturation ratios.
The Nucleation Theorem can be written in the form

dln Jg
( ss) =i*+1, (21)
T

where i* is the critical cluster size. The derivation of this
expression is independent of the model assumed for AG;,,
. ... 64
whether classical or atomistic.
The value of i* is plotted over a range of saturation ratios
in Fig. 6. In CNT {* is a continuous function of S, given by
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FIG. 6. Critical cluster size, i.e., size at which AG; is a maximum, at
2000 K, based either on Li ef al. (Ref. 23) or on CNT.

2 3
i*z(glnS) ' 22)

In contrast, because of the strong peak in AG; at size 55, the
Li et al.” data predict i“=55 for saturation ratios ranging
from about 4.5 to 36. Thus, over this entire range, integrating
Eq. (21), J =S, and this is indeed consistent with the result
shown in Fig. 5.

We emphasize that i*=55 over only a finite range of S.
Above S=36 the value of i* drops suddenly from 55 to 4
which produces the knee in the curve at S= 36 seen in Fig. 5.
To understand this behavior, consider Fig. 7, which shows
AG, based on Li et al.® for saturation ratios of 10, 20, and
30. At all of these saturation ratios the global maximum of
AG; occurs at i=55. As § increases the second term on the
right-hand of Eq. (13) increases, until finally at S~36 the
value of AGss drops below the value of AG,, which at that
point represents the global maximum in AG;.

100 ‘

|

.50 I I I I I
10 20 30 40 50 60

Cluster size, i

FIG. 7. Free energy of multary association AG; of Al clusters relative to
vapor, based on Li et al. (Ref. 23), at 2000 K and at saturation ratios of 10,
20, and 30.
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For low saturation ratios, when S drops below about 4.5,
i* jumps suddenly from 55 to 99 and increases thereafter, i.e.,
it becomes equal to the values obtained from CNT. The latter
effect is simply an artifact of the CNT-based extrapolation of
the Li e al.” data for cluster sizes greater than 60. In the
limit as §— 1, i*— oo, consistent with the equilibrium be-
tween the vapor and the bulk liquid at S=1.

The above calculations assume that cluster growth is
dominated by monomer condensation. However this assump-
tion becomes invalid at sufficiently high values of saturation
ratio. The reason for this is evident from Fig. 7. For satura-
tion ratios of 10 and 20 the values of AG; are positive for all
values of i> 1, meaning that the equilibrium cluster number
densities are all smaller than the monomer, and the steady-
state cluster number densities during nucleation are yet
smaller (as required to have a positive nucleation current).
However for S=30 it is seen that clusters of a number of
different sizes smaller than the critical size have negative
values of AG;, meaning that they are more abundant than the
monomer at equilibrium. In this case cluster-cluster interac-
tions are important, the monomer growth model is no longer
valid, and Eq. (12) does not apply. In this regime the critical
size i* is no longer a relevant bottleneck to nucleation, as
reactions of the form

i>1,

(R3) AL+ Al — Al,;, i1

can dominate cluster growth, and for the case i+j>i", clus-
ter growth can leapfrog over the critical size. Since magic-
numbered clusters will be the most abundant, nucleation will
be dominated by reactions of the form (R3), where either i or
J, or both, are magic numbers. Bahadur and McClurg13 con-
cluded, based on the conditions they considered for monova-
lent metals, that the existence of magic numbers must pro-
duce such a “cluster growth” (as opposed to “monomer
growth”) mechanism. Here we reach a similar conclusion,
except that we also find a window of conditions for which
the monomer growth mechanism is valid in spite of the ex-
istence of strong magic numbers. For the case of aluminum
at 2000 K, the monomer growth mechanism appears to be
reasonable for saturation ratios below about 25.

V. RESULTS: TRANSIENT NUCLEATION

The transient nucleation behavior in the condensation-
evaporation regime can be calculated by integrating Eqgs. (4)
and (5) numerically, subject to the auxiliary conditions

n =Sn, t=0, (23)

n;=0, i=2, t=0, (24)
and

ny=0, t>0, (25)

where ny(7) is the saturation number density of the monomer
vapor. Here the largest cluster size M should be larger than
the critical size and sufficiently larger that the choice of its
value makes effectively no difference in the results.
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FIG. 8. Temporal evolution of cluster number densities at 2000 K and a
saturation ratio of 20 based on CNT.

Abraham® carried out such a numerical integration for
the case of nucleation of water droplets, with the exception
that instead of using Eq. (23) he set the number density of
clusters of size i=10 to a constant value (in equilibrium with
the monomer number density) in order to avoid taking the
extremely small time steps required to resolve the transient
behavior of the smallest clusters. Abraham assumed CNT to
model the forward and backward rate constants in Eq. (4),
and set M=110.

To our knowledge no previous studies have considered
the effect of magic numbers on transient nucleation. Here
solutions are obtained to Egs. (4), (5), and (23)—(25) for alu-
minum at 2000 K and a saturation ratio of 20, based either on
CNT or on the data of Li et al.*** The value of M was set to
100. The Li et al.*® values of AG; were extrapolated beyond
i=60 using CNT, as shown in Fig. 3, while the Li and
Truhlar™ values of kg; were extrapolated beyond size 60 by
setting them proportional to >, again consistent with CNT.

Abraham® noted that the solution to this simple set of
equations presents surprising numerical difficulty. This is
partly because of the large range of time scales required for
clusters of different sizes to reach steady state. More impor-
tantly, however, it is because as steady state is approached
the forward and backward rates of (R1) become quite close
to each other. In this case the nucleation current in Eq. (4)
equals the relatively small difference between two large
numbers, which causes potential problems with roundoff er-
ror. Abraham, who assumed CNT, noted that double preci-
sion was required for the conditions he considered. For our
calculations using the Li et al.? free energy data we found
this problem to be more severe. For example, at 2000 K and
S§=20, as steady state is approached the value of J, equals
approximately one part in 10'© of either the forward or back-
ward rates. We thus found that quadruple precision was nec-
essary to obtain values of J; that converge as they should to
a common steady-state value.

Figures 8 and 9 show results for number densities and
nucleation currents, respectively, for selected cluster sizes,
based on CNT. The behavior is qualitatively similar to that
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FIG. 9. Temporal evolution of nucleation currents at 2000 K and a satura-
tion ratio of 20 based on CNT. Line labeled “J” is the steady-state nucle-
ation rate given by Eqs. (15) and (16).

observed by Abraham® in his calculations for water. As in-
dicated in Fig. 8, both the value of the steady-state number
density and the time required for clusters of each size to
reach their steady-state vary monotonically with cluster size.
For clarity only selected cluster sizes are shown. However
this is confirmed by examination of all cluster sizes.

In addition to the nucleation currents for selected cluster
sizes, Fig. 9 also shows the value of the steady-state nucle-
ation rate calculated independently by Eq. (15). As noted
above, the critical size as given by CNT for this case equals
about 12.6 (where CNT neglects the integer nature of 7). In
Fig. 9 it is seen that the nucleation currents for clusters
smaller than the critical size initially overshoot Jg, while
clusters larger than i* do not. Within a short time—a few
tenths of a microsecond—the nucleation currents for clusters
of all sizes asymptotically approach the common steady-state
value given by J.

As an aside, it is interesting to note that J in this figure
represents the value given by the self-consistent version of
CNT,” and that it agrees excellently with the steady-state
nucleation rate obtained by the transient calculation. The
standard (nonself-consistent) version of CNT gives a value
of J here that is lower by a factor ¢/ 8,%° which for this
case equals about 2000.

Now we repeat these calculations using values for
free energies and condensation rate constants based on Li
1.3 Results for the number densities of selected cluster
sizes are shown in Fig. 10. As can be seen by inspection of
the free energy data in Fig. 3, several of the cluster sizes
shown represent either magic numbers (local minima in AG;
ati=7, 14, 21, and 51) or anti-magic numbers (local maxima
at i=5, 12, 18, 49, and 55). The qualitative behavior here is
markedly different than that obtained by CNT in Fig. 8. Be-
cause of the initial conditions, given by Egs. (23) and (24), at
the very earliest times the cluster number densities must or-
der themselves monotonically with increasing cluster sizes.
In CNT that ordering remains, whereas in Fig. 10 it is seen
that the number densities reach a steady state that is not at all
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-

o
N
R

T=2000K
$=20 -

-
o
R

(m?®

N
o_\
>

10"

Number density

-
o
)

1 03 Il L / L L L L
107 10° 10® 107 10 10° 10* 103

Time (s)

FIG. 10. Temporal evolution of cluster number densities at 2000 K and a
saturation ratio of 20, based on thermodynamic data of Li et al. (Ref. 23)
and kinetic data of Li and Truhlar (Ref. 35).

ordered by cluster size. Instead the magic-numbered clusters
become much more abundant than the antimagic-numbered
clusters to which they are nearest in size. This is most strik-
ing for the comparison between cluster sizes 51 and 55,
which comprise the sharpest change in AG; in Fig. 3: at
steady state ns, is greater than nss by a factor of about 10'2.

Figure 11 shows the nucleation currents for the same
case and selected cluster sizes. Also shown is the steady-state
nucleation rate calculated from Eq. (12). As in the CNT cal-
culation, nucleation currents for clusters smaller than the
critical size i*=55, overshoot Ji and then converge to the
value given by J, while nucleation currents for size 55 as
well as larger clusters (not shown) approach J, from below.
However the time required to reach steady state is dramati-
cally longer than in CNT: about 107 s, based on conver-
gence of the nucleation currents to a common value, com-
pared to a few tenths of microseconds for CNT.
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FIG. 11. Temporal evolution of nucleation currents at 2000 K and a satura-
tion ratio of 20, based on thermodynamic data of Li er al. (Ref. 23) and
kinetic data of Li and Truhlar (Ref. 35). Line labeled “J,” is the steady-state
nucleation rate given by Eq. (12).
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FIG. 12. Temporal evolution of nucleation currents for all cluster sizes 2
through 21, at 2000 K and a saturation ratio of 20. Solid bold lines are
curves for magic numbers.

The much slower approach to steady state compared to
CNT for the calculations using the Li et al.*>* data is due to
a combination of factors, including the larger critical cluster
size and, most interestingly, the presence of multiple local
maxima and minima in the curve of AG;(i).

Figures 12 and 13 illustrate the last point. Figure 12
shows the nucleation currents J; for all values of i from 2 to
21, while Fig. 13 shows J; for all values of i from 36 to 55.
Bold solid lines in both figures show the nucleation currents
for magic numbers, while the bold dashed line in Fig. 13
shows the nucleation current for the most important anti-
magic number, the critical size at i=55. Close inspection of
these figures reveals that the nucleation currents for clusters
of adjacent sizes become equal to each other in successive
groups, where the largest cluster in each group is the magic-
numbered one. For example, the nucleation currents for sizes
2-7 (a magic number) become equal to each other after a few
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FIG. 13. Temporal evolution of nucleation currents for all cluster sizes

36-55, at 2000 K and a saturation ratio of 20. Solid bold lines are curves for
magic numbers. Size 55, the critical size, is an antimagic number.
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FIG. 14. Hypothetical linear curve of AG;(i) that has the same critical size,
55, and the same value of AGss as obtained from the Li er al. (Ref. 23) data
at 2000 K and S=20. Curve is extrapolated beyond size 55 using the CNT
expression for the free energy of stepwise addition, Eq. (20).

nanoseconds; clusters of sizes 8 and 9 (a magic number) join
this equality after a few hundred nanoseconds; clusters of
sizes 10-14 (a magic number) join this equality at about
1 us; and clusters of sizes 15-21 (a magic number) join at
about 10 us. The same behavior is found for the entire size
spectrum up to the critical size.

To understand this behavior, it is instructive to consider
the analogy with the flow of water that at time O is released
from a reservoir and then flows over a riverbed of undulating
elevation. Magic numbers correspond to basins in the river-
bed and antimagic numbers to relative hills. At steady state
the depth of the river (analogous to number density) is great-
est at the locations of the basins. As each basin fills the
currents upstream adjust until a common current is reached,
at which time the current downstream of the basin increases,
pushing water over the next hill, which may properly be
termed a “prominence,” and then on to the next basin, until
that basin fills, and so forth. The highest prominence (critical
size) represents the final rate-limiting kinetic bottleneck. In a
somewhat different context, the concept of free energy
minima representing basins into which clusters are funnelled
has previously been discussed by Wales.*

The transient behavior of the nucleation currents is thus
affected by the detailed structure of AG,(i). To demonstrate
this, we conduct an exercise in which the transient nucleation
behavior calculated with the Li ef al.> data is compared to
that obtained from a hypothetical linear curve of AG(i),
shown in Fig. 14. The hypothetical AG,(i) curve has the
same critical size, 55, and the same value of AGss5 as ob-
tained from the Li er al.* data at 2000 K and §=20, but has
no magic numbers, i.e., it has no local minima for i>1.
Figure 15 shows the corresponding nucleation currents cal-
culated using the hypothetical AG; values, together with the
condensation rate constants of Li and Truhlar.”’ The steady-
state nucleation rate calculated from Eq. (12) using these
hypothetical values is only about 4 times lower than that
obtained using the Li er al.? free energy data, because the
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FIG. 15. Temporal evolution of nucleation currents based on the hypotheti-
cal linear curve of AG,(i) in Fig. 14, together with the condensation rate
constants of Li and Truhlar (Ref. 29).

term for =55 is by far the largest term in the summation.
However the time required to reach steady state is drastically
different, about 107 s based on the hypothetical linear AG,,
compared to about 10 s based on the Li et al.? data.

Moreover the magnitude of the time required to reach
steady-state nucleation, about 10* s based on the Li et al.”®
data, has important implications. Steady-state nucleation has
received vastly more attention in the literature than has tran-
sient nucleation. The justification for this is the belief that in
most realistic scenarios the time required to reach steady-
state nucleation is much shorter than the time scales for
change in forcing parameters (temperature and saturation ra-
tio). However this assumption derives mainly from the mod-
est literature on transient homogeneous nucleation, which
generally is based on CNT. The CNT analysis above indi-
cates that steady-state nucleation is reached in this particular
case within a few tenths of a microsecond. If this analysis
were correct, then steady-state nucleation would be a reason-
able assumption even for situations such as rapid nozzle ex-
pansions where the rate of temperature change can equal
10107 K/s, with a correspondingly rapid change in satu-
ration ratio.

On the other hand, if the time required to reach steady-
state nucleation is on the order of 107 s, as in the analysis
based on the data of Li et al.,23’35 then steady-state nucleation
is much less likely to be a valid assumption, and in many
cases a transient analysis would be required to correctly
model nucleation.

Another interesting difference with CNT concerns the
effect of saturation ratio on the time required to reach steady
state. In CNT, all else being equal, the time required to reach
steady state decreases as the saturation ratio increases, the
main reason being that a higher saturation ratio corresponds
to a smaller critical size.% However, in our calculations
based on the Li ef al.>>¥ data, we find the opposite result, at
least over the range of conditions where the critical size is
unaffected by the saturation ratio. For example, at 2000 K
and a saturation ratio of 15, we find that the time to reach

J. Chem. Phys. 131, 134305 (2009)

state equals about 20 us, compared to about 100 us in the
S=20 case. The reason for this contrary behavior is that,
unlike in CNT, the change in saturation ratio here does not
cause the critical size i*=55 to change. The steady-state
number densities and the nucleation current are much higher
in the §=20 case than in the S=15 case (J being about 10%
times higher), and, with no reduction in i* for the higher
saturation ratio, it takes longer for these number densities
and currents to build up to their steady-state values.

VI. SUMMARY AND CONCLUSIONS

Homogeneous nucleation of aluminum, a substance that
exhibits magic numbers, has been examined by conducting
both steady-state and transient nucleation calculations based
on thermodynamic data for aluminum clusters up to size 60
of Li ef al.” and the corresponding kinetic data of Li and
Truhlar,® for a temperature of 2000 K. Aside from the strong
quantitative differences with CNT, the existence of magic
numbers creates important qualitative effects that are not
found in CNT.

A strong peak in AG; at size 55 causes that size to con-
stitute the critical size over a wide range of saturation ratios,
from about 4.5-36. Consequently, and consistent with the
Nucleation Theorem, d(In J)/d(In S)=56 over that entire
range. However this calculation is only meaningful for satu-
ration ratios below about 25, as above that value magic-
numbered clusters become more abundant than the mono-
mer, invalidating the assumption that clusters grow only by
monomer addition. In this regime (of higher saturation ra-
tios) cluster growth may be dominated by cluster-cluster in-
teractions, particular those involving magic-numbered clus-
ters, and can leapfrog over the critical size.

Transient nucleation calculations using the Li et al?%
data also show strong differences from CNT. Magic-
numbered clusters, at early times less abundant than smaller
clusters of adjacent sizes, become over time more abundant.
The time required to reach steady state is much longer than
in CNT, requiring for §=20 about 10~ s, compared to only
a few tenths of a microsecond in CNT. This implies that
under many realistic conditions steady-state nucleation may
not be a valid assumption, contrary to the prediction of CNT.

Magic numbers are seen to play an important role in
transient nucleation, as the nucleation currents for clusters of
adjacent sizes become equal to each other in temporally suc-
cessive groups, where the largest cluster in each group is the
magic-numbered one. Another qualitative difference is that
in CNT the time required to reach steady-state decreases
with increasing saturation ratio, whereas the calculations
based on Li et al.”**° show the opposite behavior over the
range of values of S for which the critical cluster size is
unchanged.

As the Li e al.” calculations are limited to clusters up to
size 60, it is possible that magic numbers at larger sizes
could cause the critical size to be greater than 55 over some
range of saturation ratio. In that case the differences with
CNT would be even stronger than those reported here.
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It should finally be noted that the work presented here
refers specifically to homogeneous nucleation, i.e., self-
nucleation, of pure aluminum. As noted above, to our knowl-
edge no experiments on homogeneous nucleation of alumi-
num have been reported. Such experiments would be
difficult to conduct, particularly under high-temperature con-
ditions, because of the role that may be played by relatively
small concentrations of ions, or of reactive impurities such as
oxygen. On the other hand, many of the qualitative trends
found here are more general than Al, and they may be im-
portant for nucleation of other metals as well as other sub-
stances that exhibit magic numbers.
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