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Multiconfiguration molecular mechanics �MCMM� was previously applied to calculate potential
energies, gradients, and Hessians along a reaction path and in the large-curvature tunneling swath,
and it was shown that one could calculate variational transition state theory rate constants with
optimized multidimensional tunneling without requiring more than a few electronic structure
Hessians. It was also used for molecular dynamics simulations of liquid-phase potentials of mean
force as functions of a reaction coordinate. In the present article we present some improvements to
the formalism and also show that with these improvements we can use the method for the harder
problem of trajectory calculations on gas-phase bimolecular reactive collisions. In particular, we
apply the MCMM algorithm to the model reaction OH+H2→H2O+H, for which we construct the
global full-dimensional interpolated potential energy surfaces with various numbers of electronic
structure Hessians and various molecular mechanics force fields, and we assess the quality of these
fits by quasiclassical trajectory calculations. We demonstrate that chemical accuracy �1–2 kcal/mol�
can be reached for a MCMM potential in dynamically important regions with a fairly small number
of electronic structure Hessians. We also discuss the origins of the errors in the interpolated energies
and a possible way to improve the accuracy. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3042145�

I. INTRODUCTION

Computational chemical reaction dynamics usually in-
volves two steps: �i� calculating the potential energy
function1 �PEF� or its gradient field �which is minus the force
field� and �ii� calculating the dynamics per se. Step �i� may
be accomplished in advance by developing an analytic rep-
resentation of the PEF for a given reaction or, in principle, by
choosing a general set of molecular mechanics parameters.
Unfortunately, with a few exceptions,2 molecular mechanics
with general parameters is restricted to nonreactive systems.
Furthermore the analytic representation of PEFs for specific
reactions requires a certain artfulness and a considerable
amount of human time and ingenuity. For these reasons the
modern approach is to use direct dynamics calculations,3

which have been defined4 as calculations in which “instead
of using a predefined PEF, all required energies and forces
for each geometry that is important for evaluating dynamical
properties are obtained directly from electronic structure cal-
culations.” Considerable attention has been paid to develop-
ing efficient algorithms for direct dynamics calculations.5 An
ultimate goal would be to make the algorithm so efficient
that the electronic structure calculations no longer dominate
the cost or at least are quite affordable.

Some approaches are intermediate between fitting sur-
faces and direct dynamics. For example, a robust, systemati-

cally improvable, semiautomatic fitting scheme would elimi-
nate the need for time-consuming human trial and error and
artfulness, but since dynamics calculations would eventually
be carried out by using the fit, it would become possible to
carry out extensive dynamical explorations quite efficiently
and affordably. The first available algorithm to come close to
this ideal was the “Grow” algorithm of Collins and
co-workers.6 Using this algorithm, they were able to generate
global potential energy surfaces for quasiclassical trajectory
calculations on the reactions OH+H2→H2O+H,6�a� H
+CH4→H2+CH3,6�b� and H+N2O→OH+N2,6�g� with 200–
400, 1100–1300, and 1400 Hessians, respectively. Later6�e�

they refined the OH+H2 surface using over 1600 Hessians,
and a version based on 1000 Hessians was used for quantum
scattering calculations.6�d� This method is based on using a
modified Shepard interpolation to interpolate between the
second-order Taylor expansions defined by the Hessians of
the PEF at a set of geometries called Shepard points. A suc-
cinct summary with references to related work is provided in
the introduction of Ref. 6�a�. A more recent method, closely
related to the method of Collins and co-workers,6 is multi-
configuration molecular mechanics �MCMM�. MCMM is
also based on a modified version of Shepard interpolation,
but the quantity interpolated is the off-diagonal element of a
2�2 matrix corresponding to a valence bond treatment of
two molecular mechanics configurations, one for products
and one for reactants. In this respect, the MCMM method is
reminiscent of the original 2�2 valence-bond type treatment
by London,7 and is similar to the empirical valence bond
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approach by Warshel and co-workers8 except for the choice
of V12 �which is crucial for realistic representation of a po-
tential energy surface�. The present implementation of the
MCMM method allows one to treat multiple reactive inter-
mediates, and a 2�2 electronic diabatic Hamiltonian matrix
allows one to treat reactions with a single bimolecular reac-
tion channel �single reactant asymptote and single product
asymptote, plus any additional asymptotes that are equiva-
lent by symmetry�. Extensions of the present model to a 3
�3 Hamiltonian are conceivable and can be implemented in
the future.

The MCMM equations were originally presented with-
out enforcing identical particle symmetry.9 This is quite rea-
sonable for methods such as variational transition state
theory �VTST� 10 where one only needs to represent a poten-
tial energy surface in the vicinity of a single reaction path
and the large-curvature tunneling swath.10 The effect of iden-
tical particle symmetry can then be included by symmetry
factors.11 The original formalism9 has been employed in sub-
sequent work,12–16 and along the way we have corrected
some errors in the original equations. For completeness, the
Appendix presents, for the first time, a corrected set of equa-
tions for the unsymmetrized case. The Appendix also in-
cludes refinements that are expected to lead to stable results
in full dynamics calculations, where the refinement is re-
quired because general dynamics calculations depend on the
potential energy surface more globally.

As an example of the need to consider more than just a
single reaction path, consider a trajectory calculation17 on
collisions of HaHb with OHc; such a trajectory will likely
visit not only geometries along the reaction paths leading to
Ha+HbOHc and Hb+HaOHc but also intermediate geom-
etries and perhaps even hydronium radical geometries. To
treat such collisions realistically, we should use a potential
energy surface with the correct permutational symmetry. Per-
mutational symmetry of a potential energy surface has been
enforced in various ways and emphasized by several
groups.6,18,19 A formalism for enforcing identical particle
symmetry in the MCMM algorithm was presented in Ref. 19.
A procedure with further refinements is presented in Sec. II
in a notation consistent with the Appendix.

Section III presents details of the present applications of
MCMM to construct potential energy surfaces for the ex-
ample reaction OH+H2→H2O+H. Section IV discusses tra-
jectory calculations for this reaction. The goal of these cal-
culations is to demonstrate the usefulness of MCMM for full
molecular dynamics simulations. Section V presents con-
cluding remarks.

II. MCMM ALGORITHM „SYMMETRIZED CASE…

The procedure for constructing a potential energy sur-
face that is invariant with respect to the exchange of identical
nuclei using MCMM is described in Ref. 19. The algorithm,
with further refinements introduced here, is as follows.

�i� Select k=1,2 , . . . ,N molecular geometries x�k� to be
used as electronic structure Shepard points, and calculate the
energies V�k�, gradients G�k�, and Hessians F�k� at these
geometries.

�ii� For each of these data points x�k� generate m! sym-
metrically equivalent data sets �x�k,i� ,G�k,i� ,F�k,i��, where

x�k,i� = P�i�x�k�, �1�

G�k,i� �
�

�x
V = P�i�G�k�, �2�

F�k,i� �
�2

�x2V = P�i�F�k�P�i�, �3�

where P is the nuclear permutation operator that inter-
changes Cartesian coordinates of m identical nuclei. We note
that the strategy for enforcing symmetry by replicating elec-
tronic structure data was also employed by Collins and
co-workers.6

�iii� Define a set of m! MM energies, gradients, and Hes-
sians at point �k , i� by

VMM,n
�k,i� � Vnn�x�k,i�� , �4�

GMM,n
�k,i� � � �

�x
Vnn�

x=x�k,i�
, �5�

and

FMM,n
�k,i� � � �2

�x2Vnn�
x=x�k,i�

, �6�

for n=1,2; k=1,2 , . . . ,N; and i=1,2 , . . . ,m!.
�iv� Define a symmetrized MM potential and its gradient

and Hessian at point �k� �where a tilde denotes a symmetri-
zation� by

Ṽn
�k� = −

1

�
ln	 1

�mm



i

m!

e−�VMM,n
�k,i� � , �7�

where � is a parameter, and �mm, which is called the sym-
metry factor, is the number of times the lowest-energy MM
configuration occurs among the m! symmetrically equivalent
MM configurations at a general geometry;

G̃n
�k� �

�

�x
Ṽn

�k� =

i

m!GMM,n
�k,i� e−�VMM,n

�k,i�


i
m!e−�VMM,n

�k,i� �8�

and

F̃n
�k� �

�2

�x2 Ṽn
�k� =


i
m!�FMM,n

�k,i� − �GMM,n
�k,i� GMM,n

�k,i�T �e−�VMM,n
�k,i�


i
m!e−�VMM,n

�k,i�

+ �G̃n
�k�G̃n

�k�T. �9�

Notice that the symmetrized MM potential is dominated by
the �mm lowest-energy MM configurations among the m!
permutations of the Cartesian coordinates.

�v� Generate m! values of G̃n
�k,i� and F̃n

�k,i� from each G̃�k�,

and F̃�k� by applying P�i�, as in step �ii�.
�vi� Transform G�k,i�, F�k,i�, G̃n

�k,i�, and F̃n
�k,i� to the set of

internal coordinates r by the Wilson B matrix and C tensor.
This yields
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g�k,i� � � �

�r
V�

r=r�x�k,i��
, �10�

f�k,i� � � �2

�r2V�
r=r�x�k,i��

, �11�

g̃n
�k,i� � � �

�r
Ṽn�

r=r�x�k,i��
, �12�

f̃n
�k,i� � � �2

�r2 Ṽn�
r=r�x�k,i��

. �13�

�vii� Define a matrix V�k,i� at each geometry �k , i� by

V�k,i��r� = 	 Ṽn
�k��r� V12�r,k,i�

V12�r,k,i� Ṽn
�k��r�

� �14�

and construct Taylor series expansions of V12 around each
data point �k , i� using the Taylor series reversion20 in the
same way as in Eq. �A6� for nonsymmetrized calculations,
with the only difference being that �k� is replaced with �k , i�.
Notice that Ṽn is a symmetrized molecular mechanics poten-
tial, and it does not depend on i.

�viii� Calculate the Taylor series coefficients D, b, and C
�as in Eqs. �A8�–�A10�� for each symmetrically equivalent
data point �k , i�,

D�k� = �Ṽ1
�k� − V�k���Ṽ2

�k� − V�k�� , �15�

b�k,i� =
g̃1

�k,i� − g�k,i�

Ṽ1
�k� − V�k�

+
g̃2

�k,i� − g�k,i�

Ṽ2
�k� − V�k�

, �16�

C�k,i� = �1/D�k,i���g̃1
�k,i� − g�k,i���g̃2

�k,i� − g�k,i��T

+ �g̃2
�k,i� − g�k,i���g̃1

�k,i� − g�k,i��T

+
f̃1

�k,i� − f�k,i�

Ṽ1
�k� − V�k�

+
f̃2

�k,i� − f�k,i�

Ṽ2
�k� − V�k�

. �17�

Notice that D and V do not depend on i. The Taylor series of
�V12�2 for each �k , i� at an arbitrary geometry r=r�x� can
now be written as

�V12�r,k,i��2 = D�k��1 + b�k,i�T�r�k,i�

+ 1
2�r�k,i�TC�k,i��r�k,i�� . �18�

�ix� Define the matrix V at the input geometry x by

V�x� = 	 Ṽn�x� V12
S �x�

V12
S �x� Ṽn�x�

� . �19�

The lowest-energy eigenvalue of this matrix is the MCMM

PEF. The diagonal matrix elements Ṽn�x� and their deriva-

tives, G̃n�x� and F̃n�x�, are obtained as follows: First we
define

VMM,n
�j� � Vnn

�j��x�, j = 1, . . . ,m ! , �20�

GMM,n
�j� �

�

�x
Vnn

�j�, j = 1, . . . ,m ! , �21�

and

FMM,n
�j� �

�2

�x2Vnn
�j�, j = 1, . . . ,m ! , �22�

where each value of j corresponds to one of the m! connec-

tivity patterns. Then, Ṽn�x�, G̃n�x�, and F̃n�x� are calculated
as

Ṽn�x� = −
1

�
ln	 1

�mm



j

m!

e−�VMM,n
�j� �x�� , �23�

G̃n�x� =

 j

m!GMM,n
j �x�e−�VMM,n

�j� �x�


 j
m!e−�VMM,n

�j� �x�
, �24�

and

F̃n�x� =

 j

m!�FMM,n
�j� �x� − �GMM,n

�j� �x�GMM,n
�j� T�x��e−�VMM,n

�j� �x�


 j
m!e−�VMM,n

�j� �x�

+ �G̃nG̃n
T, �25�

where VMM,n
�j� �x�, GMM,n

�j� �x�, and FMM,n
�j� �x� are sets of m! MM

energies, gradients, and Hessians at the geometry x.
The off-diagonal elements are obtained via Shepard in-

terpolation for V12 as in Eq. �A13� but with m !N terms in the
sum

V12
S �r� = 


k=1

N



i=1

m!

wki�r�V12� �r,k,i� , �26�

where wki are normalized weights, and V12� is defined by

V12� �r,k,i� = �V12�r,k,i�2u�r,k,i� , �27�

where V12�r ,k , i�2 is given in Eq. �18�, and

u�r,k,i� =  1

1 + ��/V12�r,k,i��2n , V12�r,k,i�2 � 0

0 otherwise.
� �28�

The normalized weight function is

wki�s� =

Yki�r�
dki�s�4



k=1

�N+2�



i=1

m!
Yki�r�
dki�s�4

, �29�

where dki is the generalized distance between s and s�k,i� de-
fined as

dki�s� =�

�=1

�m!

�s� − s�
�k,i��2, �30�

where s��s1 ,s2 , . . . ,s� , . . . ,s��. The current implementation
only supports the following cases: �i� set s is the same as set
r. and �ii� set s is a subset of r. The scaling coefficients
Yki�r� are chosen such that the reactive system is described
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by pure molecular mechanics in the asymptotic regions. In
particular, we define Yki at a geometry r as

Yki�r� =
1

1 + 	V12� �r,k,i�2 − D�k�

A2 �� , �31�

where A and � are parameters.
The gradient and Hessian of Eq. �26� with respect to

internal coordinates are given by

gS�r� �
�V12

S �r�
�r

= 

k=1

N



i=1

m! � �wki

�r
V12� �r,k,i� + wkig12�r,k,i�� , �32�

fS�r� �
�2V12

S �r�
�r2 = 


k=1

N



i=1

m! 	 �2wki

�r2 V12� �r,k,i�

+
�wki

�r
g12�r,k,i�T + g12�r,k,i�

�	 �wki

�r
�T

+ wkif12�r,k,i�� , �33�

where

g12�r,k,i� �
�V12� �r,k,i�

�r

=
1

2V12� �r,k,i�
D�k��b�k,i� + C�k,i��r�k,i��u�r,k,i�

�	1 + 	 �

V12�r,k,i�2�n

nu�r,k,i�� �34�

and

f12�r,k,i� �
�2V12� �r,k,i�

�r2 =
1

V12� �r,k,i�
	− g12�r,k,i�g12�r,k,i�T +

D�k�2n2�b�k,i� + C�k,i��r�k,i��2u�r,k,i�2

�V12�r,k,i��2

� 	 �

�V12�r,k,i��2�n�nu�r,k,i�	 �

�V12�r,k,i��2�n

− �n − 1�� +
1

2
D�k�C�k,i�u�r,k,i�

�	nu�r,k,i�	 �

�V12�r,k,i��2�n

+ 1�� . �35�

As in the nonsymmetrized MCMM calculations, the first and
second derivatives �wki /�r and �2wki /�r2 in Eqs. �32� and
�33� are obtained numerically. Since all operations except for
this numerical intermediate step are analytic, the final
MCMM derivatives may be called semi-analytical.

These derivatives of V12
S are then transformed from the

internal coordinates r to Cartesian coordinates by using the
transformation matrices saved in an earlier step, in the same
fashion as in the formalism for nonsymmetrized potential
energy surfaces.

�x� Find the eigenvalue V of Eq. �19� and its derivatives
in Cartesian coordinates. The lowest eigenvalue of Eq. �19�
is given by

V�x� = 1
2 �Ṽ1�x� + Ṽ2�x�� − ��Ṽ1�x� − Ṽ2�x��2

+ 4�V12
S �x��2�1/2, �36�

where Ṽn are the symmetrized uninterpolated MM potentials
given by Eq. �23�, and V12

S is the resonance integral obtained
via the m !N-term Shepard interpolation, Eq. �26�. The gra-
dient and Hessian components of V with respect to Cartesian
coordinates are then given by

Gi =
�V

�xi
=

1

2�G̃1i + G̃2i

− �4V12
S 	 �V12

S

�xi
� + �Ṽ1 − Ṽ2��G̃1i − G̃2i�

��Ṽ1 − Ṽ2�2 + 4�V12
S �2�1/2 ��

�37�

and
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Fij =
�2V

�xi � xj
=

1

2�F̃1ij + F̃2ij +
	4V12

S 	 �V12
S

�xi
� + �Ṽ1 − Ṽ2��G̃1i − G̃2i��

��Ṽ1 − Ṽ2�2 + 4�V12
S �2�3/2

	4V12
S 	 �V12

S

�xj
� + �Ṽ1 − Ṽ2��G̃1j − G̃2j��

−

4	 �V12
S

�xi
�	 �V12

S

�xj
� + �G̃1i + G̃2i��G̃1j + G̃2j�

��Ṽ1 − Ṽ2�2 + 4�V12
S �2�1/2

−

4	 �2V12
S

�xi � xj
� + �Ṽ1 − Ṽ2��F̃1ij − F̃2ij�

��Ṽ1 − Ṽ2�2 + 4�V12
S �2�1/2 � . �38�

III. REPRESENTATION OF GLOBAL SYMMETRIZED
POTENTIAL ENERGY SURFACE FOR THE
REACTION OH+H2\HOH+H WITH MCMM

The Born–Oppenheimer potential energy at an arbitrary
geometry x is represented by the lowest eigenvalue of the

matrix V given in Eq. �19�, where Ṽ11�x� and Ṽ22�x� are the
symmetrized analytical PEFs that describe molecular me-
chanics configurations corresponding, respectively, to a reac-
tant and a product �OH+H2 �n=1� and H2O+H �n=2� in the
case of reaction OH+H2→H2O+H�, and V12

S �x� is the cou-
pling term obtained via Eq. �26�. The set of internal coordi-
nates r used in the present work consists of the six internu-
clear distances. This set is the same as set s used to calculate
the generalized distance of Eq. �30�: s�r
��rOHa

,rOHb
,rOHc

,rHaHb
,rHbHc

,rHaHc
�.

III.A. The target potential energy surface and DFT
calculations

We will assess the performance of the MCMM proce-
dure presented above by testing an interpolated energy at
dynamically important nuclear configurations against the
“accurate” or target potential that MCMM is trying to repro-
duce. The target results for the present study are obtained
using an affordable and efficient density functional, in par-
ticular, the MPWB1K �Ref. 21� functional, which is a hybrid
metafunctional designed for kinetics. The zero-point-
exclusive reaction barrier height and reaction energy of 4.9
and −13.6 kcal /mol, respectively, obtained by MPWB1K
calculations with the standard 6-31+G�d , p� �Ref. 22� basis
set, are in reasonable agreement with the best available
estimates23 of 5.7 and −16.3 kcal /mol, respectively. The fre-
quencies �3898, 2614, 1070, 634, 589, and 1108i cm−1�,
breaking and forming bond distances �0.82 and 1.32 Å�, and
bond angle �164°� at the transferring H atom at the saddle
point are also in reasonable agreement with best available
estimates6�e� �3771, 2622, 1051, 598, 501, 1192i, 0.82, 1.36,
and 165, respectively�. Since our goal here is to test the
accuracy of the MCMM interpolation scheme rather than to
compare the results derived from the potential energy surface
to experimental data, the use of this computational level is
adequate for the present purposes. The MPWB1K /6-31
+G�d , p� results are simply called the density functional
theory �DFT� results in the rest of this article.

III.B. Parameters

MCMM is an interpolation procedure rather than a fit-
ting procedure, but we did introduce five nonlinear param-
eters ��, �, n, A, and �� as components of the interpolation;
these are set to practical working values rather than fully
optimized. In particular, for � of Eq. �7� we used 15.0 kcal/
mol, for � and n of Eq. �28� we used �2.56�10−8 Eh and 2,
respectively, and for A and � parameters of Eq. �31� we used
�6�10−4 Eh and 4, respectively.

III.C. Ṽ11 and Ṽ22

As noted above, MCMM takes advantage of pre-existing
molecular mechanics potentials to represent the diagonal el-

ements Ṽ11 and Ṽ22 of the Hamiltonian. Due to the availabil-
ity of such potentials for a wide variety of systems in previ-
ously optimized molecular force fields, for example, MM3,24

CHARMM,25 etc., no design of new functional forms or op-
timization of parameters is required for constructing of a
potential energy surface with MCMM �although, some re-
finement may be desirable for the best results15�. Previous
work9,12,15 has demonstrated that the use of the MM3 �Ref.
24� force field leads to satisfactory results for the represen-
tation of reactive potential energy surfaces for a diverse set
of reactions in the vicinity of the reaction paths. In case of
the reaction OH+H2, however, all necessary molecular me-
chanics parameters are not available; therefore, we have per-
formed an additional step of obtaining these parameters, in
particular, the parameters to describe the van der Waals in-
teraction energy. The remaining part of this subsection de-
scribes the molecular mechanics functions used in the
present work.

In the diagonal elements of Eq. �19�, bond stretches are
represented by Morse potentials, the H–O–H angle bending
potential energy is described by a sixth-order polynomial,
and the van der Waals interaction energy for each pair of
nonbonded, non-geminal atoms is represented by

VvdW�r� = A�e−B�r + C�r−6 + D�r−12, �39�

where r is the distance between the atoms. Note that even
though H¯H and O¯H interactions are present in both
reactants and products, we used different parameters for
these two cases.

Two sets of molecular mechanics parameters have been
used; these parameters are collected in Tables I and II. In one
set �denoted as parameter set 1, abbreviated as p1�, all force
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constants and the re values were taken from Refs. 26 and 27,
respectively. The bond dissociation energies �De� were set to
150 kcal/mol for each bond type. This value is considerably
larger than the best available estimates of De in each case in
order to make it less likely that negative values of
V12�r ,k , i�2 are obtained. The angle bending energy param-
eters and the van der Waals parameters �except 	 for atomic
H� were taken from the previous work.19 Following the origi-
nal notation of the MM3 �Ref. 24� force field, the van der
Waals parameters in this case �set p1� are given as individual
parameters rm� and 	� for each molecular mechanics atom
type. Then rm and 	 values for the interaction of an atom type
of 1 with an atom of type 2 are obtained from a pair of
atomic rm� and 	� as the arithmetic mean and the geometric
mean, respectively. Equation �39� is written in terms of these
parameters as15

VvdW�r� = 	�Ae−Br/rm − C	 rm

r
�6� + DE	 rm

r
�12

, �40�

where

E = �V6-exp�r�

	 rm

r
�12 �

r=�1/2�rm

, �41�

and Vexp-6�r� is the exp-6 potential in the original MM3 force
field

Vexp-6�r� = 	�Ae−Br/rm − C	 rm

r
�6� . �42�

Note that Eq. �40� is a modified form of the exp-6 potential
�Eq. �42�� used in the original MM3 force field.

The second set of parameters �abbreviated p2� uses the
re values that correspond to equilibrium bond lengths for
reactants and products at the target �i.e., DFT� computational
level. The force constants are chosen such that the calculated
harmonic vibrational frequencies for reactants and products
derived from the interpolated potential energy surface are
equal to the harmonic vibrational frequencies obtained by the
DFT calculations. The four coefficients of Eq. �39� for each

TABLE I. Force field parameters �set p1�.

Morse parameters Angle bending parameters

H–H in H2 O–H in OH O–H in H2O H–O–H

re �Å� 0.7414a 0.9707a 0.9470a

f �mdyn /Å� 5.752b 7.8b 8.45b

De �kcal/mol� 150.0 150.0 150.0
�HOH �deg� 105.0c

f �mdyn/rad� 0.63c

c ,q , p ,s d MM3e

van der Waals parameters �atomic�f

atomic H H in H2 H in H2O O in OH O in H2O

rm �Å� 1.32c 1.20c 1.32c 1.62c 1.82b

	 �kcal/mol� 0.016 0.016c 0.008c 0.059c 0.036c

aReference 27.
bReference 26.
cReference 19.
dCubic, quartic, pentic, and sextic coefficients in the Taylor series.
eReference 24.
fThe coefficients in Eq. �40� are the same as in the MM3 �Ref. 24� force field: A=18 400, B=12.0, C=2.5, and
D is the same as in the previous work �D=0.01� �Ref. 19�.

TABLE II. Force field parameters �set p2�.

Morse parameters Angle bending parameters

H–H in H2 O–H in OH O–H in H2O H–O–H

re �Å� 0.738 0.967 0.9470
f �mdyn /Å� 6.1 8.34 9.1
De �kcal/mol� 150.0 150.0 150.0
�HOH �deg� 106.1
f �mdyn/rad� 0.68

van der Waals parameters �pairwise�
H¯H in reactant O¯H in reactant H¯H in product O¯H in product

A� 1638.355 248.169 259.226 4746.517
B� 4.500 2.300 3.400 3.000
C� −2.474 −11.096 −0.339 −391.536
D� 0.0882 384.428 0.269 772.927
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van der Waals interaction �O¯H and H¯H in OH+H2 and
O¯H and H¯H in H2O+H� are obtained by the following
procedure: �i� The “van der Waals” interaction energies for
reactants and products were calculated at the DFT level for
several types of approaches of the reactants and products.
These types of geometries �three for reactants and two for
products� are shown in the supplementary material.28 �ii�
Eight coefficients �A�, B�, C�, and D� of Eq. �39� for O¯H
and H¯H interactions� were obtained for reactants and
products by least-squares fits to the calculated energies.
More details of the fitting procedure are given in the supple-
mentary material.28

III.D. V12, locations of Shepard points, and
quasiclassical dynamics calculations

The coupling term V12
S �r� of Eq. �19� is obtained via

Shepard interpolation as given in Eq. �26�. Quasiclassical
trajectories17 were propagated on the interpolated potential
energy surfaces that were obtained with various numbers of
Shepard points. A Bulirsch–Stoer algorithm29 with an adap-
tive time step size was used in trajectory calculations. The
trajectory initial conditions were calculated on the interpo-
lated surface using quasiclassical sampling. The vibrational
and rotational quantum numbers for OH and H2 were set to 0
and 2, respectively, and the relative translational energy was
set to 9.9 kcal/mol; the total energy for each trajectory was
�22.5 kcal /mol. The initial impact parameter was set to
zero. All trajectories were started at a distance between the
oxygen atom and the farthest hydrogen atom of the H2 mol-
ecule corresponding to approximately 4.0 Å, and all trajec-
tories were terminated when the oxygen atom in the water
molecule and atomic hydrogen were separated by approxi-
mately the same distance.

We started with three surfaces �with different
parameters—see Table III�, each based on 13 electronic
structure Shepard points. These points are placed at the fol-
lowing locations: at three stationary structures specified be-
low, and along the intrinsic reaction coordinate path for re-
action OH+H2→H2O+H calculated at the target level. The
three stationary points are �i� the reaction saddle point,

�ii� the ammonialike OH3 shallow local minimum at 15.3
kcal/mol above the global minimum, and �iii� the saddle
point that connects the ammonialike local minimum with the
van der Waals complex formed by H2O and H, at 16.0 kcal/
mol above the global minimum. Note that structures �ii� and
�iii� are considerably higher in energy than the saddle point
for the main reaction channel, and they do not contribute
significantly to the interpolated potential energy surface near
the reaction path of reaction OH+H2→H2O+H. We also
note that although the initial conditions in trajectory calcula-
tions were set so that the OH3 well is energetically acces-
sible, we have never observed trajectories visiting this well.
The Shepard points along the intrinsic reaction coordinate �in
mass-weighted Cartesian coordinates� are approximately
equally spaced. In addition, we also place two molecular
mechanics Shepard points at locations corresponding to the
van der Waals minima of the reactant and product complexes
optimized at the MM level; V12

S and its gradient and Hessian
are taken as zero at these points. Thus, N=13 in Eqs. �26�
and �29�. Following the notation introduced in Ref. 19, we
denote this surface MCMM�13� where the number in paren-
theses is the number N of electronic structure Shepard points.
Furthermore, we denote a MCMM�N� potential energy sur-
face constructed using set pX of molecular mechanics pa-
rameters as MCMM�N� /pX.

We also briefly discuss a surface based on electronic
structure Hessians at only the three stationary structures �i�–
�iii�; this is called MCMM�3�.

Three additional surfaces, with N equal to 20, 31, and
37, were generated by adding additional electronic structure
Shepard points to the third MCMM�13� potential energy sur-
face following a scheme analogous to the Grow algorithm of
Collins and co-workers,6 i.e., additional Shepard points were
added at locations with large differences between the inter-
polated and accurate energies in a trial trajectory with the
previous value of N. These differences were obtained by
monitoring a trajectory by calculating an accurate energy ev-
ery tenth integration step. A large number of trajectories,
about 100–200 per surface, were then run on each interpo-
lated potential energy surface. Statistics regarding conserva-
tion of energy and angular momentum were gathered for all
trajectories but only the reactive trajectories, which are more
relevant, were taken into account to generate statistics for
mean unsigned errors �MUEs� in the potential.

III.E. Properties of the stationary points

Since we placed the electronic structure Hessians at the
reaction saddle point and at the two other relevant structures
mentioned above at their exact location at the target level,
the properties of these structures, such as geometries, ener-
gies, and vibrational frequencies, are precisely the same as at
the DFT level.

III.F. Software

MPWB1K /6-31+G�d , p� energies, gradients, and Hes-
sians were obtained with the GAUSSIAN �Ref. 30� code, and
all MM calculations were performed with the modified
TINKER �Ref. 31� code, which is part of the MC-TINKER-2008–2

TABLE III. MUEs �averaged over 480–1613 geometries, depending on the
case, for the energy range from −13.6 kcal /mol �product asymptote� up to
24.9 kcal/mol� �kcal/mol� for interpolated potential energy surfaces with
different parameter sets and numbers of the electronic structure Shepard
points �N�.

Parameters

N MUEvan der Waals Bond stretching and angle bending

Set p1 Set p1 13 3.3
Set p1 Set p2 13 2.3
Set p2 Set p2 13 1.7
Set p2 Set p2 20 1.3
Set p2 Set p2 31 1.3
Set p2 Set p2 37 1.4
Set p2 Set p2 3 4.0
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�Ref. 32� code. The latter was used to obtain MCMM ener-
gies and gradients. Semiclassical dynamics calculations were
performed with the ANT �Ref. 33� code.

IV. RESULTS AND DISCUSSION

First, we will discuss the improvements of the MCMM
scheme that made the full dynamics calculations possible. In
the present implementation, we introduced a scaling function
Yki �Eq. �31��, which is used to calculate weights of Eq. �29�
for Shepard interpolation. The scaling was necessary to
avoid the large values of the coupling term at geometries far
from the interaction region where V12

S is supposed to be neg-
ligible. In such regions, one could either scale the weighting
function based on the geometry or based on the energy. Be-
cause the first option would be system dependent, we have
written Yki as a function of the energy difference, in particu-
lar, the difference of V12� �r ,k , i� at the current geometry r and
at a Shepard point �k , i�. If the difference is small, Yki is close
to unity �no scaling�, and if the difference is large, the con-
tribution of the V12� �r ,k , i� at a point r is scaled down. This
ensures the correct behavior of the interpolated surface at
large internuclear separation between the fragments, includ-
ing the reaction asymptotic regions. Using such a function
also eliminates the need of placing electronic structure Shep-
ard points in the far out regions even if our goal is the global
potential energy surface valid at both large and small inter-
molecular separations.

Another improvement consists in replacing the old �ex-
ponential� u function with the function given in Eq. �28�. The
u function is used to avoid imaginary values of V12. We did
not get acceptable results for trajectories propagated on in-
terpolated surfaces with N
1 with the old u function given
in Eq. 19 of Ref. 9. The new u function given in Eqs. �28�
and �A15� performed better.

These improvements �along with correcting an error in
gradients introduced in the original MCMM formulation9�
lead to the very stable results and to good conservation of
energy and angular momentum in trajectory calculations on
MCMM surfaces with various numbers of Shepard points
and/or different choices of the force fields. For example, the
total energy for 113 trajectories based on the MCMM�31�/p2
potential energy surface was conserved on the average to
3.8�10−4 kcal /mol, and the angular momentum for the
same trajectories was conserved on the average to 1.8
�10−7�. Similar results are obtained for all other MCMM
potential energy surfaces that we have considered.

In the present work, we judge the accuracy of the inter-
polated potential energy surface solely on the basis of ener-
gies �not gradients or Hessians�. Table III gives the MUEs of
MCMM surfaces constructed with various molecular me-
chanics parameters and with various numbers of electronic
structure Shepard points. An unsigned error is defined as an
absolute value of the difference between interpolated and
accurate energies. These errors are averaged over a large
number of nuclear configurations sampled by semiclassical
trajectories, and are considered to be reasonably well
“converged” with respect to the number of nuclear configu-
rations. The sampled nuclear configurations are spaced by

every ten integration steps. The subsequent discussion fo-
cuses on the analysis of the sources of errors and discusses a
possible strategy for constructing an optimal global MCMM
potential.

First, we consider the MCMM�3�/p2 surface in the last
row of Table III. �Similar results could be obtained with N
=1.� Although the MUE is higher than for the other surfaces
considered, it is interesting that even with so few Hessians
we can obtain a qualitatively correct surface.

Figures 1 and 2 show interpolated �V� and accurate �E�
potential energies along with the Ṽ11, Ṽ22, and V12

S matrix
elements as functions of time for a representative trajectory
on two different MCMM�13� potential energy surfaces con-
structed with set p1 and set p2 of molecular mechanics pa-
rameters �we will denote these potential energy surfaces as
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FIG. 1. �Color online� MCMM energy V �solid �black� line�, diagonal ele-

ments Ṽ11 and Ṽ22 of matrix V �dashed-dotted-dashed �red� line and short
dashed �red� line, respectively�, and accurate energy E �long dashed �blue�
line� monitored along a representative trajectory on the MCMM�13� poten-
tial energy surface constructed using MM parameters p1. The upper panel
shows the corresponding coupling term V12 �long dashed �black� line�.
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MCMM�13�/p1 and MCMM�13�/p2, respectively�. At large
separations of the reactants �or products� V12

S is essentially
zero; therefore, the MCMM eigenvalue reduces to the diag-
onal matrix element and the corresponding curves merge. In
the interaction region, the molecular mechanics and MCMM
curves can be seen separately due to nonzero values of V12

S .
Both MCMM�13�/p1 and MCMM�13�/p2 are con-

structed with the same set of the electronic structure Shepard
points; the only differences in the generation of these poten-
tials are the molecular mechanics parameters that underlie

Ṽ11, V12
S , and Ṽ22. The first and third rows of Table III show

that the MUE for MCMM�13�/p2 is nearly a factor of 2
smaller than the MUE for MCMM�13�/p1. The curves shown
in Figs. 1 and 2 provide insight as to why MCMM�13�/p2 is
considerably more accurate. As one can see from Fig. 1, the
energy of the dominant molecular mechanics configuration
and, consequentially, the MCMM energy, are often below the
accurate energy �along a representative trajectory�; this is
especially noticeable on the product side. This implies that

V12�r ,k , i� becomes imaginary at all these geometries; there-
fore one cannot further improve the fit at these and nearby
geometries by adding more electronic structure Shepard
points. At nuclear configurations sampled by a trajectory
propagated on the MCMM�13�/p2 potential energy surface
�Fig. 2�, the dominant MM term can also be seen to some-
times lie below the target energy, but at fewer locations than
with parameter set 1; this results in a better fit. The better
molecular mechanics potentials in the latter case are due both
to better Morse/bending parameters and to different van der
Waals parameters. We now consider these issues in detail.
Set p1 of molecular mechanics force constants is primarily
derived from the experiment, whereas set p2 is approxi-
mately corresponds to the DFT calculations. The latter over-
estimate the experimental harmonic vibrational frequencies
in the present case, which is the typical situation. As a con-
sequence, using the experimentally derived force fields to fit
a DFT potential leads to an underestimation of the interpo-
lated energy and to imaginary values of V12 in certain regions
of the potential energy surface. In the present implementa-
tion, the imaginary values of V12 are replaced with zero V12�
according to Eq. �27�, and this reduces the accuracy of the
resulting potential energy surface. An alternative choice of
parameters that yields vibrational frequencies closer to those
obtained with the same method as used for the target poten-
tial energy surface will lead to a more successful fit. The
results in the second row of Table III indicate that switching
from set p1 of Morse/bending parameters to the correspond-
ing set p2 reduces the MUE by approximately 30%.

The other important contributor to the MUEs collected
in Table III is related to the description of the van der Waals
energy. This type of interaction is generally harder to de-
scribe with an analytical function as compared to the one-
dimensional bond stretching or angle bending potentials.34

As discussed in Sec. III.C, we used an exp-6–12 functional
form parametrized in two different ways. In set p1, the A, B,
and C parameters are the same as in the MM3 force field,
and D, rm, and 	 are roughly adjusted to make the contours
of the interpolated potential energy near the minimum energy
path for a MCMM�3� potential energy surface smooth.19

�Note that this set of parameters was not fitted to any data,
but only approximately adjusted to demonstrate the symme-
try properties of a MCMM fit, which was the goal of Ref. 19
in which they were originally presented.� This set of param-
eters yields a reasonably accurate global fit in the low energy
range; however, it results in considerable underestimation of
the energy at geometries corresponding to the repulsive van
der Waals walls. At such geometries, the MM energy with
the p1 parameters becomes lower than the accurate energy,
and thus one cannot further improve the MCMM energy by
adding more Shepard points. If one wished to reduce an error
in this fit while keeping the A, B, and C coefficients of Eq.
�40� as they are in the MM3 force field,24 one would have to
readjust individual atomic parameters. Using an alternative
set of the �pairwise� van der Waals parameters �set p2� ob-
tained as described in Sec. III.C reduces the MUE from 2.3
to 1.7 kcal/mol. Even though these parameters are still far
from being optimal �they are fitted to DFT potential energy
curves that in addition to the van der Waals energy include
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FIG. 2. �Color online� Same as Fig. 1 but for a trajectory propagated on a
MCMM�13� potential energy surface constructed using MM parameters p2.
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valence interactions�, one can see that one obtains a better-
quality MCMM fit by including a better description of the
van der Waals energy.

The results shown in Table III demonstrate that, starting
with MCMM�13�/p2, the MUE goes down from 1.7 to 1.3
kcal/mol as the number of electronic structure Shepard
points increases from 13 to 20. The reason why the MUE
does not decrease further when N is increased further is that
the molecular mechanics with p2 still underestimates the en-
ergy at geometries far from equilibrium; these geometries
primarily correspond to the repulsive van der Waals walls
and to significantly stretched bonds in water in the product
valley �as one can see from Fig. 2, the MM potential used in
set p2 for the product configuration is below the accurate
energy at some geometries�. Ideally, one would have a MM
energy that always exceeds the accurate energy, but the dif-
ference should not be large; the latter restriction is imposed
by using the scaling function of Eq. �31� for the weights in
Eq. �29�. This scaling function is used to reduce the contri-
bution of V12�r ,k , i� at a geometry that is far from the geom-
etry �k , i�. If one is only interested in the potential energy
surface in a restricted region, e.g., near the minimum energy
path �for example, in VTST calculations10�, one need not
scale the normalized weights as in Eq. �29�, and one need not
be particularly careful in adjusting MM parameters. Instead,
one could set these parameters so that the MM energy is
higher than the accurate energy at all or most geometries,
and one could get a good MCMM fit by placing an electronic
structure Shepard point with an unscaled weight so that it
“corrects” an interpolated energy in a wider region of nuclear
configurations. In contrast, scaling the weights does ensure
the correct asymptotic behavior of the interpolated surface
and the correct behavior of the surface everywhere at large
internuclear separations of reactants and products, but it “re-
stricts” the effect of an electronic structure Shepard point to
a more localized region and thus is most effective when ap-
propriate adjustments are made to the MM force field.

Figure 3 illustrates the Ṽ11, Ṽ22, and V12
S terms along with

the interpolated energy V and accurate energy E for a repre-
sentative trajectory propagated on the MCMM�37�/p2 sur-
face. The MUE in the interpolated energy for this surface
�averaged over 973 nuclear configurations from reactive tra-
jectories� is 1.4 kcal/mol, and the MUE for this particular
trajectory �averaged over 176 nuclear configurations� is 1.0
kcal/mol. The MCMM�37�/p2 surface is thus more accurate
as compared to the MCMM�13�/p2 surface, but the error
does not go down by more than 18% due to the limitation
discussed above. V12

2 of Eq. �18� is negative at some geom-
etries in the product valley so that the interpolated quantity
V12� of Eq. �26� is set to zero in the present MCMM algorithm
�Eq. �28��. This reduces the quality of the fit. To try to avoid
this problem one could fine-tune the MM parameters, espe-
cially, the Morse and angle bending force constants for water
so that the MM energy of the product configuration exceeds
accurate energy in this region of nuclear configurations, but
we did not do this.

It is clear that the MUEs shown in Table III depend on
regions of the potential energy surfaces that we take into
account, in terms of both molecular geometries and vertical

range of potential energy; these regions are completely speci-
fied by the trajectory initial conditions. We consider the de-
pendence on molecular geometries first. Tables IV and V
present MUEs for several regions of the potential energy
surface defined in terms of an approximate reaction coordi-

-15

-10

-5

0

5

10

15

20

0 10 20 30 40 50 60 70

40

60

80

100

120

140

40

30

20

10

0

V
1
2
,

k
c
a

l/
m

o
l

P
o

te
n

ti
a

l
e

n
e

rg
y,

k
c
a

l /
m

o
l

Time, fs

V12
S

V22

V11

V

E

FIG. 3. �Color online� Same as Fig. 1 but for a trajectory propagated on a
MCMM�37� potential energy surface constructed using MM parameters p2.

TABLE IV. MUE and largest error �kcal/mol� for a representative trajectory
on the MCMM�13�/p2 potential energy surface as a function of geometry
along the approximate reaction coordinate z �the reaction coordinate z is
defined as z=rHH−rOH, where rHH is the shortest H–H distance, and rOH is
the second longest distance between oxygen and a hydrogen atom; negative
values of z correspond to the reactants and positive values of z correspond to
products; at the reaction saddle point, z�−0.5 Å�.

z MUE Largest error

−2.9 to −2.0 0.2 0.5
−2.0 to −1.0 1.1 4.1
−1.0 to 0.0 3.2 12.9
0.0 to +1.0 1.3 2.1

+1.0 to +2.3 0.9 2.3
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nate z, which is a function of the two key internuclear dis-
tances, rHH and rOH. Note that z equals −� at the reactant
asymptote, and z equals +� at the product asymptote. Results
for the MCMM�13�/p2 potential energy surface are given in
Table IV, and results for MCMM�37�/p2 potential energy
surface are given in Table V. The largest errors occur at
geometries close �in terms of the two distances� to the reac-
tion saddle point, which is at z�−0.5 Å, that is, in the
strong interaction region. The largest magnitudes of the
MUE correspond to geometries at the repulsive walls, where
a small deviation of a fitted curve from the accurate curve
results in a large energetic error; these geometries are usually
far from the minimum energy path. Changing the initial con-
ditions of the trajectory, for example, by starting a trajectory
at a larger separation between the reactants and/or terminat-
ing a trajectory at a larger separation of the products as com-
pared to those distances used in the present work, would
result in a smaller magnitude of the total MUE for a particu-
lar potential energy surface due to the larger contribution of
the regions of the reactant and product valleys and regions
beyond these valleys, where the MCMM energy is quite
accurate.

Next we consider the dependence of the MUE on the
magnitude of the potential energy, using as examples the
MCMM�13�/p2 and MCMM�37�/p2 potential energy sur-
faces. The range of potential energies sampled by trajectories
on these surfaces corresponds to approximately 34 kcal/mol.
The MUEs for different ranges of potential energy along
with the largest error for each energy range for these surfaces
are shown in Tables VI and VII. For both MCMM�13�/p2
and MCMM�37�/p2, in the energy range from −13.6 to 6
kcal/mol that approximately corresponds to the reverse in-
trinsic barrier height plus 1 kcal/mol, the MUE is only
1.0 kcal /mol, that is, within chemical accuracy. The inter-
polated energies are more accurate in the lower energy range,
as expected.

V. CONCLUDING REMARKS

MCMM is an interpolation method for generating reac-
tive potential energy surfaces with the aid of nonreactive
molecular mechanics. Good performance of this method with
a small amount of data was demonstrated for thermal rate
coefficients using variational transition state theory in previ-
ous work.9,12,15 In this work, we introduced some refinements
to the MCMM algorithm to make the interpolated potential
energy surfaces suitable for full-dynamics calculations. Al-
though the method is designed primarily for treating more
complex systems, in this work we have tested the enhanced
algorithm by quasiclassical trajectory calculations for the
model reaction OH+H2→H2O+H. The interpolated poten-
tial energy surfaces for this reaction were obtained with vari-
ous numbers of Shepard points and with two different mo-
lecular mechanics force fields. Very stable results and good
conservation of energy and angular momentum were ob-
tained for each interpolated potential energy surface that we
considered, regardless of the number and locations of the
electronic structure Hessians and regardless of the nonreac-
tive force fields employed.

In contrast to the variational transition state theory cal-
culations that rely on the shape of potential in the vicinity of
the reaction path and in the corner-cutting-tunneling region
of the reaction swath, the full-dynamics calculations depend
on the potential energy surface more globally. It was there-
fore of interest to evaluate the accuracy of the interpolated
potential energies for a wide range of dynamically relevant
geometries. This was accomplished by comparing these en-
ergies to the target results. The magnitude and sources of the
deviations are analyzed as functions of molecular geometries
sampled by trajectories and as functions of the potential en-
ergy range. For a potential energy surface constructed with
13 sparsely placed electronic structure Hessians the MUE
averaged over the wide range of potential energies is only
1.7 kcal/mol, and the MUE for the lower portion of the sur-
face, in particular, from 0 at the product asymptote to
�18 kcal /mol, is only �1.0 kcal /mol.

For the trajectories we studied we found that it is diffi-
cult to converge the potential energy to better than
�1 kcal /mol. We examined the origin of this finding, and
we showed that it is primarily a consequence of the replace-
ment of the imaginary values of V12 with zero, and we pro-
pose that it can be avoided in future work by allowing V12 to
be imaginary. The errors in potential energy can also be re-
duced by designing a better Y�r� function or better force
fields �parameters and/or functional forms�, especially for the

TABLE V. MUE and largest error �kcal/mol� for a representative trajectory
on the MCMM�37�/p2 potential energy surface as a function of geometry
along the approximate reaction coordinate �see Table IV caption� z �Å�.

z MUE Largest error

−3.3 to −2.0 0.4 0.6
−2.0 to −1.0 0.4 0.0
−1.0 to 0.0 1.9 5.2
0.0 to +1.0 0.6 1.1

+1.0 to +3.0 0.9 2.3

TABLE VI. MUE and largest error �kcal/mol� for MCMM�13�/p2 for dif-
ferent ranges of potential energy �the zero of potential energy corresponds to
the reactant asymptote�.

Energy range MUE Largest error

�−6 0.5 1.7
�3 1.0 5.3
�6 1.0 5.3

6–12 1.9 6.9
12–18 4.6 12.9

TABLE VII. MUE and largest error �kcal/mol� for MCMM�37�/p2 for dif-
ferent ranges of potential energy �the zero of potential energy corresponds to
the reactant asymptote�.

Energy range MUE Largest error

�−6 0.3 1.6
�3 0.8 3.7
�6 0.9 4.3

6–12 1.7 6.8
12–20 2.3 8.2
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description of the van der Waals interactions. In general, fit-
ting molecular mechanics parameters is not strictly required
�unless the required nonreactive molecular mechanics param-
eters are missing or unreliable�; even if molecular mechanics
parameters are optimized, which involves, as in most fitting
procedures, some human “art” and judgment, such a task is
still easier to carry out than fitting a reactive potential energy
surface with analytical functions, which has only been imple-
mented for systems with no more than about nine atoms1,35

�and usually less than or equal to six�. While highly accurate
potentials for low-dimensional systems can be obtained with
other methods �such as fitting1,35 or interpolation6�, the
MCMM method in its present form can be applied to high-
dimensional systems to get a reasonably accurate potential
for a single reaction channel, possibly with one or more in-
termediates, with a small number of electronic structure Hes-
sians. It has already been applied to systems9,12–14 with as
many as 13 atoms and is designed to make it possible to also
treat bigger systems. In principle, when the spectator degrees
of freedom are well fitted by nonreactive molecular mechan-
ics, because one can transfer the molecular mechanics force
fields for the nonreactive degrees of freedom from one reac-
tive system to another, constructing a full-dimensional
MCMM potential energy surface for a large system is no
harder than constructing such a surface for a small system.
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APPENDIX: MCMM ALGORITHM „NONSYMMETRIZED
CASE…

The procedure for constructing a potential energy sur-
face using the nonsymmetrized MCMM algorithm involves
the following steps.

�i� Select k=1,2 , . . . ,N molecular geometries to be used
as electronic structure Shepard points, and calculate the elec-
tronic structure energies V�k�, gradients G�k�, and Hessians
F�k� and molecular mechanics energies Vn

�k�, gradients Gn
�k�,

and Hessians Fn
�k� at these geometries for n=1,2 and k

=1,2 , . . . ,N.
�ii� Transform G�k�, F�k�, Gn

�k�, and Fn
�k� to the set of in-

ternal coordinates r by the Wilson B matrix and C tensor.
This yields

�g�k� �
�

�r
V�

r=r�x�k��
, �A1�

�f�k� �
�2

�r2V�
r=r�x�k��

, �A2�

�gn
�k� �

�

�r
Vn�

r=r�x�k��
, �A3�

�fn
�k� �

�2

�r2Vn�
r=r�x�k��

. �A4�

Throughout this paper, we use capital G and F to denote the
gradients and Hessians with respect to Cartesian coordinates,
and lower case g and f to denote the corresponding deriva-
tives with respect to internal coordinates.

�iii� Define a matrix V�k� at each geometry �k� by

V�k��r� = 	 Vn
�k��r� V12�r,k�

V12�r,k� Vn
�k��r�

� �A5�

and construct Taylor series expansions of V12 around each
data point �k� by

V12�r,k�2 � �V1
�k� − V�k���V2

�k� − V�k�� + �V2
�k� − V�k���g1

�k�

− g�k��T�r�k� + �V1
�k� − V�k���g2

�k� − g�k��T�r�k�

+ 1
2 �V2

�k� − V�k���r�k�T�f1
�k� − f�k���r�k�

+ 1
2 �V1

�k� − V�k���r�k�T�f2
�k� − f�k���r�k�

+ ��g1
�k� − g�k��T�r�k��g2

�k� − g�k��T�r�k�� , �A6�

where

�r�k� = r�x� − r�x�k�� . �A7�

This step uses the Taylor series reversion20 of V12
2 .

�iv� For each geometry �k� calculate Taylor coefficients
D�k�, b�k�, and C�k�:

D�k� = �V1
�k� − V�k���V2

�k� − V�k�� , �A8�

b�k� =
g1

�k� − g�k�

V1
�k� − V�k� +

g2
�k� − g�k�

V2
�k� − V�k� , �A9�

C�k� = �1/D�k���g1
�k� − g�k���g2

�k� − g�k��T + �g2
�k� − g�k���g1

�k�

− g�k��T +
f1

�k� − f�k�

V1
�k� − V�k� +

f2
�k� − f�k�

V2
�k� − V�k� . �A10�

With these coefficients, Eq. �A6� can be rewritten as

�V12�r,k��2 = D�k��1 + b�k�T�r�k� + 1
2�r�k�TC�k��r�k�� .

�A11�

Note that steps �i�–�iv� are performed once at the begin-
ning. Then steps �v� and �vi� are carried out every time that
the dynamics algorithm needs the energy, gradient, and/or
Hessian.

�v� Define matrix V at the input geometry x by

V�x� = 	 Vn�x� V12
S �x�

V12
S �x� Vn�x�

� . �A12�

The lowest-energy eigenvalue of this matrix is the MCMM
PEF. The diagonal matrix elements Vn�x� and their deriva
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tives Gn�x� and Fn�x� are defined by molecular mechanics.
The off-diagonal matrix elements V12 are obtained via Shep-
ard interpolation in internal coordinates r�x� as follows:

V12
S �r� = 


k=1

N

wk�r�V12� �r,k� , �A13�

where wk are normalized weights, and V12� is defined by

V12� �r,k� = �V12�r,k�2u�r,k� , �A14�

where V12�r ,k�2 is given in Eq. �A11�, and

u�r,k� =  1

1 + ��/V12�r,k��2n , V12�r,k�2 � 0

0 otherwise.
� �A15�

The normalized weight function is

wk�s� =

Yk

dk�s�4



k=1

N+2
Yk

dk�s�4

, �A16�

where Yk can be either unity �recommended for variational
transition state theory calculations� or a function like Eq.
�31� of the main text �recommended for trajectory calcula-
tions�; the variable dk is the generalized distance between s

and s�k� defined as

dk�s� =�

�=1

�

�s� − s�
�k��2, �A17�

where s��s1 ,s2 , . . . ,s� , . . . ,s�� is a set of internal coordi-
nates that is generally different from the set r. The current
implementation only supports the following cases: �a� set s is

the same as set r, and �b� set s is a subset of r. Note that the
sum in Eq. �A16� has two more points than the sum in Eq.
�A13�. The two extra points consist of one point in the region
where V is assumed to be well approximated by V1 and an-
other in the region where V is assumed to be well approxi-
mated by V2. At both of these points V12 and V12� are assumed
to be zero, so these points do not occur in Eq. �A13�. Thus
Eq. �A13� actually corresponds to an �N+2�-point interpola-
tion with N terms.

The first and second derivatives of V12
S �r� of Eq. �A13�

with respect to internal coordinates are

gS�r� �
�V12

S �r�
�r

= 

k=1

N � �wk

�r
V12� �r,k� + wkg12�r,k�� ,

�A18�

fS�r� �
�2V12

S �r�
�r2 = 


k=1

N 	 �2wk

�r2 V12� �r,k� +
�wk

�r
g12�r,k�T

+ g12�r,k�	 �wk

�r
�T

+ wkf12�r,k�� ,

�A19�

where

g12�r,k� �
�V12� �r,k�

�r

=
1

2V12� �r,k�
D�k��b�k� + C�k��r�k��u�r,k�

� 	1 + 	 �

V12�r,k�2�n

nu�r,k�� �A20�

and

f12�r,k� �
�2V12� �r,k�

�r2 =
1

V12� �r,k�
	− g12�r,k�g12�r,k�T +

D�k�2n2�b�k� + C�k��r�k��2u�r,k�2

�V12�r,k��2 � 	 �

�V12�r,k��2�n

��nu�r,k�	 �

�V12�r,k��2�n

− �n − 1�� +
1

2
D�k�C�k�u�r,k�	nu�r,k�	 �

�V12�r,k��2�n

+ 1�� , �A21�

where the coefficients D�k�, b�k�, and C�k� are given in Eqs. �A8�–�A10�.
The first and second derivatives with respect to r of the weight function given in Eq. �16� are obtained numerically. Since

all operations except for this numerical intermediate step are analytic, the final MCMM derivatives may be called semiana-
lytical.

�vi� Find the eigenvalue V of Eq. �A12� and its derivatives in Cartesian coordinates. The lowest eigenvalue of Eq. �A12�
is given by

V�x� = 1
2 �V1�x� + V2�x�� − ��V1�x� − V2�x��2 + 4�V12

S �x��2�1/2, �A22�

where Vn are uninterpolated MM potentials, and V12
S is the resonance integral obtained via the �N+2�-point Shepard interpo-

lation, Eq. �A13�. The gradient and Hessian components of V with respect to Cartesian coordinates are given by

Gi =
�V

�xi
=

1

2
�G1i + G2i − �4V12

S 	 �V12
S

�xi
� + �V1 − V2��G1i − G2i�

��V1 − V2�2 + 4�V12
S �2�1/2 �� �A23�

and

024105-13 Global MCMM potential energy surfaces J. Chem. Phys. 130, 024105 �2009�

Downloaded 06 Feb 2009 to 160.94.96.168. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Fij =
�2V

�xi � xj
=

1

2
�F1ij + F2ij +

	4V12
S 	 �V12

S

�xi
� + �V1 − V2��G1i − G2i��	4V12

S 	 �V12
S

�xj
� + �V1 − V2��G1j − G2j��

��V1 − V2�2 + 4�V12
S �2�3/2

−

4	 �V12
S

�xi
�	 �V12

S

�xj
� + �G1i − G2i��G1j − G2j�

��V1 − V2�2 + 4�V12
S �2�1/2 −

4	 �2V12
S

�xi � xj
� + �V1 − V2��F1ij − F2ij�

��V1 − V2�2 + 4�V12
S �2�1/2 � . �A24�
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