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The performance of an analytical expression for algorithmic decoherence time is investigated for
non–Born–Oppenheimer molecular dynamics. There are two terms in the function that represents
the dependence of the decoherence time on the system parameters; one represents decoherence due
to the quantum time-energy uncertainty principle and the other represents a back reaction from the
decoherent force on the classical trajectory. We particularly examine the question of whether the first
term should dominate. Five one-dimensional two-state model systems that represent limits of
multidimensional nonadiabatic dynamics are designed for testing mixed quantum-classical methods
and for comparing semiclassical calculations with exact quantum calculations. Simulations are
carried out with the semiclassical Ehrenfest method �SE�, Tully’s fewest switch version �TFS� of the
trajectory surface hopping method, and the decay-of-mixing method with natural switching,
coherent switching �CSDM�, and coherent switching with reinitiation �CSDM-D�. The CSDM
method is demonstrated to be the most accurate method, and it has several desirable features: �i� It
behaves like the representation-independent SE method in the strong nonadiabatic coupling regions;
�ii� it behaves physically like the TFS method in noninteractive region; and �iii� the trajectories are
continuous with continuous momenta. The CSDM method is also demonstrated to balance
coherence well with decoherence, and the results are nearly independent of whether one uses the
adiabatic or diabatic representation. The present results provide new insight into the formulation of
a physically correct decoherence time to be used with the CSDM method for non–Born–
Oppenheimer molecular dynamic simulations. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2948395�

I. INTRODUCTION

The time-dependent Schrödinger equation governs the
evolution of an entire isolated system, but unsolved ques-
tions arise when the entire system is divided into a quantum
subsystem and its environment where the quantum sub-
system is described by a Schrödinger equation, while its en-
vironment is described by classical mechanics. Upon such a
division, the interaction of the subsystem with the environ-
ment induces decoherence that is formally defined by the
loss of quantum coherence in the reduced density matrix
obtained by tracing over the environment.1–3 However, since
the interaction between the system and its environment is not
exactly known, the decoherence can only be evaluated with
certain approximations in practical molecular dynamics
simulations.

A general task facing all mixed quantum-classical ap-
proaches is how to treat the interaction between subsystems.
If the goal is to simulate detailed quantum mechanical state-
to-state transitions, this kind of division is not possible. For-

tunately, most experimentally interesting observables involve
only highly averaged quantities, and the goal of mixed
quantum-classical approaches is to get those observables
right by simulating the average quantum effects. Decoher-
ence is one such quantum effect.

One example of a quantum-classical division is to treat
electrons quantum mechanically and nuclei classically. When
the quantal electrons do not evolve adiabatically, this leads to
non–Born–Oppenheimer trajectories for nuclear motion. Two
kinds of methods for treating these are the trajectory surface
hopping �TSH� method4–18 and the self-consistent semiclas-
sical Ehrenfest �SE� method.19–34 The TSH-type methods run
trajectories on a single potential energy surface, usually an
electronically adiabatic one, until the trajectory switches in-
stantaneously to another surface, and the SE-type methods
run trajectories on an average �mean-field� potential energy
surface. Both types of method are widely applied for nona-
diabatic molecular dynamic simulations.35

The trajectory-surface-hopping-based approaches4–18

switch trajectories from one electronic potential energy sur-
face to another by adjusting a component of the momentum
along the hopping direction to maintain energy conservation.
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When this hop is not possible due to an insufficient energy
component along the hopping direction, the attempted hop is
called a frustrated hop. The fewest switches with time-
uncertainty �FSTU� method,15 FSTU grad V method,13 and
FSTU with stochastic decoherence �FSTU/SD� method18 can
improve the Tully’s fewest switch �TFS� method6 by making
some, but not all, of the frustrated hops allowed. Because
surface hopping methods do not describe decoherence cor-
rectly, they are very sensitive to the representation �adiabatic
or diabatic� in which trajectories are simulated.

The conventional self-consistent SE approach19–28 is ex-
pected to be most accurate for coherent events, but the co-
herent mean-field trajectory is not able to describe the case in
which a trajectory is required to decohere to a single elec-
tronic state asymptotically. Nevertheless, the SE method pro-
vides a good framework for further work when considered
together with the quantum-classical Liouville equation �the
reader is referred to recent theoretical work on quantum-
classical and semiclassical Liouville equations for nonadia-
batic transitions for appropriate background29,36–46 and dis-
cussion of the proper treatment of coherence and
decoherence�. It is by following this approach, we hope, that
the goal of rigorously deriving efficient algorithms for the
trajectory-based treatment of classical-quantum dynamics on
coupled electronic surfaces may be realized. Using this ap-
proach, we showed that the main feature that needs to be
incorporated from the Liouville equation is decoherence.29 In
order to include this decoherence into the mean-field ap-
proaches, Hack and Truhlar30 proposed the natural decay-of-
mixing �NDM� method so that the mean-field state is re-
placed by a decohering state by adding decay into the
coupled electronic Schrödinger equations. The decohering
state behaves like the mean-field state when the system is in
a strong interaction region, but the decohering state gradually
decoheres into a mixture of pure electronic states when a
system leaves the interaction region. Because the decoher-
ence is built into the quantal evolution of the electronic mo-
tion, it naturally induces an extra force acting back on the
classical nuclear motion. This force is called the decoherence
force or decoherent force, and it is determined in part by the
requirement of energy conservation. The decoherence force
drives each trajectory from the decay-of-mixing electronic
potential energy surface to a pure electronic potential energy
surface. This decay-of-mixing trajectory leads to more accu-
rate non–Born–Oppenheimer transition probabilities than ei-
ther the mean-field or surface hopping trajectory.30

The decohering states are dynamically mixed electronic
states that decohere to a particular pure electronic state when
all coupling terms vanish for a certain period of time. Instead
of describing a nonadiabatic transition as sudden hopping
from one pure-state electronic potential energy surface
to another, as in TSH methods, decay-of-mixing
methods29,30,32–34 describe the switching gradually. The TFS
switching algorithm is employed in the natural decay-of-
mixing method, i.e., the TFS switching probability is utilized
to control switching from one decoherent state to another.

The NDM switching probability balances coherence
with decoherence inappropriately. To improve this situation,
we devised the self-consistent decay-of-mixing method32 in

which we replace the derivative of the decohering electronic
wave function by its coherent component while calculating
the switching probability. This does improve the decay-of-
mixing method. We then further improved the decay-of-
mixing method by assuming that the switching probability is
governed by only the coherent parts of the coupled electronic
Schrödinger equations.29,33,34 This is called coherent switch-
ing �CS� with decay of mixing �CSDM�, and it is the best
decay-of-mixing method we have established so far.

In the decay-of-mixing methods, even in the gas phase,
the nuclear degrees of freedom are considered as a kind of
bath. Electronically nonadiabatic transitions are formulated
within the density matrix framework by including decay of
off-diagonal elements of the density matrix, with the decay
governed by a decoherence time. Even though we have no
precise method for establishing the decoherence time, we
have shown that this approach is successful for three-
dimensional �3D� nonadiabatic molecular collisions.29,33–35

One-dimensional model problems can be useful for illus-
trating how coherence effects are averaged out in real mo-
lecular collisions. It is possible because of the simplicity of
the one-dimensional world and the paucity of outgoing chan-
nels in one-dimensional systems, that one-dimensional prob-
lems can be less sensitive to approximations than 3D prob-
lems. In practice though, problems involving just one degree
of freedom are often more sensitive to the parameter choices
than are 3D cases.4 The goal of the present paper is to see if
the examination of one-dimensional systems can provide a
way to improve the expression for decoherence time.

In the Sec. II, we briefly review the decay-of-mixing
method with three switching algorithms. Section III analyzes
the algorithmic decoherence time, and Sec. IV presents five
one-dimensional models for representative types of nonadia-
batic systems. Section V presents concluding remarks.

II. DECAY-OF-MIXING METHODS

We review the theory in terms of the density matrix
formalism by starting with electronic motion. The equation
of motion for an element of the density matrix is29

�̇kk� = �̇kk�
C + �̇kk�

D , �1�

where C and D denote coherent and decoherent contributions
to the rate of change. The coherent term is given in a general
representation �that is, adiabatic, diabatic, or part way in
between� by

i��̇kk�
C = �

l

��lk��Ukl − i�Ṙ · dkl� − �kl�Ulk� − i�Ṙ · dlk��� ,

�2�

where k and k� label electronic states �k,k�=1,2 , . . . ,m,
where m is the number of electronic states�, R is an
N-dimensional vector of nuclear coordinates, an overdot
denotes a time derivative, and Ukk� is symmetric potential
energy matrix which is defined as containing the matrix
elements of the electronic Hamiltonian Hel,
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Ukk� = �k�Hel�k�� . �3�

The nonadiabatic coupling vector dkk� is an m�m anti-
Hermitian matrix in electronic state space, and each element
is a vector in R,

dkk� = �k��R�k�� , �4�

where �R is the N-dimensional nuclear gradient. In the adia-
batic representation, U is a diagonal matrix called V; and one
can define a “diabatic” representation where dkk� is approxi-
mated as zero and U is not diagonal. The decoherent part of
the rate of change of the density matrix �̇kk�

D is discussed
below.

The Hamiltonian governing the nuclear motion trajec-
tory can be written as

H =
P2

2�
+ �

k

�kkUkk + �
k

�
k��k

2 Re��kk��Ukk�. �5�

We solve the equations in an isoinertial, mass-scaled nuclear-
coordinate system R in which coordinates associated with all
nuclear masses are scaled to the same reduced mass �. The
momentum conjugate to R is called P. The nuclear motion is
represented by a swarm of classical trajectories, and the
nuclear position and momentum of each trajectory evolve
according to classical equations of motion,

Ṙ = �PH = P/� , �6�

Ṗ = − �RH = ṖC + ṖD, �7�

where the coherent part is given as29

ṖC�t� = − �
k

�kk�RUkk − �
k

�
k��k

�2 Re �kk���RUkk�

+ �
j

�
k

�
k�

�2 Re �kj�Ukk�dk�j . �8�

The second term in Eq. �7� is the decoherent force and is
given by

ṖD = −
�V̇D

P · ŝ
ŝ , �9�

with

V̇D = �
k

�̇kk
D Ukk + �

k
�

k��k

2 Re��̇kk�
D �Ukk�. �10�

The unit vector ŝ represents the direction into which energy
is deposited and out of which energy is consumed. The
diagonal parts of the decoherent contribution to the rate of
change of the density are

�̇ii
D = 	−

�ii

�iK
, i � K

�
j�K

� j j

�Kj
, i = K 
 , �11�

where K denotes the decoherent state, and off-diagonal terms
modeled29 only as nonlinear in this article �as we focus on
decoherence time�,

�̇ij
D =	

−
1

2
� 1

�iK
+

1

� jK
��ij , i � K , j � K

1

2� 1

�KK
�
k�K

�kk

�Kk
−

1

� jK
��ij , i = K , j � K

1

2� 1

�KK
�
k�K

�kk

�Kk
−

1

�iK
��ij , i � K , j = K


 ,

�12�

in which �ij is the decoherence time, which is also called the
decay time. Three switching methods are considered in the
present study in both adiabatic and diabatic representations.

II.A. Natural switching „NS…

NS is a direct application of Tully’s fewest switching
probability: for example, in the two-state case, the probabil-
ity of switching from decoherent state K to some other state
K� between time t and time t+dt is given by

PK→K� = max�−
�̇KKdt

�KK
,0� = max�−

��̇KK
C + �̇KK

D �dt

�KK
,0� .

�13�

In this case, the density matrix elements that define the
decay-of-mixing method are fully used to calculate the
switching probability. This can be also called uncoherent
switching.

II.B. CS

The CS algorithms differs from Eq. �13� in that the
density matrix that governs trajectories is no longer used to
calculate the switching probability. We define a new set of
coherent state populations �̃KK� which are obtained from
Eq. �1� without �̇̃KK�

D . Then,

PK→K� = max�−
�̇̃KKdt

�̃KK

,0� . �14�

This is called global CS; �̃KK� is the same as in the fully
coherent SE method except that the trajectory is not the SE
trajectory. We could call �KK� the trajectory density matrix
and �̃KK� the CSDM density matrix.

II.C. CS with reinitialization „CS-D…

Global CS in Sec. II B involves two density matrices;
these are also used in the CS-D algorithm. In CSDM-D,
though, in order to eliminate coherent interference between
two consecutive nonadiabatic coupling regions, we reinitial-
ize the CSDM density matrix to the trajectory density matrix
at minima of DK�t�, which is defined as

DK�t� = �
j

�dKj�2. �15�

This reinitialization creates the switching method called
CSDM-D.
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III. DECOHERENCE TIME

For all proposed decay-of-mixing methods and switch-
ing algorithms, the decay time and the decoherent direction
must be specified to completely specify the computational
simulation method. In the one-dimensional case, the deco-
herence direction is already specified since there is only one
possible direction in nuclear-coordinate space. The absence
of coupling between the choice of decoherence direction and
the choices of expression and parameters for the decoherecne
time is one of the reasons why one-dimensional models
might help to illuminate the most physical choice of the
decoherence time.

In a previous study47 we have derived an expression for
the decoherence time based on the principles enunciated by
Paz et al.,48 namely, �i� that the semiclassical limit of a wave
function is the sum of Wentzel-Kramers-Brillouin-like trajec-
tories associated with minimum wave packets, and decoher-
ence of the superposition is faster than decoherence of the
individual packets �nuclear wave packets move at different
speeds on different surfaces and get out of phase and out of
overlap� and �ii� that the pointer basis is the one in which
decoherence is the fastest. Using these principles led to a
decoherence time given by

1

�kk�
=

1

��F +
� 1

��p�2

+ � 1

��F�2

, �16�

where ��F is a complicated expression that accounts for the
different forces on the two surfaces, and

��p =
�

�Ukk − Uk�k��

4�2�pk − pk��

p̄
, �17�

which accounts for the decoherence due to wave packets
moving with different speeds on different surfaces. In
Eq. �17�, pk is the momentum on surface k, pk� is the
momentum on surface k�, and p̄ is their average. For parallel
surfaces in one dimension, Eq. �16� reduces to �=��p. Un-
fortunately, although we can use Eq. �16� in conjunction with
surface hopping,18 we cannot use it with the decay-of-mixing
algorithms because they require

1

�kK
�

P·ŝ→0

→�P · ŝ�n, n 	 1, �18�

in order that demixing does not occur when the momentum
in the decoherent direction is insufficient to provide the re-
quired energy.33 Therefore we must substitute an algorithmic
decoherence time for the physical one. The required algorith-
mic decoherence time is whatever makes the ensemble aver-
age over the CSDM trajectories agree best with accurate
quantum results for the rate of change of populations and
coherences and, ultimately, for the final state populations.49

The decay time function we used in the previous study
was34

�kK =
�

�Vkk − VKK��1 +
E0

�P · ŝ�2/2�
� , �19�

where E0 is a parameter that was taken as 1 a.u. The first
term in Eq. �16� is a truly quantal contribution from the

quantum mechanical time-energy uncertainty relation, but
the second term in Eq. �19� represents a back reaction from
the classical trajectory due to the decoherence force.
Although Eq. �19� performs acceptably well, it is not ideal.
In particular, for algorithmic decoherence time, it can con-
fuse the physical meaning of the decoherence time when the
second term in Eq. �19� contributes more than the first term;
in addition, the second term can cause rapid oscillatory struc-
ture in density matrix elements. Therefore, we reconsider an
earlier form that we have used,33 in particular,

�Kk =
c1�

�VKK − Vkk�
+

C2�

�P · ŝ�2/2�
, �20�

where two coefficients in Eq. �20� are adjustable. Note that
we sometimes use the notation, c1=C1�. Equation �20� was
obtained in Ref. 33 by a series of approximations based on
the shortest self-consistent decay time, with explanation that
the first term should contribute more to decoherence time.

The high-energy limit is an important limiting case.
Equations �16�–�20� all have the physically correct feature
that decoherence slows down when the momentum compo-
nent in the nonadiabatic coupling direction is small. Further-
more, if the collision energy is much higher than the poten-
tial gap �VKK−Vkk�, the contribution from the second term
usually becomes negligible, and in this case, the decoherence
time is entirely from the first term of Eq. �20�.

For a two-state system, the prefactor in Eqs. �17� and
�19� is the shortest time scale in the system. Therefore one
knows from general principles50 that c1 must be greater than
or equal to unity. Our previous experience with 3D collisions
as well as exploratory work on one-dimensional collisions
had indicated that values somewhat larger than unity work
best, perhaps even values as large as �6. Yet we recognize
the importance of making the decay as fast as possible so
that decoherence decays between strong interaction regions,
an algorithmic decision that builds on the work of Gislason
and co-workers7,13,51 and whose necessity was spelled out
particularly clearly in work by Thachuk et al.24 Therefore in
the present work we explore c1 values larger than unity, up to
�9, in particular, c1=0.5�, �, 2�, and 3�, that is, C1=0.5,
1, 2, and 3.

IV. FIVE ONE-DIMENSIONAL TEST MODELS

To begin this section, we make a few remarks about
one-dimensional cases, in general. In one dimension, there is
no initial vibrational phase, rotational orientation, impact pa-
rameter, or impact angle to average over. In fact, the SE
results are based on a single trajectory in each case, and the
other methods require averaging only because of the stochas-
tic nature of the surface hops and the switches in decoherent
state. Furthermore, even including these stochastic events,
one-dimensional trajectories exhibit much less diversity than
multidimensional trajectories. For example, in one dimen-
sion, the direction of motion of the trajectory is always par-
allel or antiparallel to the nonadiabatic coupling vector, and
when all states are energetically accessible all trajectories
pass through the same points in space. The smaller amounts
of averaging and path diversity have the consequence that
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oscillatory structure in the energy dependence of the transi-
tion probabilities is much more likely to be observed in
semiclassical calculations in one-dimensional problems than
in multidimensional ones, even if two strong-coupling re-
gions are moved far apart. It is known from previous work
on vibrational-rotational energy transfer collisions52–56 and
chemical reactions57,58 that reduced-dimensional models of-
ten do not work well. In addition it is known that one-
dimensional electronically nonadiabatic collisions are much
more sensitive than full-dimensional collisions to the details
of the coupling.4,59 Furthermore the character of surface
crossings and avoided crossings is far more complex in mul-
tidimensional problems than in one dimension.60 However,
we focus on the decoherence time in the present study, and if
a given prescription for the decoherence time works well in
one-dimensional dynamics; we believe that it deserves
further study in multidimensional cases as well.

In the rest of this article, the decay-of-mixing methods
with NS �NDM�, CS �CSDM�, and CS with reinitiation
�CSDM-D� plus the FSTU surface hopping method and the
SE mean-field method are applied to five one-dimensional
model systems in both the adiabatic and the diabatic repre-
sentations. We focus on how the three decay-of-mixing
switching methods vary with change of decoherence time.

Figures 1–4 correspond to model I, which has a simple
avoided crossing with only one strong-coupling region.
Figures 5 and 6 correspond to model II, which has two

avoided crossings and two strong-coupling regions. Models I
and II represent Landau–Zener–Teller–type61–64 interactions
that are similar to those found in the 3D MXH system
�see Ref. 65, for instance�.

Figures 7–11 correspond to model III, with two regions
in each of which the adiabatic potential curves cross twice,
but with the diabats approximately parallel rather than cross-
ing. This gives four strong-coupling regions; model III rep-
resents Rosen–Zener–Demkov–type66,67 interactions that are
similar to those found in the 3D YRH system �see Ref. 68,
for instance�.

Figures 12–14 correspond to model IV, which is de-
signed to show the effect of a potentially strongly dephasing
region between two avoided crossings. Figures 15 and 16
correspond to model V, which has ten avoided crossings and
represents an attempt to design a one-dimensional system
with the multiple strong-coupling encounter characteristic of
a multidimensional trajectory.

FIG. 1. Potential energy curves Vi and Uij and nonadiabatic coupling d12 for
model I, the simple avoided crossing case. �a� The solid line represents the
nonadiabatic coupling d12. �b� The solid lines represent adiabatic potential
curves Vi, the dashed lines represent diabatic potential curves Uii, and the
open circles represent the diabatic coupling curves U12.

FIG. 2. Nonadiabatic transition probabilities for model I. All semiclassical
results are calculated in both the �a� diabatic �d� and �b� adiabatic �a� rep-
resentations. The exact quantum mechanical results are not plotted as they
are almost identical to those from the SE method. The open squares repre-
sent the SE method. The solid balls represent the CSDM method. The upper
half full stars represent the CSDM-D method. The open up triangles repre-
sent the NDM method. The open down triangles represent FSTU method.

FIG. 3. �a� Effective potentials �including decay of mixing� are calculated
along a trajectory with different methods for model I in Fig. 1. The dots
represent original adiabatic potential curves in Fig. 1. The solid lines repre-
sent the SE method. The dashed lines represent the FSTU method. The
dashed-dot lines represent the CSDM and CSDM-D methods with no
switching. Part �b� is zooming the strong-coupling region of �a�.
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The overall probability of a nonadiabatic transition re-
ported here is defined as the probability of starting on the
lower potential surface at R=−
 and finishing on the upper
potential surface at R= +
. Accurate numerical quantum me-
chanical calculations for the five one-dimensional two-state
cases were performed using the conventional time-
independent close-coupling method69 with a reduced mass
�=1.097216 amu for all five-model systems. The accurate
quantum mechanical results are independent of representa-
tion, and the calculations are carried out in the diabatic rep-
resentation. Semiclassical simulations are carried out by us-
ing the Bulirsch–Stoer70 and modified midpoint method71 for

integrating the trajectories. The number of trajectories for
each energy is 10 000 for all five models in both the adia-
batic and diabatic representations, except for the SE method,
where only one trajectory is necessary. In practice, a starting
point of R=−5 Å and an ending point of R= +5 Å are
satisfactory for models I–III, and termini of R= �7 Å are
satisfactory for models IV and V. Note that the SE method
gives the same results in the adiabatic and diabatic represen-
tations, and this is verified numerically in every case.

FIG. 4. Effective potentials for CSDM and CSDM-D methods with switch-
ing turned on are plotted for different C1 and C2 in model I. The dot lines
represent C1, C2=3 ,0.5. The solid lines represent C1, C2=1 ,0.5 and the
dashed lines represent C1, C2=0.5,0.5.

FIG. 5. Potential energy curves and nonadiabatic coupling for model II, the
dual avoided crossing case. The symbols are the same as in Fig. 1.

FIG. 6. Nonadiabatic transition probabilities for model II. All symbols and
notation are the same as in Fig. 2 except that the exact results are plotted as
dashed lines.

FIG. 7. Potential energy curves and nonadiabatic coupling for model III, the
Rosen–Zener–Demkov case. The symbols are the same as in Fig. 1.
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All five one-dimensional model problems are studied at
energies where both potential energy curves are energetically
accessible at all values of the coordinate R. Thus, there are
no frustrated hops in the one-dimensional studies presented
here.

Before considering the results, it is useful to discuss the
goal. As stated in the Introduction, our goal is for the semi-
classical results to agree with the fully quantum mechanical
ones, at least on the average. In addition, where possible, it is
preferable to reproduce the oscillations due to coherence.
One can retain the most coherence by using the Ehrenfest
method, but the SE method is not accurate enough for many
purposes, and experience in a variety of contexts has shown
that better results may be obtained with methods that do not
include full coherence.7,18,23,24,27–34,49,51,65,72–75 In developing
design objectives, we should keep in mind that oscillations in
transition probabilities as a function of a collision parameter
such as the incident energy are sometimes a quantum effect
on nuclear motion, not a direct observation of electronic state

amplitudes. For example, oscillations sometimes occur in
single-electronic-state problems where electronic decoher-
ence is not a problem. A complete analysis of where the
oscillations come from in each case would be difficult and
might not be informative because we know from previous
experience that the same oscillation can show up in one way
in one semiclassical method and in another way in another.76

One way to reproduce the oscillations in general molecular
collisions would have to include all interference between tra-
jectories, as in classical S matrix theory.77 A considerable
effort was invested in this kind of work in the 1970s, and
various lessons emerged, including these. �1� Although it is
possible to include interference effects in simple systems
such as nonreactive, single-surface collinear collisions of at-

FIG. 8. Nonadiabatic transition probabilities for model III. All symbols and
notation are the same as in Fig. 2 except that the exact results are plotted as
dashed lines.

FIG. 9. Nonadiabatic transition probabilities calculated by CSDM-D
method with different C1 and C2 for model III. �a� in diabatic representation
and �b� in adiabatic representation. The dash lines are exact results. The
open circles stand for C1=1 and C2=0.75. The closed up triangles stand for
C1=1 and C2=0.075 and the open square stand for C1=2 and C2=0.075.

FIG. 10. Comparisons of the two terms in the decoherence time in Eq. �20�
for model III with different C1 and C2. �a� is for the second term in Eq. �20�;
the filled triangles linked by dash-dot lines represent C2=0.75 �C1=2�, and
the open circles linked by dashed lines represent C2=0.075 �C1=1�. Part �b�
is for the first term; all symbols are the same as in plot �a�.

FIG. 11. Number of decoherent-state switch events in the ensemble in simu-
lations with 10 000 trajectories for model III. Simulations are carried out in
the adiabatic representation at total energy of 7.6 eV for various methods;
the closed squares linked by solid lines are for the FSTU method, the filled
triangles linked by dot lines are for CSDM method, the open circles linked
by dashed-dot lines are CSDM-D, and the closed circles linked by dash lines
are NDM. Positive values stand for the number of switches from the lower
to the upper decoherent state, and the negative values stand for those from
the upper to the lower decoherent state.

024112-7 Decoherence time for mixing dynamics J. Chem. Phys. 129, 024112 �2008�

Downloaded 06 Feb 2009 to 160.94.96.168. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



oms with diatoms, it becomes very hard to do so for realistic
systems such as chemical reactions in full dimensionality. �2�
It is not necessary to include such oscillations in most appli-
cations because they usually average out when one sums
over impact parameters �orbital angular-momentum quantum
numbers� and averages over initial angular-momentum pro-
jection states �m states�. Thus, as we stated in the second
paragraph of the paper, the goal of our work is to obtain

semiclassical transition probabilities that agree with accurate
results on the average. We have shown previously that the
CSDM method does this more accurately than other methods
that have been proposed, such as surface hopping or the SE
method. The present test cases will provide an opportunity to
test this even in cases where the oscillations are not averaged

FIG. 12. Potential energy curves and nonadiabatic coupling for model IV.
The symbols are the same as in Fig. 1.

FIG. 13. Nonadiabatic transition probabilities for model IV. All symbols and
notation are the same as in Fig. 2 except that the exact results are plotted as
dashed lines.

FIG. 14. Comparisons of the two terms in the decoherence time of Eq. �20�
for model IV with different C1 and C2. Part �a� is for the second term in
Eq. �20�; the dashed lines represent C2=0.075 �C1=1� and the solid lines
represent C2=0.75 �C1=2�. Part �b� is for the first term; all symbols are the
same as in plot �a�. Parts �c� and �d� are zooming in the two strong-coupling
regions with R� �4.6 Å in �b�.

FIG. 15. Potential energy curves and nonadiabatic coupling for model V.
The symbols are the same as in Fig. 1.
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out. Further discussion of the differences between one-
dimensional model systems and real systems is provided
elsewhere.78

IV.A. Simple avoided crossing „model I…

The model problems are all defined in the diabatic
representation. Model I is defined by8

U11�R� = A�1 − exp�− BR��, R 	 0,

U11�R� = − A�1 − exp�BR��, R � 0,

�21�
U22�R� = − U11�R� ,

U12�R� = U21�R� = C exp�− DR2� ,

with A=0.2721 eV, B=3.024 Å−1, C=0.1351 eV, and
D=3.571 Å−2. Figure 1�a� shows the nonadiabatic coupling,
and Fig. 1�b� shows the potential curve and diabatic cou-
pling. The energy gap between potential curves is 0.5442 eV
in either asymptotic region. This model represents the sim-
plest kind of nonadiabatic problem; it has only a single
strong-coupling region.

The caption to Fig. 2 mentions that the SE calculations
are almost identical with the quantum mechanical results �so
we do not show exact results in Figs. 2�a� and 2�b��. The
transition probabilities calculated from FSTU, CSDM, and
CSDM-D agree very well in both the adiabatic representa-
tion in Fig. 2�a� and the diabatic representation in Fig. 2�b�.
The NDM results show a slight deviation from the exact
results and a strong representation dependence as well. All
decay-of-mixing methods in Fig. 2 are calculated with C1

=1 and C2=0.5. By consideration of all the results in Fig. 2,
we conclude that if there is only one strong interaction re-
gion along a trajectory �this situation would be uncommon in
real multidimensional systems�, the switching probability
should be computed from a completely coherent passage.
Figures 3 and 4 show effective potential; these are computed
from the trajectory density matrix. By calculating effective
potential along one specific trajectory, Fig. 3 shows that ef-

fective potential in a strong-coupling zone is almost same for
the SE and CSDM methods, but once leaving an interaction
zone the CSDM effective potential approaches the original
lower adiabatic potential, while the SE effective potential
still stays on an average of the original two adiabatic poten-
tials. Furthermore, Fig. 4 shows three CSDM effective-
potential curves for C1=3, 1, and 0.5, respectively, with fixed
C2=0.5, in which we can see that C1=1 shows reasonable
switching smoothness. Thus this example contributes to find-
ing the best compromise motivated at the end of Sec. III; in
particular, C1=1 �that is, c1�3� provides a good compro-
mise of retaining the fastest time scale in the system as the
decoherence time �which would involve C1=1 /��, and
making C1 very large, which would ensure the smoothest
possible effective potential.

IV.B. Dual avoided crossings „model II…

The model potential for system II is given in the diabatic
representation by8

U11�R� = 0,

U22�R� = − A exp�− BR2� + E0, �22�

U12�R� = U21�R� = C exp�− DR2� ,

with the parameters chosen to be A=2.721 eV,
B=1.004 Å−2, E0=1.361 eV, C=0.4082 eV, and
D=0.2143 Å−2. This model has two peaks in the nonadia-
batic coupling, as shown in Fig. 5�a�, so there are two dis-
tinct strong-coupling regions with a distance of 1.6616 Å
between the peaks. Note that the diabatic coupling in
Fig. 5�b� shows only one peak, but d12 �not U12� is the
correct measure of coupling strength in both representations.

The results of the SE, FSTU, and CSDM calculations
follow the exact quantum oscillatory nonadiabatic transition
probabilities fairly well except at low energies in both the
adiabatic and the diabatic representation in Figs. 6�a� and
6�b�. The NDM method shows strong representation depen-
dence, and the CSDM-D method shows weak dependence
due to reinitiation at the middle point. We conclude that the
global CSDM method does contain a good balance between
coherence and decoherence for reproducing quantum oscilla-
tory features of the nonadiabatic transition probabilities in
the one-dimensional case. All decay-of-mixing methods in
Fig. 6 are calculated with C1=1 and C2=0.5 in Eq. �20�. This
model problem is more direct than our previous 3D tests in
showing the ability of the CSDM algorithm to treat coher-
ence while still maintaining c1 small enough ��3� to achieve
the fastest allowed decay between regions of strong interac-
tion, as discussed in Sec. III.

IV.C. Dual Rosen–Zener–Demkov case „model III…

We define model III as two parallel diabatic potentials
with diabatic coupling expressed in terms of two Gaussian
functions,

FIG. 16. Nonadiabatic transition probabilities for model V. All symbols and
notation are the same as in Fig. 2 except that the exact results are plotted as
dashed lines. For this figure C1=1 and C2=0.5.
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U11�R� = 0,

U22�R� = A , �23�

U12�R� = U21�R�

= C�exp�− D�R − R0/2�2� + exp�− D�R + R0/2�2�� ,

with the parameters chosen to be A=0.6803 eV,
C=0.8163 eV, R0=3.175 Å, and D=2.857 Å−2. Each
diabatic coupling peak shown in Fig. 6�b� corresponds to two
nonadiabatic coupling peaks; therefore this model has four
peaks of the nonadiabatic coupling in Fig. 7�a�, and there are
four distinct strong-coupling regions.

The SE and CSDM calculations in both representations
of Figs. 8 reproduce the oscillatory structure of the quantum
results, although they are slightly out of phase for all ener-
gies. We have carried out more systematic tests in which we
varied the distance R0 between the interaction regions, and
�although we do not show results here� the SE and CSDM
results eventually become out of phase compared to more
rapid oscillatory structure of the accurate quantal nonadia-
batic transition probability as the distance between distinct
interaction regions increases; nevertheless, the amplitude of
the transition probability from the SE and CSDM methods is
still within the envelope produced by the rapid quantum os-
cillations. We conclude again that the CSDM method does
contain good balance between coherence and decoherence
for reproducing quantum oscillatory features of nonadiabatic
transition probabilities in the one-dimensional case.

The diabatic FSTU results agree with the quantum re-
sults better than the SE results, but FSTU calculations using
the adiabatic representation in Fig. 8�b� are almost the same
as the SE results. Both NDM and CSDM-D results show
strong representation dependence again with the CSDM-D
method in the diabatic representation containing more oscil-
latory structure as shown in model II. All decay-of-mixing
methods in Fig. 8 are calculated with C1=1 and C2=0.5.

We investigate the CSDM-D method further in Fig. 9 by
selecting three different sets of C1 and C2. We find nonadia-
batic transition probabilities calculated by CSDM-D do not
show strong dependence on C1 and C2, and the probabilities
show about the same amount of oscillatory structure in the
diabatic representation, as was shown in Fig. 8.

Figure 10 shows the change of decoherence time in
Eq. �20� along two trajectories; Fig. 10�b� shows the first
term in Eq. �20� and Fig. 10�a� shows the second term. It is
easily understand that the first term doubles when C1 is in-
creased from 1 to 2 in Fig. 10�b�. However, the second term
does not increase by a factor of 10 when C2 is increased from
0.075 to 0.75 in Fig. 10�a�; this is because different trajecto-
ries are associated with the different C1 so the momentum in
the second term of Eq. �20� is not the same in the two cases.
Furthermore, with the present choice of C1=1 and C2=0.5,
we do see that the first term contributes more to the decoher-
ence time than does the second term. This makes the model
more physical.

Figure 11 shows number of trajectories switching from
decoherent state 1 to decoherent state 2, and from 2 to 1 in
10 000 trajectories in the simulation. First of all, we can see

that the number of switches from state 1 to state 2 is much
greater than the number from state 2 to state 1 for all FSTU,
CSDM, CSDM-D, and NDM methods. Second, we see that
the number of switches is almost the same for the FSTH and
CSDM methods. The numbers of switches in the CSDM-D
and NDM methods are much less than in CSDM, especially
that for the NDM method, for which there is no back switch
from state 2 to state 1.

This model problem shows that the CSDM method, with
the compromise value of C1=1 selected in Sec. IIB, treats
the coherence with equal accuracy to the SE method, which
is fully coherent. Furthermore, this model shows that results
of useful accuracy are satisfactorily obtained in a parameter
range where the physical first term of Eq. �20� dominates the
decoherence time expression as compared to the algorithmi-
cally required the second term. Finally, examination of the
number of switches in various algorithms shows that the
adoption of the fewest-switch criterion8 for switching the
decoherent state is a critical component of its success and
explains why the CSDM method balances coherence with
decoherence so well.

IV.D. Dynamically separated dual avoided crossings
„model IV…

The fourth model has two widely separated distinct in-
teraction regions between which the adiabatic or diabatic
motions on the upper and lower surfaces are enormously
different. The problem is designed to show how those mo-
tions influence the nonadiabatic transition probability, espe-
cially the oscillations. Figure 12�a� shows two sharp nona-
diabatic coupling peaks, and Fig. 12�b� shows the potential
curves. Model IV is given in the diabatic representation as

U11�R� = 0,

U22�R� = − AWf + E0, �24�

U12�R� = U21�R�

= V0�exp�− D�R − R0�2� + exp�− D�R + R0�2�� ,

where

Wf = exp�− B1�R − R1�2� + exp�− B2�R − R2�2� + exp�− B0R2�

+ exp�− B1�R + R1�2� + exp�− B2�R + R2�2� , �25�

with A=2.721 eV, E0=1.361 eV, V0=0.0544 eV,
D=1.071 Å−2, B0=B1=1.786 Å−2, B2=1.428 Å−2,
R0=4.763 Å, R1=3.970 Å, and R2=2.117 Å.

We see in Fig. 13 that there are very rapid oscillations in
the exact quantum mechanical nonadiabatic transition prob-
ability. The SE results in Figs. 13�b� get out of phase and
oscillate even more rapidly than the quantum mechanical
results. The FSTU and CSDM results in Figs. 13�a� and
13�b� are out of phase too and oscillate less rapidly than the
exact calculations. The envelope of the transition probability
calculated by the FSTU and CSDM methods in both repre-
sentations follows the envelope of the exact calculation well.
The NDM and CSDM-D methods show no oscillations in the
nonadiabatic transition probability; the CSDM-D method
does well on average as shown in Fig. 13 in both represen-
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tations, while the NDM method shows strong representation
dependence and overestimates the exact results on average in
the adiabatic representation shown in Fig. 13�b�. All decay-
of-mixing methods in Fig. 13 are calculated with C1=1 and
C2=0.5. The CSDM method performs equally well in both
representations again.

Figure 14 shows change of decoherence time in Eq. �20�
along two trajectories; Fig. 14�b� shows the first term in
Eq. �20� and Fig. 14�a� shows the second term. The first term
again doubles when C1 is increased from 1 to 2 in Fig. 14�b�,
but the second term does not increase by a factor of 10 when
C2 is increased from 0.075 to 0.75 in Fig. 14�a� for the same
reason as explained previously. We confirm again that with
the present choice of C1=1 and C2=0.5, the decoherence
time from the first term contributes much more than that
from the second term.

This model problem has shown that the CSDM method
with the compromise value of C1=1 selected in Sec. IIB
provides good average accuracy even when the fully coher-
ent SE method does not reproduce the coherent oscillations.
Furthermore, we report the encouraging finding that with
parameters that yield good transition probabilities on the av-
erage, the physical first term of Eq. �20� again �as for the
previous model problem� dominates the algorithmically re-
quired second term so that the results are not sensitive to the
coefficient of the second term; this is important because the
second term is the term where the algorithmic decoherence
time must differ from the physical one for the reason ex-
plained in Sec. III, and achieving this relative magnitude of
the two contributions to the decoherence time was the key
motivation for adopting the new expression, as discussed in
Sec. III.

IV.E. Multiple avoided crossings „model V… and
summary

The fifth model is a multiple crossing case with ten dis-
tinct interaction regions for nonadiabatic couplings, as
shown in Fig. 15�a�. At least in this aspect it may be the most
realistic test case since real multidimensional problems often
have many distinct interaction regions. Figure 15�b� shows
that the diabatic coupling has three local maxima. Model V is
given in the diabatic representation by

U11�R� = 0,

U22�R� = − AWf + E0, �26�

U12�R� = U21�R�

= V0�exp�− D�R − R0�2� + exp�− DR2�

+ exp�− D�R + R0�2�� ,

where

Wf = exp�− B1�R − R1�2� + exp�− B2�R − R2�2� + exp�− B0R2�

+ exp�− B1�R + R1�2� + exp�− B2�R + R2�2� , �27�

with careful choice of all parameters; A=2.721 eV,
E0=1.361 eV, V0=0.0680 eV, D=0.714 Å−2, B0=B2

=2.143 Å−2, B1=2.678 Å−2, R0=4.498 Å, R1=5.292 Å,
and R2=2.646 Å.

The SE results in Fig. 16�b� show oscillatory structure
but are out of phase in comparison with quantum mechanical
calculations and are not good on average. The FSTU,
CSDM-D, and CSDM results in Figs. 15�a� and 15�b� are in
reasonable agreement with the exact quantum mechanical re-
sults on average in both the adiabatic and diabatic represen-
tations. The NDM method does well on average in the adia-
batic representation as shown in Fig. 15�b�, but the NDM
shows strong representation dependence again.

This model problem shows that the parameters selected
in previous subsections, including a value of C1=1 that rep-
resents a good compromise of two competing demands as
discussed above and a value of C2=0.5 that makes the algo-
rithmic term less important than the time-uncertainty term,
give good results on the average for a problem for which
Ehrenfest does not give a good result on average. In sum-
mary, we find that CSDM with and C2=0.5 gives reasonably
good results, at least on the average, in every case.

V. CONCLUDING REMARKS

The decoherence time in Eq. �20� has been extensively
investigated for five one-dimensional two-state models for
five kinds of non–Born–Oppenheimer molecular dynamics
methods, namely, the SE, FSTU, NDM, CSDM, and
CSDM-D methods. The five one-dimensional models are
representatives of various typical multidimensional nonadia-
batic transition situations where the potential energy surfaces
show characteristic features. Transition probabilities are
compared to exact quantum mechanical results to learn how
well decoherence effects are treated.

The CSDM method is confirmed to be the best method
for balancing coherence with decoherence for nonadiabatic
molecular dynamics simulations. With regard to switching,
the CSDM method shows similar behavior to the surface
hopping method, in part because of adapting the fewest-
switch algorithm to a new context. This can be seen in
Fig. 11 for model III. The CSDM method is shown to be
insensitive to whether the simulation is performed in the
adiabatic or diabatic representation; this is inherited from the
SE method that is independent of representation. In strong
nonadiabatic coupling regions, the CSDM trajectories are
similar to the SE trajectories as can be seen in Fig. 3 for
model I. Both the CSDM and CSDM-D methods are insen-
sitive to the coefficients appearing in the decoherence time,
and so there is no loss of accuracy if we require the first term
of the decoherence time in Eq. �20� to dominate. Although an
exact expression for the decoherence time is not known, it is
reasonable to use a model in which the time-energy uncer-
tainty relation is the major determining source of deco-
hernece time. Therefore, Eq. �20� is quite reasonable for cal-
culating the algorithmic decoherence time to be used with
the CSDM method for non–Born–Oppenheimer molecular
dynamics simulations.
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