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Abstract  

We present results of density functional calculations for the standard reduction potential of the 

Ru3+|Ru2+ couple in aqueous solution. The metal cations are modeled as [Ru(H2O)n]
q+ surrounded by 

continuum solvent (q = 2, 3; n = 6, 18). The continuum model includes bulk electrostatic polarization 

as well as atomic surface tensions accounting for the deviation of the second or third hydration shell 

from the bulk. After consideration of 37 density functionals with 5 different basis sets it has been 

found that hybrid and hybrid meta functionals provide the most accurate predictions for the 

[Ru(H2O)n]
q+ geometries and for the corresponding reduction potential in comparison with available 

experimental data. The gas-phase ionization potentials of [Ru(H2O)n]
2+ calculated by density 

functional theory are also compared to results of ab initio computations using second order Møller-

Plesset perturbation theory. The difference in solvation free energies of Ru3+ and Ru2+ varies from 

−10.56 eV to −10.99 eV for n = 6 and from –6.83 eV to –7.45 eV for n = 18, depending on the 

density functional and basis set quality. The aqueous standard reduction potential is overestimated 

when only the first solvation shell is treated explicitly and it is underestimated when the first and 

second solvation shells are treated explicitly.  
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1. Introduction  

One of the goals of modern quantum chemical simulations is to understand and predict 

chemical reactivity, and another is to study the mechanisms of condensed-phase catalytic, 

electrochemical, and photochemical reactions. Many reactions involve electron transfer steps, 

sometimes combined with the breaking or formation of chemical bonds. Such reactions are important 

in environmental chemistry, biochemistry, fuel cells, and electroanalytical field devices. A key 

thermodynamic variable that describes the tendency of a chemical species to gain or lose electrons is 

the reduction potential, which may be measured, for example, by cyclic voltammetry or 

spectrophotometric techniques combined with pulse radiolysis.1  

Electrochemical phenomena provide a challenge to quantum chemical modeling because the 

pathway of a reduction-oxidation (redox) reaction can be quite complex, and chemical processes at 

electrodes (which provide the most quantitative data) can involve several steps such as diffusion and 

adsorption on the electrode surface. Processes where the most important steps are mass transport of 

the electroactive species to the electrode surface, electron transfer across the interface, and transport 

of the product back to the bulk solution allow one to explore the performance of small-molecule 

computational chemistry methods in estimation of electrochemical parameters like reduction 

potentials because the rather sophisticated modeling of the electrode-solution interface is avoided. As 

an example, we consider a redox reaction changing the oxidation state of a transition metal cation in 

aqueous (aq) solution.  

By convention, the reduction potential measures the tendency of a chemical species to 

acquire electrons and thereby be reduced:  

O(aq) + ne– → R(aq)                                                           (1) 

where O and R indicate the oxidized and reduced states of the redox couple O|R, respectively. A 

positive standard reduction potential indicates that the reaction is exergonic ( o
|ROG∆ < 0) under the 

standard conditions (298.15 K, ions at 1 mol/L, gases at partial pressure of 1 atm, and metals in their 
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pure state). In order to define a consistent electrochemical scale, the standard reduction potential 

o
|ROE is defined as the potential (in volts) at the cathode where the reaction (eq 1) is occurring when 

the n electrons are supplied by oxidation of a reference electrode at the anode in a galvanic cell 

arrangement. The universal reference electrode is the standard hydrogen electrode (SHE) (also called 

the normal hydrogen electrode) corresponding to the following reaction 

 H+(aq) + e–(g)  → ½H2(g)                                                      (2)  

Then, the standard reduction potential is the potential difference relative to the SHE between the 

electrodes in a galvanic cell when the redox reaction O(aq) + n/2 H2(g) → R(aq) + nH+(aq) is 

measured under standard conditions. In this way, an arbitrary assignment of zero electrode potential is 

given to the SHE ( o
SHEE = 0.00 V). o

|ROE is related to the standard free energy change relative to the 

SHE ( o
SHE

o
|

oo GGG RO ∆−∆=∆ ) of the redox process through the following equation: 
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where n is the number of electrons consumed in the reduction reaction of interest, and F is a constant. 

If free energies are expressed in molar units, then F is the Faraday constant (the negative of the 

charge on one mole of electrons), but if energies are expressed in eV per atom or molecule, as in the 

present paper, then F is equal to the unit charge e. o
|ROG∆  is the free energy change associated with 

eq 1, whereas o
SHEG∆  is the free energy change of eq 2; the latter has been established to be −4.28 

eV.2,3  

Recently, we have described computational protocols for use in the theoretical prediction of 

standard reduction potentials in solution4–6 based on the thermochemical (Born–Haber) cycle 

illustrated in Scheme 1. This relates the free energy change in the reduction half-reaction under 

consideration to the free energy change in the gas phase, o
gasG∆ (which equals the adiabatic ionization 
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potential, o
0I , of the reduced species plus the 298.15 K thermal contribution, o

evrG∆ , to the free energy 

of ionization), and standard-state solvation free energies of the oxidized ( )(o
S OG∆ ) and reduced 

( )(o
S RG∆ ) species.  Note that o

0I  is the gas-phase enthalpy change for ionization at 0 K. The aqueous 

standard-state reduction potential referenced to the SHE can then be estimated from the Born-Haber 

cycle and eq 3 as 
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where 

o
evr

o
0

o
I GIG ∆+=∆                                                            (5) 

where o
evrG∆ is the electronic, vibrational, and rotational contribution to the free energy difference of 

products from reactants in the top reaction of Scheme 1, and 

)()( o
S

o
S

o
S RGOGG ∆−∆=∆∆                                                     (6) 

All quantities in eqs 4–6 are at 298.15 K except o
0I , which is at 0 K. Note that o

SG∆  has a liquid-phase 

standard state of 1 mol/L, and we can use a gas-phase standard state of either 1 atm or 1 mol/L, as 

long as we use the same convention for both R and O; we will use 1 mol/L. This approach has been 

successfully applied to organic systems such as quinones, phenols, and anilines; we4,6 and others7–29 

have shown that continuum solvation models coupled with electronic structure calculations can 

predict oxidation and reduction potentials for such compounds within about 0.1 V.  

In the present study, we develop a computational approach for the prediction of aqueous 

redox potentials involving metal cations, and the specific system we examine is the Ru3+|Ru2+ redox 

couple. The pioneering study on this kind of problem is the work30 of Li et al.; they calculated 

aqueous redox potentials for the Fe3+|Fe2+ and Mn3+|Mn2+ couples by combining density functional 

theory (DFT) with continuum dielectric modeling and experimental entropies of di- and trivalent 

metal cations. They used the BP8631,32 density functional for discrete cluster models explicitly 
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involving the first (six water molecules) and second (twelve water molecules) hydration shells along 

with a continuum solvent model based on the Poisson equation to represent the remaining solvent. 

They calculated values of o
|ROE  that in principle converge toward the experimental value when the 

size of the cluster model is increased. More recently, Uudsemaa et al.33 have calculated the aqueous 

redox potential for 3d transition metals, again by using the BP8631,32 exchange-correlation functional 

for an explicit treatment of the first two hydration shells, but now in conjunction with the COSMO 

continuum solvent model. Their computational protocol incorporates entropy contributions obtained 

with the use of dTdE RO
o

| from ref 34 as the only empirical electrochemical data in the model, which 

is capable of reproducing the experimental data with an average absolute error of 0.29 V. The 

authors33,35,36 stressed the importance of including the first two solvation spheres explicitly in the 

metal-water cluster for a better description of the hydration enthalpy of triply charged metal cations. 

This point has also been emphasized by the authors of other electronic structure based studies of 

spectral, energetic, and structural properties of hydrated cations.37–40 However, Uudsemaa and 

Tamm33,35,36 found good agreement between one and two hydration shells for doubly charged cations. 

Holland et al.41 applied a similar procedure to copper bis(thiosemicarbazonato) complexes.  

Another way to calculate reduction potentials is the method recently developed by Sprik and 

coworkers42 for treating exchange of electrons between electroactive species and a reservoir 

(electrode). It is a grand canonical (GC) ensemble modification of the first-principles Car-Parrinello 

molecular dynamics (CPMD) scheme43 where the number of electrons is allowed to fluctuate under 

the constraint of a fixed chemical potential that emulates the reservoir. The method is based on a 

grand canonical density functional approach that enables one to determine reaction free energies of 

processes involving exchange of electrons (ionization or attachment) from the response of the 

molecular system to a variation in the chemical potential of the reservoir; this approach is a direct 

theoretical model of voltammetric experiments. In this scheme, the elementary process is simulated as 

an oxidation or reduction half-reaction, where the model system contains the electroactive species 
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explicitly solvated in either of its two redox states, oxidized or reduced. The redox half-reaction takes 

place when the electroactive species reaches a crossing between the adiabatic free energy surfaces of 

the two redox states at some value of the chemical potential. This value of the electronic chemical 

potential is an estimate of the free energy of the half-reaction under study.  

The grand canonical CPMD method has been applied to several redox half-reaction involving 

transition metal aqueous ions: in particular, Cu2+|Cu+ (ref 44); Ag2+|Ag+ (refs 44 and 45); Ru3+|Ru2+ 

(refs 46 and 47); MnO4
–|MnO4

2– and RuO4
–|RuO4

2– (ref 48). The accuracy of the results obtained 

within this method was confirmed by good agreement with experiment for full redox reactions.44,48 

However, an issue that arises about these calculations is whether the realism of the simulations is 

adversely affected by the way in which the charge is neutralized. In particular, the study of a half-

reaction such as eq 1 involves taking one redox active species (O or R) as a model system in a 

periodic simulation box filled with solvent molecules, where charge neutrality is maintained by a 

neutralizing homogeneous background charge density around the cubic MD cell. The small cell 

dimensions used to keep the molecular dynamics simulations affordable cause the interaction between 

the ion, its periodic box images, and the compensating background charge to be large, which causes 

the free energies computed for half-reactions to be dependent on the system size. Such dependence is 

hidden when full redox reactions, such as Ag2+ + Cu+ → Ag+ + Cu2+ (ref 44) and RuO4
2– + MnO4

– → 

RuO4
– + MnO4

2– (ref 48) are studied. To some extent, free energies computed for the full redox 

reactions from the free energies for each of the half reactions calculated separately are in agreement 

with the experimental data due to partial cancellation of errors.  

Here we are interested in studying the following half-reaction:  

Ru3+(aq)  +  e– → Ru2+(aq)                                                    (7) 

An experimental value of 0.22 ± 0.03 V was measured by polarography,49 and the value was re-

determined as 0.2487 V by extrapolation of measurements made with a glass electrode.50 This value 

is given in two compendia.50 A later review by Bratsch34 gives 0.24 V. The most recent 
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compendium51 gives 0.23, 0.24, and 0.2487 V. Averaging the four unique values gives 0.23 ± 0.02 V 

(two standard deviations). This redox reaction is one of those studied by the grand canonical CPMD 

method of Sprik and coworkers.46,47 The standard reduction potential calculated by this technique 

(0.58 V) is overestimated with respect to experiment; however the sign of o
|ROE  was predicted 

correctly.46,47  

In the present work, we estimate the standard reduction potential of the Ru3+|Ru2+ couple 

based on Scheme 1 applied to the following reaction  

[Ru(H2O)n]
3+(aq)  +  e– → [Ru(H2O)n]

2+
 (aq)                                         (8) 

which is the same as eq 7, but with n water molecules explicitly included. In particular we consider 

both n = 6, corresponding to an explicit first hydration shell, and n = 18, corresponding to treating 

both the first and second hydration shells explicitly. The nonexplicit water is treated as a dielectric 

continuum with a nonbulk innermost solvation shell. Note that o
0I and o

evrG∆ in eq 5 then correspond 

to the inverse of the following reaction 

[Ru(H2O)n]
3+(g)  +  e– → [Ru(H2O)n]

2+
 (g)                                         (9) 

whereas )(o
S OG∆ and )(o

S RG∆ in eq 6 correspond to  

[Ru(H2O)n]
q+(g)  →  [Ru(H2O)n]

q+
 (aq), q = 2 or 3                                 (10) 

We have examined the performance of various density functionals classified as follows: 

generalized gradient approximation (GGA) functionals, hybrid (H) functionals, meta GGA (MGGA) 

functionals, and hybrid meta (HM) functionals, each combined with various effective core potentials 

and basis sets for geometry optimizations, vibrational analyses, and electronic structure calculations 

of aqueous complexes in both oxidation states.  

For the continuum solvent model we use the recently developed Solvation Model 6 (SM6),52 

which separates the aqueous solvation free energy into two contributions, one arising from a self-

consistent reaction field treatment53 of long-range bulk electrostatic effects and the other from short-

range interactions54 between the solute and solvent molecules in the first solvation shell. In SM6, the 



8 

cavities for the electrostatic calculation and the first solvation shell calculation are defined by 

superpositions of nuclear-centered spheres whose sizes are fixed (independent of the self-consistent 

reaction field iterations) and are determined by parameterized radii. Each atom has a separate sphere, 

unlike the united-atom models used in some other methods. In the present calculation we use a 

supermolecule (or supersolute) approach (eq 10) in which either the first or the first and second 

hydration shells are treated as part of the solute; thus, the supersolute already includes one or two 

explicit solvent shells. Therefore, in the present application, the “first solvation shell” of the SM6 

model is actually the second or third solvation shell of the metal cation.  

 

2. Computational Methods  

Density Functional Calculations. Geometry optimizations for gas-phase metal-water 

clusters in both oxidation states were carried out with a variety of density functionals and basis sets. 

In order to confirm that the resulting geometries correspond to minima on the potential energy 

surface, vibrational analyses were performed as well. All the DFT calculations were carried out using 

the Gaussian03  program (C.01 and D.01 versions).55  

We tested five basis sets. In all cases the ruthenium cation was described by effective core 

potentials (ECPs) that replace 28 core electrons with a nonlocal effective potential; the remaining 

electrons were treated with a basis set of double-ζ or triple-ζ quality. Water molecules were also 

described with double-ζ and triple-ζ basis sets. 

We tested the following basis sets for ruthenium: LANL2DZ,56 DZQ,57 TZQ,58 and 

MWB28.59 LANL2DZ incorporates the mass-velocity and Darwin scalar relativistic effects into the 

ECP, and the basis set for valence electrons is (8s6p4d)/[3s3p2d]. The DZQ and TZQ basis sets use 

the relativistic ECP of Stevens, Basch, Krauss and Jasien,57 and the sizes of the valence basis sets are 

(8s8p5d)/[4s4p3d] and (8s8p6d4f)/[4s4p4d3f], respectively. MWB28 is a quasi-relativistic 
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pseudopotential developed by Dolg and coworkers59 with their corresponding optimized 

(8s7p6d)/[6s5p3d] valence basis set.  

The water molecules in the cluster model were described by the following basis sets: 6-

31+G(d,p),60 MG3S,61 MG362 (MG3S and MG3 are identical to 6-311+G(2df,2p) and 6-

311++G(2df,2p) respectively for elements with atomic numbers 14 or lower). The choice of which of 

these water basis sets was used in the description of the water-metal clusters was made to be 

consistent with the valence basis set used for ruthenium: (i) LANL2DZ/6-31+G(d,p), (ii) DZQ/6-

31+G(d,p), (iii) MWB28/6-31+G(d,p), (iv) TZQ/MG3S, and (v) TZQ/MG3. MWB28/6-31+G(d,p) 

will be abbreviated MWB28. TZQ/MG3 will be abbreviated, as before,63 as simply TZQ; TZQ/MG3S 

will be abbreviated TZQS. 

As mentioned in the introduction, the DFT methods we use can be classified into four 

categories, namely GGA, H, MGGA, and HM. Both GGA and MGGA exchange-correlation 

functionals depend on the electron spin density and its gradient; MGGA functionals also depend on 

the spin kinetic energy density. Both H and HM functionals depend on Hartree-Fock exchange, the 

electron spin density, and its gradient; HM functionals also depend on the spin kinetic energy density. 

The GGA functionals considered here are: BLYP,31,64 BP86,31,32 BPBE,31,65 BPW91,31,66 G96LYP,64,67 

HCTH,68 mPWLYP,64,69 mPWPBE,65,69 mPWPW,66,69 OLYP,64,70 and PBE.65 The hybrid functionals 

that we use are: B3LYP,31,64,71 B3P86,31,32 B3PW91,31,66,72 B97-1,68 B97-2,73 B98,74 BH&HLYP,31,55,64 

mPW1PW,66,69 O3LYP,64,70,75 and PBEh.65,76,77 The meta GGA functionals tested in the present work 

are: BB95,31,78 mPWB95,69 mPWKCIS,69,79,80 PBEKCIS,65,79 TPSS (TPSS exchange and TPSS 

correlation functionals),81 TPSSKCIS,79,81 and VSXC.82 The hybrid meta functionals that we consider 

here are: B1B95,31,78 BB1K,31,78,80 MPW1B95,69,78,80 MPW1KCIS,69,79,80 MPWKCIS1K,69,79 

PBE1KCIS,65,79,83 MPWB1K,69,78,80 TPSS1KCIS,66,79–81 and TPSSh.84,85 Note that mPWPW, 

mPW1PW, and PBEh are also called mPWPW91, mPW1PW91, and PBE1PBE, respectively; 

mPW1PW is also called MPW25, and PBEh is also called PBE0.  
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In the case of Ruq+ and [Ru(H2O)n]
3+, which have an unpaired electron, the spin-unrestricted 

approach is employed for all calculations in the present study. For [Ru(H2O)n]
2+ we used spin-

restricted solutions with all orbitals doubly occupied. 

We first calculate the gas-phase adiabatic ionization potentials and the 298.15 K thermal 

contribution to the free energy change for the process of eq 9 (n = 6, 18). The contribution of the 

cation complexes to o
evrG∆  in the gas phase was calculated by standard formulas (using 

Gaussian0355), and the contribution of the electron to o
evrG∆  at 298.15 K is less than 0.001 eV.86 The 

vibrational-rotational contribution to o
evrG∆  can be computed in the harmonic-oscillator-rigid-rotor 

model, but the result is a sensitive function of the frequencies of vibrational modes with frequencies 

below 100 cm–1. We calculated vibrational frequencies for 370 cases with n = 6 (q = 2 or 3, five basis 

sets, 37 functionals) and for 294 of the cases with n = 18; we found that the lowest frequency varies 

from 30 to 131 cm–1 for n = 6 and from 26 to 55 cm–1 for n = 18. The trends in o
evrG∆ due to these and 

other low-frequency modes are not necessarily meaningful in the absence of a reliable treatment of 

anharmonicity, which is impractical. The average value of the harmonic o
evrG∆  (averaged over the 

185 cases for n = 6) is –0.04 eV, with a standard deviation of 0.02 eV. Therefore we simply 

approximated o
evrG∆  as –0.04 eV for all cases with n = 6.  The average value of the harmonic o

evrG∆  

for the 147 cases where we have frequencies for both q = 2 and q = 3 for n = 18 is –0.01 eV with a 

standard deviation of 0.07 eV, and we simply used –0.01 in all of these cases. 

 We also investigated different spin multiplicities for the ground state of aqueous complexes 

and found that the ground states are the low-spin (d6) singlet for [Ru(H2O)n]
2+ and the low-spin (d5) 

doublet for [Ru(H2O)n]
3+ whereas the bare Ru2+ and Ru3+ cations in their ground states correspond to 

the terms 5D and 6S, respectively. The transformation of the high-spin bare cation to a low-spin 

complex is a well known effect for inorganic complexes, and is explained by means of ligand 
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(crystal) field theory.87 It provides a reminder that solvation of a transition metal cation is not only a 

result of weak noncovalent interactions but also a chemical reaction.  

 Aqueous Solvation Free Energies. The aqueous solvation free energies o
SG∆  for water-

metal clusters in both oxidation states were calculated at the SM6/DFT level using gas-phase 

geometries. The solvation free energies for the gas-phase geometries obtained with TZQS and TZQ 

were calculated with the MWB28 basis because SM6 was parameterized for the 6-31+G(d,p) basis set 

but not for MG3 and MG3S. 

In the SM6 implicit solvation model, o
SG∆ is partitioned into two contributions: 

o
ConcCDSEP

o
S GGGG ∆++∆=∆                                                           (11) 

where the first term accounts for the bulk electrostatic effect, which is long-ranged and is calculated 

by a self-consistent reaction field procedure; this term contains the change in the internal free energy 

of the solute upon solvation, the free energy of polarization, and the free energy cost of polarizing the 

solvent.88 SM6 uses a new charge model, which is called CM4,52 to assign partial atomic charges in 

the electrostatic part of the calculation. The second term in eq 11 accounts for cavitation, dispersion, 

solvent-structure effects (CDS) beyond those involved in bulk electrostatic polarization, and other 

effects beyond bulk electrostatics; this term is estimated from the solvent accessible surface area 

(SASA) of the solute (supersolute) and a set of empirical atomic surface tensions that depend on its 

geometry. The third terms in eq 11 is zero in the present article because we use the same 

concentration (Conc) in the gas phase and liquid solution. It would not be zero if we used 1 atm for 

the gas-phase standard state; it would be +1.89 kcal/mol. 

Since the CM4 model does not have parameters for Ru, these parameters were set to zero. 

This simply means that the partial atomic charge on Ru is given by an unmodified Löwdin population 

analysis.89 Furthermore, the SM6 solvation model does not have parameters for Ru. We therefore set 

the Ru radius to 2.0 Å (see Section 4 for details) and the Ru atomic surface tension to zero. The 

calculated free energies are very insensitive to both of these quantities because the ruthenium atom 
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has very little solvent accessible surface area (SASA) in the water complexes. In particular, 

depending on the density functional and the basis set, the SASA of Ru in [Ru(H2O)6]
q+ is in the range 

of 2.75 – 3.13 Å2 for q = 2 and 1.67 – 1.86 Å2 for q = 3. With n = 18 these values decrease to 0.96 – 

1.22 Å2 for q = 2 and 0.62 – 0.80 Å2 for q = 3. The effect of varying the ruthenium radius or including 

the ruthenium atomic surface tension will be examined in Section 4.  

Standard SM6 radii of 1.52 and 1.02 Å were used for the oxygen and hydrogen atoms, 

respectively.  

All of the SM6 calculations were carried out with MN–GSM.90  

Wave Function Theory Calculations. In order to check the validity of DFT predictions, we 

performed a few single-point energy computations for bare ruthenium cations Ruq+ and for the 

[Ru(H2O)n]
q+ clusters (n = 6, 18; q = 2, 3) using wave function theory (WFT), in particular second-

order Møller-Plesset perturbation theory (MP2)91,92 and coupled cluster theory (CCSD,93 CCSD(T),94 

and CCSDT95). The MP2 calculations were carried out with Gaussian03,55 and the coupled cluster 

calculations were done with ACESII.96 We employed spin-restricted formalisms for an even number 

of electrons and spin-unrestricted orbitals for an odd number of electrons. We also employed the 

GAMESS program97 for complete active space self-consistent field (CASSCF) calculations of 

selected molecular structures of [Ru(H2O)n]
3+ as well as for computation of the spin-orbit splitting in 

5D Ru2+ and 2D Ru3+ by means of perturbative solution of the full Breit-Pauli spin-orbit operator98 

with a CASSCF reference wavefunction. The spin-orbit coupling calculation was carried out with 

inclusion of one- and two-electron scalar relativistic effects treated by means of elimination of the 

small components of relativistic wavefunctions (the RESC scheme).97,98 No frozen core 

approximation was used for electron correlation beyond an effective core potential replacing the core 

orbitals 1s22s22p63s23p63d10 of Ru. 

 

3. Results and Discussion  

3.1 Molecular Structure  
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Conformations of water-metal clusters that include the first and second coordination spheres 

were optimized in the absence of a continuum solvent. Experimental99,100
 and theoretical101,102 

evidence suggests that the first solvation shell of 4d transition metals ions is composed of six water 

molecules. Information on the second coordination shell is much scarcer than for the first hydration 

shell; however, many hydrated ions have a second solvation shell of 12 water molecules,100,103 and we 

optimized several structures with a second hydration shell of twelve water molecules.  

 [Ru(H2O)6]
q+ (q = 2, 3). In the present study, we identified three stationary points on the 

potential energy surfaces of ruthenium clusters with six water molecules. These structures are 

displayed in Figure 1. The lowest energy structures for [Ru(H2O)6]
2+ have Ci and S6 symmetry (see 

Figure 1a and 1b, respectively). These conformations are geometrically and energetically very close; 

the energy difference between the two minima is approximately 0.01 eV in favor of the Ci structure at 

all levels of theory used in this work. Vibrational analysis shows that the Th configuration similar to 

the Ci structure is a higher order saddle point for the divalent cluster (d6).  

In the case of [Ru(H2O)6]
3+, we have found only one minimum that corresponds to Ci 

symmetry. To resolve an issue whether higher symmetry (Th and S6) configurations could be 

stationary points on the potential energy surface of [Ru(H2O)6]
3+ (d5) we performed the 

CASSCF/MWB28 energy calculation for the ground and excited electronic states at the Th and S6 

equilibrium geometries optimized for the divalent complex (d6) and described above. The complete 

active space consisted of five electrons in five molecular orbitals approximately corresponding to d-

orbitals of the ruthenium atom with a spin multiplicity of 2. The Th structure corresponding to the 

ground electronic state g
2TX

~
 cannot be a stationary point, being subject to Jahn-Teller distortions104 

along the nuclear coordinates of t and e symmetry types breaking the Th symmetry in the trigonal and 

tetragonal directions, respectively. In the case of nuclear configurations of [Ru(H2O)6]
3+ with S6 

symmetry, the ground electronic state g
2AX

~
 is strongly coupled with the low-lying first excited 

state g
2EA

~
 and cannot be adequately treated by a single-reference approach, at least without special 
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procedures (we experienced problems with SCF wavefunction symmetry breaking and convergence 

in the DFT calculations). Further analysis of the Th and S6 symmetry configurations of [Ru(H2O)6]
3+ is 

beyond the scope of the present study because these structures are predicted to lie higher than the 

global minimum for the trivalent complex corresponding to lower symmetry (Ci). The ground 

electronic state g
2AX

~
 at the Ci symmetry nuclear configuration is well-isolated from the first 

excited state g
2AA

~
 with a vertical excitation energy of 0.3 eV (CASSCF/MWB28). 

Table 1 shows average equilibrium Ru–O bond distances optimized with a variety of density 

functionals and basis sets for the [Ru(H2O)6]
q+ clusters in both oxidation states. Comparison of these 

distances to the experimental values measured105 for dilute solution by the extended X-ray absorption 

fine structure method (2.11 Å for Ru2+ and 2.03 Å for Ru3+) indicates that all 185 calculations 

overestimate the metal-ligand distances for both charge states. Marcos et al.106 studied the effect of 

the solvent reaction field on the geometry of several aqua metal cations and observed that the solvent 

reaction field decreased the M–O bond distances by 0.020 – 0.050 Å, which is in the correct direction 

to correct this systematic error. Table 1 also gives the average mean unsigned error (AMUE) for 

density functionals, averaged over basis set and charge state, and the average unsigned error (AUE) 

for each basis set with each category of functionals. Averaged over basis sets, the AMUEs calculated 

for the various functionals range from 0.026 to 0.082 Å. The HM functionals are the most accurate 

ones in comparison with available experimental data105 for the Ru–O bond distances in both oxidation 

states, whereas the H functionals are the next most accurate ones on average. According to the errors 

for each of the basis sets used in this study, the MWB28 basis set generally gives the best theoretical 

predictions of Ru–O in respect to experiment,105 followed in order by TZQ, TZQS, LANL2DZ, and 

DZQ. The combination of MWB28 (for Ru) and 6-31+G(d,p) (for H and O) also has a lower 

computational cost than the TZQ/MG3S or TZQ/MG3 basis sets.  

The best performing density functional for geometries of the aqua ruthenium complexes in 

both oxidation states is MPWB1K (a type HM functional) with errors of 0.020 Å for the MWB28, 
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TZQS, and TZQ basis sets; these results are more accurate than those obtained in the grand canonical 

CPMD study reported by Sprik et al.46,47 where the mean unsigned error is 0.07 Å. The VSXC (a type 

MGGA functional) and BLYP (of type GGA) functionals are the least accurate methods of the 37 

studied density functionals for Ru–O distances for di- and trivalent ruthenium-water complexes. This 

finding is especially relevant because Sprik et al., in their grand canonical CPMD simulations,46,47 

used the BLYP functional in combination with a plane wave basis set and a pseudo-potential 

constructed according to the Troullier-Martins scheme.107 Our Ru–O bond distances obtained here 

with the BLYP functional combined with five basis sets agree with their bond distances (see in refs 

46 and 47: 2.18 Å for Ru2+ and 2.10 Å for Ru3+) on average within 0.4%, and our values obtained 

with the three larger basis sets (MWB28, TZQS, and TZQ) agree with theirs on average within 0.3%, 

when we use the BLYP functional.  

[Ru(H2O)18]
q+ (q = 2, 3). Experimental information on the structural details of the second 

hydration shell is scarcer in comparison with that for the first shell. However, X-ray diffraction 

measurements of some di- and trivalent salts suggest that the size of the second hydration shell is 

around 12 water molecules.100,103 When the second coordination sphere is included in the cluster, we 

consider several models of hydrated ruthenium ions with six water molecules in the inner shell and 12 

molecules in the outer coordination sphere as displayed in Figure 2. Figure 2a illustrates a sandwich-

like structure with a dense network of hydrogen bonds, where each water molecule of the inner shell 

is bonded to two ligands in the second coordination sphere. This structure has S6 symmetry and it has 

already been reported for other hydrated transition metals,33,35 aluminum,40,108 and alkaline-earth 

ions.39,108 Figure 2b displays a conformer of C3 symmetry; it is characterized by two water trimers and 

three water dimers in the outer hydration shell; the last fragments are oriented quasi-linearly with the 

metal ion. This structure has a less dense network of hydrogen bonds than the former one. Another 

structure of C3 symmetry is that shown in Figure 2c, where the outer solvation sphere can be broken 

down into five groups of water molecules. Two of them are formed by three molecules and each of 

the others are composed of two molecules; this conformer is more compact than the C3 one 
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previously described. Finally, we also explored the Th symmetry structure used by Li et al. in their 

study30 of hydrated iron and manganese ions, which is indicated by Figure 2d.  

The three molecular structures of S6 and C3 symmetry optimized for the divalent complex 

[Ru(H2O)18]
2+ (d6) with two explicit solvation shells at the BLYP level of theory are found to be 

minima on the potential energy surface whereas the Th symmetry complex corresponds to a higher 

order saddle point according to the harmonic analysis of these stationary points. The structure of S6 

symmetry is more stable than either of the C3 symmetry conformers shown in Figure 2b and 2c by 

0.35 eV and 0.48 eV, respectively (BLYP/MWB28).  

Only the S6 structure was located as a minimum on the potential energy surface for the 

trivalent complex (d5). The optimizations for other conformers were also carried out without 

symmetry constraints to allow a full reorganization of the two coordination spheres, but we did not 

find additional low-lying stationary points. According to a CASSCF calculation of the [Ru(H2O)18]
3+ 

electronic structure, the first excited electronic state g
2EA

~
is well-separated (~0.5 eV) from the 

ground state g
2AX

~
. Unlike the case of [Ru(H2O)6]

3+, a coupling of the ground and excited electronic 

states of [Ru(H2O)18]
3+ has no noticeable impact on the SCF convergence at least in the vicinity of the 

minimum corresponding to the S6 structure so that a one-reference approach (for instance, DFT) can 

safely be applied to the study of the open-shell [Ru(H2O)18]
3+ complex. As in the case of g

2TX
~

 

[Ru(H2O)6]
3+, the Th symmetry structure of  [Ru(H2O)18]

3+ undergoes Jahn-Teller distortion104 and 

cannot be a stationary point of any kind. 

As shown above, according to the BLYP calculations of various structures depicted in Figure 

2, the [Ru(H2O)18]
q+ cluster including the first and second hydration shells has a global minimum of 

S6 symmetry in both oxidation states. The S6 symmetry configurations were optimized using DFT 

methods and basis sets of varying quality. Table 2 shows Ru–O bond distances corresponding to the 

first coordination shell in the [Ru(H2O)18]
q+ cluster. As in the case of [Ru(H2O)6]

q+, the MPWB1K 

functional provides the most accurate theoretical prediction of the [Ru(H2O)18]
q+ geometries in 
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comparison with available experimental data (see in ref 105: 2.11 Å for Ru2+ and 2.03 Å for Ru3+). 

The results in Table 2 show the influence of the second coordination sphere on the Ru–O distance in 

the first coordination shell: inclusion of the second shell leads to slightly shorter Ru–O distances 

within the [Ru(H2O)6]
3+ core, whereas a weaker effect is observed for the corresponding distances in 

the divalent complex with 18 water molecules. As a consequence of this effect, the present BLYP 

results are again in close agreement with results of the BLYP study46,47 of Sprik et al. including 32 

water molecules (see in refs 46 and 47: 2.18 Å for Ru2+ and 2.10 Å for Ru3+). In particular, the Ru–O 

distances calculated in the present study agree on average within 0.3% with the results of the previous 

calculations.46,47 Again, the functional used in refs 46 and 47 is found to be less accurate than many 

others used in our study. One of the disadvantages of the CPMD methods is that hybrid and hybrid 

meta functionals, which are often more accurate, tend to be avoided as being either impractical or too 

expensive.  

 

3.2 Gas-Phase Free Energies  

The Ru2+, Ru3+ Cations. First we examined the performance of different density functionals 

and effective core potentials for the calculation of the third ionization potential of the bare ruthenium 

atom. The high-spin states 5D Ru2+ and 6S Ru3+ were found to be more stable than the corresponding 

low-spin states 1S Ru2+ and 2D Ru3+ by 3.33 and 5.37 eV, respectively, at the CCSD(T)/TZQ level.  

Table 3 lists computed values of the third ionization potential of Ru for a selection of density 

functionals and compares them to experiment.109 The DFT numbers were corrected by adding the 

value of 0.13 eV (1073 cm–1) corresponding to the spin-orbit splitting in 5D Ru2+ calculated with the 

full Breit-Pauli spin-orbit operator and accounting for scalar relativistic effects (see Section 2 for 

details) using all-electron DZVP basis set110 that was totally uncontracted [18s,12p,9d] (uDZVP). 

This predicted spin-orbit splitting (1073 cm–1) is very close to the value of 1061 cm–1 in 5D Ru2+ 

derived from the electronic spectrum of Ru2+ as given in the compilation of Moore.109 Unlike 5D Ru2+, 

the spin-orbit splitting calculated in the low-spin state 2D Ru3+ is very small (17 cm–1).  
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In comparing theory and experiment with respect to the third ionization potential for the bare 

ruthenium atom, one should note that the corresponding reference values109 can have some 

uncertainty beyond the standard error of measurements because they were not directly measured but 

extrapolated by a Ritz formula (28.01 eV) or by comparison of the spectra of ionic species from Y2+ 

to In2+ (28.47 eV).109 Almost all the exchange-correlation functionals significantly overestimate the 

third ionization potential with any of the basis sets (up to 1.27 eV at the B3P86/LANL2DZ level), 

whereas BH&HLYP, VSXC, MPWKCIS1K, and TPSSh (mostly, with DZQ and MWB28 basis sets) 

provide better agreement with the reference data.109 LANL2DZ calculations are the least accurate of 

those considered in this work (Table 3). Values of the third ionization potential of Ru calculated using 

DFT methods are also overestimated (by 0.5 – 2.0 eV) in comparison with the values of 27.81 eV and 

27.79 eV calculated using CCSDT/TZQ and MP2/TZQ, respectively.  

The role of scalar relativistic effects in these calculations was investigated by means of 

computation of the Darwin and mass-velocity corrections (see ref 96 and references therein) at the 

CCSD(T)/uDZVP level of theory. The total scalar relativistic correction to the ionization potential 

value calculated using an all-electron basis set with no relativistic effects included is quite large 

(−0.41 eV). This indicates the importance of using relativistic effective core potentials that account 

for the relativistic effects arising from contraction of the inner electronic shells of the ruthenium ions.  

[Ru(H2O)n]q+ (n = 6, 18; q = 2, 3). Tables 4 and 5 list the free energies o
IG∆ of ionization of 

the gas-phase [Ru(H2O)n]
2+ clusters with explicit treatment of the first hydration shell (n = 6) and the 

first and second shells (n = 18), respectively. All the values were calculated at 298.15 K, and include 

the corresponding zero-point energy and thermal corrections o
evrG∆ . The latter are usually small, as 

discussed in Section 2.  

The inclusion of the first hydration shell reduces the free energy of ionization by 13.9 – 15.4 

eV with respect to the ionization potential of the free Ru2+ cation (see Table 3). When two 

coordination spheres are explicitly included, the corresponding value of o
IG∆ is reduced by 18.5 – 
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20.2 eV relative to the IP of Ru2+. Tables 4 and 5 also give the average and standard deviation of 

theoretical results within each basis set and each functional category. Free energies predicted by the 

GGA and MGGA methods are lower than those obtained by the H and HM methods.  

As expected, our results indicate that the incorporation of the first and second hydration shells 

has a large solvent effect on the ionization process. A model such as a combined quantum mechanical 

and molecular mechanical approach that treats only the bare cation quantum mechanically would be 

inadequate because of the charge delocalization in the first and second solvation shells. To examine 

this effect, we calculated the extent of this delocalization using Löwdin population analysis.89 Since 

population analysis is most meaningful for small basis sets, we use the smallest basis set (LANL2DZ) 

for this purpose. The partial atomic charges are reported in Table S1 in the Supporting Information 

section. When averaged over all density functionals, these population analyses show an average 

partial charge on Ru(II) of +0.50 (n = 6) and +0.36 (n = 18) and average partial charges on Ru(III) of 

+0.93 (n = 6) and +0.78 (n = 18). Thus, most of the positive charge is delocalized onto the water 

molecules of the clusters. The general trend in the charges may be illustrated by the MPWB1K 

results, which are given in Table 6. 

The quality of DFT predictions for the free energy of ionization of the gas-phase 

[Ru(H2O)n]
2+ complexes cannot be evaluated by comparison with experimental data because such 

data are not available. However, the validity of the DFT predictions can be examined by comparison 

of these results to the corresponding values obtained by WFT methods. We performed single-point 

energy calculations of the [Ru(H2O)n]
q+ clusters (n = 6, 18; q = 2, 3) using the Hartree-Fock (HF) 

method and second-order Møller-Plesset perturbation theory with the TZQ basis set at the geometries 

optimized with the MPWB1K/MWB28 level of theory. Table 7 shows calculated adiabatic ionization 

potentials (Ie) of the [Ru(H2O)n]
2+ clusters as well as ionization potentials corresponding to the low-

spin cations 1S Ru2+ and 2D Ru3+; the latter have the same metal orbital occupations as the ruthenium-

water clusters. In relation to the HF results, the MP2 ionization potentials are increased by 3.6, 3.8, 
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and 1.9% for 1S Ru2+, [Ru(H2O)6]
2+, and [Ru(H2O)18]

2+, respectively. Thus, the inclusion of electron 

correlation in the calculation of Ie at least at the MP2/TZQ level is critically important for accuracy. 

In order to obtain o
IG∆ (MP2/TZQ), the values of Ie(MP2/TZQ) = 16.28 and 11.52 eV for 

[Ru(H2O)6]
2+ and [Ru(H2O)18]

2+, respectively, were augmented with the zero-point energy ∆ZPE and 

thermal o
evrG∆ contributions; the values of ∆ZPE = –0.064 eV and o

evrG∆ = –0.047 eV for [Ru(H2O)6]
q+ 

as well as ∆ZPE = –0.034 eV and o
evrG∆ = –0.005 eV for [Ru(H2O)18]

q+ are mean values found by 

averaging over all the DFT/MWB28 calculations of harmonic frequencies for the corresponding 

cluster. The final values of o
IG∆ (MP2/TZQ) are equal to 16.17 and 11.48 eV, respectively for 

[Ru(H2O)6]
2+ and [Ru(H2O)18]

2+, and these values may be compared to the values from DFT 

calculations in Tables 4 and 5. The values of o
IG∆  obtained with hybrid and hybrid meta functionals 

for [Ru(H2O)6]
2+ ( o

IG∆ = 15.9 – 16.3 eV on average for various basis sets) and for [Ru(H2O)18]
2+ 

(11.2 – 11.6 eV) are in better agreement with the MP2 predictions than the corresponding values 

obtained with GGA and MGGA functionals; the latter give o
IG∆  = 15.6 – 15.9 eV for [Ru(H2O)6]

2+ 

and  10.9 – 11.4 eV for [Ru(H2O)18]
2+ on average for various basis sets. One can arrive at the same 

conclusion making comparison of DFT and MP2 values for adiabatic ionization potentials Ie 

calculated without the zero-point energy and thermal o
evrG∆ corrections, which are small as shown 

above.  

 

3.3 Solvation Free Energies  

The solvation contributions ( o
SG∆∆ , eq 6) to the standard reduction potential of Ru3+

(aq) are 

given in Tables 8 and 9 for n = 6 and n = 18, respectively. The o
SG∆∆ values are in the range from 

−10.56 to −10.99 eV if the supersolute includes the first hydration shell (n = 6) and in the range 

between −6.83 and −7.45 eV when the first and second shells are explicitly included (n = 18). The 
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values obtained with LANL2DZ tend to be more negative than other values. Tables 8 and 9 also list 

the average values of o
SG∆∆  and the standard deviations for each combination of a basis set and a 

functional type. In comparison with GGA and MGGA, the H and HM functionals predict more 

negative o
SG∆∆ values, by ~0.12 eV in the case of n = 6 and by ~0.08 eV in the case of n = 18. Tables 

S3 and S4 in the Supporting Information section display the total solvation free energies (Table S3) as 

well as the two components, ∆GEP and GCDS (Table S4), for aqueous complexes in both oxidation 

states with the first and second coordination spheres explicitly treated. A typical sample of these 

results is shown in the top four rows of Table 10.  

We investigated the role of solvation effects in the calculation of relative energies of different 

molecular structures. According to the BLYP/MWB28 calculation, the gas-phase Th symmetry 

structure of [Ru(H2O)18]
2+ is less stable than the S6 conformation (by 1.15 eV). Solvation effects do 

not change the order, but they lower the relative energy of the Th structure to 0.69 eV. The impact of 

solvation on the stability of other molecular structures is less significant.    

 

3.4 Reduction Potential  

The gas-phase data in Tables 4 and 5, the solvation free energies in Tables 8 and 9, and the 

free energy of the reaction in eq 2 ( o
SHEG∆ = –4.28 eV, ref 2) were used to compute the standard 

reduction potential for the Ru3+|Ru2+ redox couple by eq 4. The resulting values of o

Ru|Ru 23 ++E are 

given in Table 11 for the calculations with 6 explicit water molecules and in Table 12 for the 

calculations with 18 explicit water molecules. We also show average values of E° and standard 

deviations for each combination of a basis set and type of density functional. The values in Table 11 

differ significantly from those in Table 12. Curiously, using the same functional (BLYP) as was used 

in the grand canonical CPMD study46,47 yields o

Ru|Ru 23 ++E in the range from 0.70 to 0.86 V with n = 6 

and from –0.31 to –0.12 V for n = 18. Therefore, the results calculated for the clusters with n = 6 are 
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much closer to the value46,47 of o

Ru|Ru 23 ++E = 0.58 V, even though 32 water molecules were explicitly 

treated in the grand canonical CPMD study.46,47  

Generally, in the case of six water molecules explicitly included in the treatment, the GGA 

and MGGA methods combined with MWB28 predict the experimental value of o

Ru|Ru 23 ++E = 0.23 ± 

0.02 V better than the other methods. When the second hydration shell is included in the cluster 

model of the ruthenium-water complexes (see Table 12), the tendency presented in Table 11 is 

inverted, now the H and HM functionals provide slightly more accurate predictions for the reduction 

potential than the other DFT methods used in the present study, even though the majority of values 

quoted in Table 12 have the opposite sign in comparison with the sign of the experimental value.49–51 

Thus, when we used a cluster model with the first hydration shell explicitly included, our predictions 

are overestimated in respect to experiment,49–51 whereas when the second shell is included our values 

are underestimated, such as the prediction of the thermochemical driving force is opposite to 

experiment.  

The next step is to analyze some possible sources of theory-experiment discrepancies for the 

o

Ru|Ru 23 ++E value. Assuming that the experimental value of o

Ru|Ru 23 ++E is well-established (0.23 ± 

0.02 V, see introduction), two main sources of computational error can be identified: errors in 

predicting the gas-phase ionization free energies for the ruthenium-water clusters and errors in 

predicting the free energies of solvation for these complexes. Some insight into the uncertainty in the 

latter can be gained by means of comparison of the o
SG∆∆ values calculated with the use of Solvation 

Model 6 to the corresponding values calculated using a different solvation model, for instance the 

Polarizable Continuum Model111 within the Integral Equation Formalism (IEF-PCM) developed by 

Tomasi et al.112 and implemented as the default PCM method in Gaussian03.55 We performed a few 

IEF-PCM calculations of o
SG∆∆  with geometries optimized for the gas-phase ruthenium-water 

clusters. We used the following models for atomic radii: the united-atom universal force field 
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topological model,55 the united-atom Hartree-Fock model (UAHF),113 and the Bondi atomic radii.114 

Results of the IEF-PCM calculations are compared to the corresponding SM6 values in Table 13. 

Values of o
SG∆∆ calculated by IEF-PCM noticeably depend (at least, in the case of n = 6) on the type 

of atomic radii chosen to calculate both electrostatic and non-electrostatic components of the free 

energy of solvation. We note that, unlike the IEF-PCM model, the SM6 approach employs a set of 

atomic radii that depend only on the atomic number of an atom,52 not on its properties. For instance, 

the UAHF radius of an atom depends on its hybridization state, connectivity, and formal charge.113 

The PCM values of o
SG∆∆  are systematically underestimated (~0.5 eV on average) with respect to 

the SM6 values, except the case of UAHF (n = 6) where there is a large overestimate of o
SG∆∆  (up to 

0.8 eV). The reason why one set of PCM values (UAHF, n = 6) differs from other PCM values by 

such a large amount is unexplained, whereas the discrepancies of ~0.5 eV are quite understandable 

for highly ionic species, especially in view of even bigger discrepancies in o
SG∆∆  obtained by 

alteration of DFT methods within the same SM6 approach.  

The gas-phase ionization free energies o
IG∆ predicted with the use of various DFT methods, 

basis sets, and effective core potentials vary from 15.48 eV (G96LYP/MWB28) to 16.76 eV 

(B3P86/LANL2DZ) in the case of [Ru(H2O)6]
2+ and from 10.55 eV (OLYP/MWB28) to 12.78 eV 

(VSXC/LANL2DZ) in the case of [Ru(H2O)18]
2+ (see Tables 4 and 5, respectively). According to the 

DFT calculations in this paper, the value of o
IG∆  should lie in the approximate range of 16.12 ± 0.64 

eV (n = 6) and 11.66 ± 1.12 eV (n = 18). The values of o
IG∆  equal to 16.17 (n = 6) and 11.48 (n = 

18) eV calculated by second-order Møller-Plesset perturbation theory with the TZQ basis set may be 

more reliable than some of the DFT values considered in this study; possible uncertainties of 

o
IG∆ (MP2/TZQ) that should be less than 0.64 (n = 6) and 1.12 (n = 18) eV are those caused by the 

incomplete account of electron correlation in the MP2 total energy calculation, the finite basis set 
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size, and the use of equilibrium geometries and harmonic frequencies computed at the DFT level of 

theory.  

If one assumes that the values of o
IG∆ equal the MP2/TZQ values of 16.17 eV for n = 6 and 

11.48 eV for n = 18, we predict that the “correct” values of o
SG∆∆  must equal −11.66 (n = 6) and 

−6.97 (n = 18) eV in order to have a theoretical value of o

Ru|Ru 23 ++E in agreement with the 

experimental value of 0.23 V. This would indicate that all the calculated o
SG∆∆  values for the 

[Ru(H2O)6]
2+ cluster are thus significantly underestimated (by 0.7 – 1.1 eV), whereas the o

SG∆∆  free 

energies calculated for the [Ru(H2O)18]
2+ cluster are mostly overestimated, but only by 0.48 eV or 

less. Thus, the explicit inclusion of the second solvation shell in calculation of the solvation energies 

of the ruthenium cations critically improves accuracy. Compared to SM6, the IEF-PCM model112 

provides slightly worse predictions of o
SG∆∆ (Table 13) with the exception of the UAHF (n = 6) case 

that may merit additional investigation.  

Using o
IG∆ (MP2/TZQ) along with the values of o

SG∆∆ = –10.67 and –7.09 eV, respectively, 

for n = 6 and n = 18 averaged over all the DFT results at the MWB28 basis level, we predict the 

following o

Ru|Ru 23 ++E magnitudes: 1.22 (n = 6) and 0.11 (n = 18) V. Again, the inclusion of the 

second solvation shell in the treatment significantly improves agreement of theory and experiment 

(0.23 ± 0.02 V). The use of o
SG∆∆ averaged at the LANL2DZ and DZQ basis levels provides less 

accurate predictions for o

Ru|Ru 23 ++E than in the case of MWB28: –0.03 and 0.01 V, respectively for 

LANL2DZ and DZQ (n = 18).  

 

4. Further Discussion  
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We have shown that reduction potentials for transition metal-containing redox couples can be 

calculated by mixed discrete and continuum calculations, although there are unsettlingly large 

uncertainties in the results. It is important to understand the uncertainties.  

In earlier work52 we had shown that the SM6 solvation model with the mPW1PW density 

functional and the 6-31+G(d,p) basis set agrees with experiment for 112 singly charged main group 

cations and anions, including 31 ions clustered to a single water molecule with a mean unsigned error 

(MUE) of 0.14 eV. A later assessment52 of the SM6/mPW1PW calculations against reevaluated data 

for these ions gave an MUE of 0.15 eV when averaged over four basis sets. The SM6/B3LYP 

calculations averaged over two basis sets also gave an MUE of 0.15 eV. The average value of these 

112 solvation free energies is –3.03 eV, so an MUE of 0.15 eV corresponds to a 5% error. Both 

mPW1PW and B3LYP are density functionals of type H, and Table S3 shows that the mean 

(averaged over functionals and basis sets) type H solvation free energies for [Ru(H2O)n]
2+ are –8.82 

eV (n = 6) and –6.92 eV (n = 18), whereas for [Ru(H2O)n]
3+ they are –19.58 eV (n = 6) and –14.10 eV 

(n = 18). Since the standard deviations in Table S3 consistently increase as the solvation free energies 

increase, 5% mean error is a more reasonable expectation than a constant 0.15 eV error. Applying the 

5% rule gives 0.44 eV (n = 6) and 0.35 eV (n = 18) for Ru2+ and 0.98 eV (n = 6) and 0.70 eV (n = 18) 

for Ru3+. One might hope that there is some cancellation of errors in computing o
SG∆∆  from 

)(o
S OG∆ and )(o

S RG∆ , but in fact the standard deviations in Table 8 and 9 tend to be larger by ~30% 

on average than those expected for )(o
S OG∆ . Increasing the )(o

S OG∆ expected mean errors by 30% 

yields 1.3 eV for n = 6 and 0.9 eV for n = 18. These rather pessimistic expectations may in fact be 

overly pessimistic, but at least they serve as a warning not to be too optimistic.  

Another issue meriting consideration is that the computation of the polarization free energy 

within the generalized Born (GB) approach requires specification of Coulomb radii ρX for all 

elements X. While the Coulomb radii for H and O are defined in SM6, no value has been previously 

determined for Ru. There are various ways in which this parameter might be estimated. For example, 
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one might require that the difference in solvation free energies computed for bare Ru2+ and Ru3+ from 

the Born formula  

Ru

2
o
S

1
1

2

1
)(Ru

ρε
q

G q







 −−=∆ +                                           (12) 

where ε is the 298.15 K dielectric constant of water (78.3) and q is the charge of the ion, be the 

precise amount that provides the correct absolute reduction potential, when added to the experimental 

ionization potential of Ru2+. Using the experimental reduction potential49–51 of 0.23 V and the free 

energy change o
SHEG∆ = –4.28 eV (ref 2) in the SHE reaction (eq 2) we can find the free energy 

change of o
|ROG∆ = –4.51 eV (eq 3) for reduction in aqueous solution. With the experimental 

ionization potential51,109 of Ru2+ (28.47 eV), the differential solvation free energy must be –23.96 eV, 

which corresponds to a Coulomb radius of 1.48 Å in eq 12. However, the utility of the Born equation 

for highly charged monatomic ions is questionable, since interactions with the first solvation shell 

may deviate significantly from that expected for a bulk dielectric continuum.  

An alternative approach, originally suggested115 by Morrison and later evaluated by Bondi,114 

makes use of an empirical relationship between atomic radii and ionization potential. In particular, 

Bondi noted that using  

ρX  = 6.13 Å (I0 / eV)–1/2                                                     (13) 

provided reasonably good agreement with atomic radii derived from crystallographic analysis. When 

eq 13 is used with the first, second, and third ionization potentials51,109 of Ru, radii of 2.26, 1.50, and 

1.15 Å are predicted. As Bondi’s analysis was carried out using only first ionization potentials and 

since the radius does not depend on the charge state in SM6, a value of 2.26 Å is probably the most 

reasonable radius based on this approach.  

The various approaches outlined above do not render unambiguous the selection of the 

ruthenium Coulomb radius. Fortunately, however, the explicit inclusion of the first solvation shell 

makes that portion of the GB energy associated with the ruthenium atom substantially less sensitive to 



27 

ρRu, because the explicit solvent shell(s) displace the dielectric continuum away from the central 

metal atom. Thus, we elected to set the Ru radius equal to 2 Å. An analysis of the sensitivity of the 

solvation free energies to this choice is presented in Table 10, where solvation free energies computed 

using alternative radii of 2.26 Å (from the Bondi approach) and 1.74 Å  (being smaller than 2 Å by 

the same amount that the Bondi radius is larger) are presented. As can be seen, the solvation energies 

change by 0.05 eV or less for these large changes in radii.  

Other potential sources of error in the computational prediction of the standard reduction 

potential of Ru3+ in aqueous solution should be mentioned here. There is a possibility of other 

chemical processes, such as the formation of dimers in aqueous solution, ligand-exchange reactions, 

and proton transfer, being coupled to the redox reaction. Proton transfer may in particular be 

important as triply charged ruthenium-water complexes have been determined to have a pKa of 

2.47.116  

A recent experimental study117 of the effect of the structure of water on its dielectric response 

energy and, therefore, on the ion solvation energy predicted a 0.07 V shift for the redox potential of 

an ionic species because of water structuring effects not accounted for in a continuum approximation, 

and it is not clear that our CDS terms can account for this kind of effect.   

The treatment of the second hydration shell is especially uncertain because we do not know 

whether the oxidized and reduced species have different coordination numbers in their second 

hydration shells. The geometries were optimized only in the gas phase, the entropy associated with 

including multiple alternative structures for the second hydration shell was omitted, and the third 

hydration shell was treated as a continuum. For example, in the liquid, there could be significant 

population of configurations with 11 or 13 water molecules in the second hydration shell, and there 

are also contributions from configurations that are less symmetrically structured than the one included 

here. The o
evrG∆ values used in the present work are based on a single configuration for each value of 

n. In addition to the uncertainties due to neglecting anharmonicity of low-frequency modes 
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(mentioned in Section 2), o
evrG∆  is also uncertain because we neglect the additional entropy 

contributions that would come from considering additional conformations. Whereas anharmonicity of 

low-frequency modes would decrease the calculated entropy, this conformational entropy would 

increase it; however, there is no reason to think that the two corrections to the harmonic value would 

be precisely cancelled. For both effects, the critical number is the difference in the effect for q = 2 and 

q = 3. It is hard to make an estimate of the uncertainty in o
evrG∆ , but we will estimate an 0.05 eV 

uncertainty in this term.  

A question that always arises in the treatment of systems containing transition metals is the 

need to take explicit account of multireference effects. A recent study118 of the Fe3+|Fe2+ reduction 

potential has employed the complete active space second-order perturbation theory CASPT2 method 

with a basis set of double-ζ quality to calculate the ionization potential of the [Fe(H2O)6]
2+ cluster, 

though without the explicit treatment of the second solvation shell and with the geometries being 

optimized in the gas phase at the MP2 level of theory. The PCM solvation model was used in 

calculations of solvation energies.118 The PCM/CASPT2 method provides more accurate prediction of 

the Fe3+|Fe2+ reduction potential in comparison with experiment than those obtained at the 

PCM/B3LYP level.118 However B3LYP is not among the preferred functionals for including 

multireference effects in transition metal systems.63  

As discussed in Section 3.1, the geometries for the aqua complexes were optimized in the gas 

phase and show systematically large Ru–O distances. To see the effect of this on the solvation 

energies, we performed some calculations in which we constrained the Ru–O distances to their liquid-

phase values. The results of these calculations are given in Table S2 of the Supporting Information; 

typically GCDS increases by ~0.02 eV, whereas ∆GENP typically changes by −0.14 eV for q = 3, n = 6 

and by −0.03 to +0.01 eV for the other three cases. The net effect is that o
SG∆  typically decreases by 

−0.11 eV for n = 6 and by −0.03 eV for n = 18. The larger change for n = 6 is significant and is in the 

correct direction to correct the systematic error in the value of the reduction potential at n = 6.  
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Finally, we consider the effect of the atomic surface tension of Ru. Since, as discussed in 

Section 2, the ruthenium atom has very little solvent accessible surface area in the water complexes, 

and the magnitude of a typical atomic surface tension is about 0.004 eV,52 the effect can be estimated 

to be 0.01 eV or smaller and is negligible.  

 

5. Conclusions  

We have presented a detailed computational study of the aqueous reduction potential of the 

Ru3+|Ru2+ redox couple. We employed exchange-correlation functionals classified into four categories 

(GGA, H, MGGA, and HM) combined with five ECPs and basis sets (each basis set includes an ECP 

definition). The solvation free energy is calculated by the SM6 continuum solvation model that 

accounts for long-ranged bulk electrostatics as well as for non-electrostatic cavitation, dispersion, and 

solvent-structure effects. We carried out calculations of the ruthenium-water clusters [Ru(H2O)n]
q+ (q 

= 2, 3), either the first (n = 6) or the first two (n = 18) hydration shells being explicitly treated. This 

computational protocol is based on a thermodynamic cycle where the electrochemical parameter is 

determined by the ionization free energy, the solvation free energy of the oxidized and reduced redox 

states, and the experimental free energy for the standard hydrogen electrode.  

The reduction potential o

Ru|Ru 23 ++E is overestimated when only the first coordination shell is 

treated explicitly whereas it is underestimated when the first two hydration shells are considered in 

the cluster model. The inclusion of the second solvation shell is important for the accuracy of 

theoretical predictions of the solvation free energy and the standard potential for reduction of the Ru3+ 

cation in aqueous solution. We observed that hybrid and hybrid meta functionals provide the most 

accurate geometries and ionization potentials for the ruthenium-water complexes, and possibly they 

also provide more accurate predictions of the standard reduction potential o

Ru|Ru 23 ++E than those 

obtained using other types of functionals. However, due to large uncertainties in the numbers 

calculated using different density functionals, basis sets, and effective core potentials, it is impossible 
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to identify the most reliable computational method for calculating the standard reduction potential of 

Ru3+|Ru2+ and other redox couples. It is clearly dangerous to rely on theoretical predictions obtained 

within any single DFT method (see refs 46 and 47, for an example of such calculations).  

Although some of the calculations agree quite well with experiment, the extensive 

documentation of the sensitivity of o
|ROE to density functionals, basis sets, effective core potentials, 

solvation modeling protocols, and calculated ionization potentials comprises a meta-analysis that 

quantifies the sources of uncertainty in the calculation of redox potentials of transition metals and 

other species, and this may help guide the course of future theoretical studies.   
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TABLE 1: Average Ru–O Distances (in Å) in the Gas-Phase Clusters [Ru(H2O)6]
q+ (q = 2, 3) of 

Ci Symmetry a 

Method LANL2DZ DZQ MWB28 TZQ AMUE b 

 Ru2+ Ru3+ Ru2+ Ru3+ Ru2+ Ru3+ Ru2+ Ru3+  

GGA          

BLYP 2.188 2.120 2.192 2.126 2.174 2.109 2.181 2.110 0.080 

BP86 2.159 2.095 2.164 2.102 2.146 2.086 2.151 2.085 0.054 

BPBE 2.161 2.097 2.167 2.104 2.149 2.087 2.153 2.086 0.055 

BPW91 2.164 2.099 2.169 2.106 2.151 2.089 2.156 2.088 0.059 

G96LYP 2.180 2.113 2.186 2.120 2.166 2.103 2.174 2.104 0.073 

HCTH 2.182 2.107 2.187 2.113 2.167 2.094 2.171 2.092 0.069 

mPWLYP 2.183 2.117 2.188 2.123 2.170 2.106 2.176 2.107 0.076 

mPWPBE 2.157 2.094 2.162 2.101 2.144 2.084 2.149 2.083 0.052 

mPWPW 2.160 2.096 2.165 2.103 2.147 2.086 2.151 2.085 0.054 

OLYP 2.186 2.115 2.191 2.120 2.17 2.101 2.175 2.099 0.075 

PBE 2.159 2.095 2.164 2.102 2.146 2.085 2.150 2.084 0.053 

AUE c 0.061 0.074 0.066 0.081 0.047 0.064 0.052 0.063  

H          

B3LYP 2.163 2.090 2.172 2.099 2.155 2.084 2.159 2.082 0.055 

B3P86 2.136 2.068 2.146 2.078 2.129 2.063 2.132 2.062 0.032 

B3PW91 2.146 2.075 2.155 2.084 2.138 2.070 2.141 2.068 0.040 

B97-1 2.158 2.088 2.169 2.098 2.150 2.084 2.154 2.081 0.053 

B97-2 2.153 2.077 2.164 2.089 2.146 2.074 2.149 2.070 0.045 

B98 2.154 2.085 2.164 2.095 2.146 2.081 2.150 2.078 0.049 

BH&HLYP 2.154 2.071 2.164 2.084 2.146 2.070 2.149 2.067 0.043 

mPW1PW 2.140 2.067 2.150 2.079 2.133 2.065 2.135 2.061 0.034 

O3LYP 2.167 2.093 2.177 2.103 2.158 2.087 2.161 2.083 0.059 

PBEh 2.139 2.068 2.149 2.078 2.131 2.064 2.133 2.060 0.033 

AUE c 0.041 0.048 0.051 0.059 0.033 0.044 0.036 0.041  
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TABLE 1: Continued 
MGGA          

BB95  2.168 2.103 2.173 2.110 2.154 2.091 2.159 2.091 0.061 

mPWB95 2.164 2.100 2.169 2.106 2.151 2.088 2.155 2.088 0.058 

mPWKCIS 2.174 2.108 2.178 2.113 2.160 2.097 2.165 2.096 0.066 

PBEKCIS 2.175 2.109 2.180 2.115 2.161 2.098 2.166 2.097 0.068 

TPSSKCIS 2.161 2.097 2.167 2.104 2.149 2.088 2.154 2.088 0.056 

TPSS  2.151 2.089 2.157 2.096 2.139 2.081 2.144 2.080 0.047 

VSXC  2.199 2.115 2.205 2.121 2.181 2.101 2.193 2.105 0.083 

AUE c 0.063 0.073 0.066 0.079 0.046 0.062 0.052 0.062  

HM          

B1B95     2.146 2.071 2.155 2.081 2.138 2.066 2.140 2.063 0.038 

BB1K      2.140 2.058 2.149 2.072 2.132 2.057 2.133 2.053 0.029 

MPW1B95   2.142 2.066 2.151 2.076 2.134 2.062 2.136 2.058 0.033 

MPW1KCIS  2.158 2.087 2.168 2.098 2.150 2.082 2.153 2.080 0.052 

MPWKCIS1K 2.145 2.064 2.155 2.077 2.138 2.064 2.139 2.059 0.035 

PBE1KCIS  2.155 2.081 2.165 2.092 2.147 2.078 2.150 2.074 0.048 

MPWB1K     2.137 2.056 2.146 2.069 2.130 2.054 2.130 2.050 0.026 

TPSS1KCIS 2.150 2.082 2.160 2.091 2.143 2.077 2.146 2.075 0.045 

TPSSh     2.142 2.077 2.152 2.087 2.134 2.072 2.138 2.070 0.039 

AUE c 0.036 0.041 0.046 0.053 0.028 0.038 0.031 0.035  

Experiment (ref 105) 2.110 2.030  

CPMD Calculation (refs 46 and 47) 2.180 2.100  
a Results of the TZQS calculations are omitted; they are identical to those at TZQ within 0.001 Å. 

b The mean unsigned error (MUE) is a theory-experiment deviation averaged for both oxidation states 

(+2 and +3); the values of MUE averaged over all the basis sets are calculated as AMUE = 

[MUE(LANL2DZ) + MUE(DZQ) + MUE(MWB28) + MUE(TZQ)]/4.  

c Theory-experiment deviations averaged over all the functionals of this category. 
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TABLE 2: Ru–O Distances (in Å) in the First Coordination Shell of the Gas-Phase Clusters 

[Ru(H2O)18]
q+ (q = 2, 3) of S6 Symmetry a 

Method LANL2DZ DZQ MWB28 TZQ AMUE b 

 Ru2+ Ru3+ Ru2+ Ru3+ Ru2+ Ru3+ Ru2+ Ru3+  

GGA          

BLYP 2.189 2.097 2.192 2.103 2.175 2.089 2.181 2.088 0.069 

BP86 2.162 2.074 2.165 2.080 2.149 2.066 2.151 2.064 0.044 

BPBE 2.164 2.076 2.167 2.082 2.151 2.068 2.154 2.065 0.046 

BPW91 2.167 2.078 2.169 2.084 2.153 2.069 2.156 2.068 0.048 

G96LYP 2.180 2.090 2.183 2.096 2.166 2.081 2.171 2.081 0.061 

HCTH 2.183 2.083 2.186 2.090 2.169 2.073 2.172 2.068 0.058 

mPWLYP 2.186 2.096 2.188 2.101 2.172 2.087 2.177 2.086 0.067 

mPWPBE 2.161 2.074 2.164 2.080 2.148 2.065 2.150 2.063 0.043 

mPWPW 2.163 2.076 2.166 2.082 2.150 2.067 2.153 2.065 0.045 

OLYP 2.186 2.086 2.190 2.091 2.171 2.075 2.175 2.072 0.061 

PBE 2.163 2.075 2.166 2.081 2.150 2.067 2.152 2.064 0.045 

AUE c 0.063 0.052 0.066 0.058 0.049 0.043 0.053 0.041  

H          

B3LYP 2.161 2.068 2.169 2.078 2.153 2.065 2.156 2.062 0.044 

B3P86 2.136 2.047 2.143 2.057 2.128 2.044 2.129 2.041 0.021 

B3PW91 2.144 2.054 2.152 2.064 2.136 2.051 2.138 2.047 0.028 

B97-1 2.156 2.070 2.165 2.079 2.148 2.066 2.151 2.062 0.042 

B97-2 2.152 2.055 2.160 2.066 2.144 2.053 2.146 2.049 0.033 

B98 2.152 2.067 2.161 2.076 2.144 2.063 2.147 2.059 0.039 

BH&HLYP 2.148 2.049 2.157 2.061 2.141 2.048 2.143 2.044 0.029 

mPW1PW 2.139 2.048 2.147 2.059 2.131 2.046 2.132 2.042 0.023 

O3LYP 2.167 2.067 2.175 2.077 2.157 2.062 2.160 2.058 0.045 

PBEh 2.138 2.047 2.146 2.058 2.130 2.045 2.131 2.041 0.022 

AUE c 0.039 0.027 0.047 0.038 0.031 0.024 0.033 0.021  
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TABLE 2: Continued 
MGGA          

BB95  2.171 2.079 2.173 2.086 2.156 2.069 2.158 2.066 0.050 

mPWB95 2.168 2.077 2.170 2.083 2.154 2.068 2.155 2.065 0.048 

mPWKCIS 2.177 2.086 2.179 2.092 2.163 2.077 2.166 2.075 0.057 

PBEKCIS 2.179 2.088 2.181 2.093 2.165 2.078 2.168 2.076 0.059 

TPSSKCIS 2.165 2.077 2.168 2.083 2.152 2.069 2.156 2.068 0.047 

TPSS  2.155 2.069 2.158 2.076 2.142 2.062 2.145 2.060 0.038 

VSXC  2.211 2.117 2.217 2.122 2.194 2.102 2.207 2.108 0.090 

AUE c 0.065 0.055 0.068 0.061 0.051 0.045 0.055 0.044  

HM          

B1B95     2.143 2.046 2.150 2.057 2.135 2.043 2.133 2.040 0.023 

BB1K      2.136 2.035 2.143 2.047 2.129 2.034 2.128 2.030 0.015 

MPW1B95   2.139 2.042 2.146 2.054 2.132 2.039 2.132 2.036 0.020 

MPW1KCIS  2.158 2.067 2.166 2.076 2.150 2.062 2.152 2.059 0.041 

MPWKCIS1K 2.141 2.044 2.150 2.056 2.134 2.043 2.135 2.038 0.023 

PBE1KCIS  2.154 2.061 2.162 2.071 2.146 2.057 2.148 2.053 0.037 

MPWB1K     2.133 2.033 2.140 2.045 2.126 2.031 2.126 2.028 0.013 

TPSS1KCIS 2.151 2.062 2.159 2.072 2.143 2.058 2.146 2.056 0.036 

TPSSh     2.144 2.058 2.151 2.067 2.135 2.054 2.138 2.051 0.030 

AUE c 0.034 0.020 0.042 0.031 0.027 0.017 0.028 0.013  

Experiment (ref 105) 2.110 2.030  

CPMD Calculation (refs 46 and 47) 2.180 2.100  
a Geometry optimization of the [Ru(H2O)18]

3+ cluster at the TZQS level was performed using only 

GGA and MGGA type functionals. Results of these TZQS calculations are omitted; they are identical 

to those at TZQ within 0.001 Å. 

b, c See footnotes to Table 1 
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TABLE 3: Third Ionization Potential (in eV) of the Bare Ruthenium Atom a 

Method LANL2DZ DZQ MWB28 TZQ Method LANL2DZ DZQ MWB28 TZQ 

GGA H 

BLYP 29.25 28.87 28.84 28.92 B3LYP 29.25 28.88 28.85 28.93 

BP86 29.37 29.03 28.94 29.07 B3P86 29.76 29.43 29.35 29.47 

BPBE 29.19 28.82 28.73 28.86 B3PW91 29.12 28.76 28.68 28.80 

BPW91 29.22 28.85 28.76 28.89 B97-1 29.24 28.85 28.81 28.90 

G96LYP 29.17 28.83 28.76 28.87 B97-2 29.24 28.80 28.82 28.84 

HCTH 29.48 29.06 29.13 29.09 B98 29.28 28.90 28.84 28.94 

mPWLYP 29.31 28.92 28.90 28.96 BH&HLYP 28.82 28.45 28.44 28.51 

mPWPBE 29.25 28.86 28.79 28.90 mPW1PW 29.06 28.67 28.61 28.72 

mPWPW 29.28 28.90 28.82 28.93 O3LYP 29.24 28.78 28.80 28.82 

OLYP 29.27 28.78 28.81 28.82 PBEh 28.99 28.61 28.55 28.66 

PBE 29.21 28.82 28.76 28.86      

MGGA HM 

mPWKCIS 29.29 28.89 28.83 28.90 MPW1KCIS 29.20 28.80 28.75 28.84 

PBEKCIS 29.28 28.88 28.83 28.89 MPWKCIS1K 28.96 28.57 28.53 28.62 

TPSSKCIS 29.13 28.75 28.69 28.79 PBE1KCIS 29.10 28.71 28.67 28.75 

TPSS 29.03 28.66 28.60 28.72 TPSS1KCIS 29.04 28.66 28.60 28.71 

VSXC 28.80 28.31 28.31 28.34 TPSSh 28.96 28.59 28.54 28.65 

a Experiment: 28.47 eV; 28.01 eV (ref 109). Ab initio calculation (this study): 27.79 and 27.81 eV 

(MP2/TZQ and CCSDT/TZQ, respectively). All theoretical data were corrected with the value of 0.13 

eV to account for the spin-orbit splitting in 5D Ru2+. 
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TABLE 4: Free Energy o
IG∆ (in eV) of Gas-Phase Ionization of [Ru(H2O)6]

2+ a 

Method LANL2DZ DZQ MWB28 TZQ Method LANL2DZ DZQ MWB28 TZQ 

GGA H 

BLYP 15.79 15.73 15.55 15.70 B3LYP 16.28 16.18 15.94 16.07 

BP86 15.89 15.82 15.64 15.79 B3P86 16.76 16.62 16.43 16.56 

BPBE 15.80 15.71 15.53 15.66 B3PW91 16.21 16.07 15.84 16.01 

BPW91 15.82 15.75 15.56 15.70 B97-1 16.18 16.08 15.88 15.99 

G96LYP 15.74 15.67 15.48 15.64 B97-2 16.28 16.19 15.96 16.07 

HCTH 16.19 16.06 15.86 15.99 B98 16.20 16.14 15.86 15.98 

mPWLYP 15.83 15.77 15.58 15.73 BH&HLYP 16.61 16.53 16.25 16.35 

mPWPBE 15.81 15.75 15.57 15.70 mPW1PW 16.18 16.12 15.87 15.97 

mPWPW 15.82 15.78 15.60 15.74 O3LYP 16.14 16.05 15.83 15.94 

OLYP 15.90 15.79 15.60 15.64 PBEh 16.18 16.06 15.82 15.94 

PBE 15.81 15.72 15.53 15.66 Average 16.30 16.20 15.97 16.09 

Average 15.85 15.78 15.59 15.72 SD b 0.21 0.20 0.21 0.20 

SD b 0.12 0.10 0.10 0.10      

MGGA HM 

BB95  15.79 15.73 15.56 15.70 B1B95     16.29 16.17 15.95 16.00 

mPWB95 15.82 15.78 15.61 15.73 BB1K      16.46 16.38 16.12 16.20 

mPWKCIS 15.88 15.78 15.60 15.73 MPW1B95   16.35 16.23 15.96 16.08 

PBEKCIS 15.84 15.75 15.57 15.70 MPW1KCIS  16.13 16.04 15.83 15.94 

TPSSKCIS 15.77 15.72 15.53 15.65 MPWKCIS1K 16.47 16.39 16.13 16.21 

TPSS  15.74 15.70 15.51 15.62 PBE1KCIS  16.21 16.12 15.90 16.00 

VSXC  16.50 16.42 16.21 16.33 MPWB1K     16.50 16.42 16.16 16.24 

Average 15.91 15.84 15.66 15.78 TPSS1KCIS 16.02 15.89 15.67 15.82 

SD b 0.27 0.26 0.25 0.25 TPSSh     15.94 15.81 15.62 15.74 

     Average 16.26 16.16 15.93 16.03 

     SD b 0.20 0.22 0.20 0.18 

a Results of the TZQS calculations are omitted; they are identical to o
IG∆ (TZQ) within 0.05 eV. 

b Standard deviation 
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TABLE 5: Free Energy o
IG∆ (in eV) of Gas-Phase Ionization of [Ru(H2O)18]

2+ a 

Method LANL2DZ DZQ MWB28 TZQ Method LANL2DZ DZQ MWB28 TZQb 

GGA H 

BLYP 11.20 11.14 10.97 11.15 B3LYP 11.66 11.62 11.39 11.58 

BP86 11.19 11.15 10.97 11.14 B3P86 12.02 11.98 11.76 11.92 

BPBE 11.08 11.03 10.85 10.99 B3PW91 11.49 11.45 11.23 11.40 

BPW91 11.12 11.07 10.89 11.03 B97-1 11.63 11.59 11.35 11.48 

G96LYP 11.08 11.01 10.83 11.00 B97-2 11.55 11.50 11.28 11.47 

HCTH 11.23 11.16 11.00 11.13 B98 11.63 11.60 11.35 11.50 

mPWLYP 11.24 11.18 11.00 11.19 BH&HLYP 11.98 11.93 11.65 11.75 

mPWPBE 11.11 11.06 10.89 11.04 mPW1PW 11.54 11.50 11.27 11.41 

mPWPW 11.16 11.10 10.93 11.09 O3LYP 10.95 10.90 10.69 11.26 

OLYP 10.84 10.68 10.55 10.62 PBEh 11.49 11.45 11.23 11.36 

PBE 11.11 11.07 10.90 11.06 Average 11.59 11.55 11.32 11.51 

Average 11.12 11.06 10.89 11.04 SD c 0.29 0.30 0.28 0.19 

SD c 0.11 0.14 0.13 0.15      

MGGA HM 

BB95  11.17 11.20 10.94 10.97 B1B95     11.60 11.44 11.26 11.48 

mPWB95 11.25 11.32 11.06 11.15 BB1K      11.48 11.41 11.24 11.61 

mPWKCIS 11.18 11.12 10.95 11.10 MPW1B95   11.40 11.33 11.16 11.53 

PBEKCIS 11.19 11.13 10.96 11.12 MPW1KCIS  11.42 11.38 11.17 11.36 

TPSSKCIS 11.13 11.08 10.89 11.02 MPWKCIS1K 11.81 11.77 11.51 11.63 

TPSS  11.09 11.04 10.86 10.99 PBE1KCIS  11.54 11.50 11.27 11.43 

VSXC  12.78 12.60 12.57 12.64 MPWB1K     11.43 11.38 11.18 11.66 

Average 11.40 11.36 11.18 11.28 TPSS1KCIS 11.33 11.30 11.08 11.25 

SD c 0.61 0.56 0.62 0.60 TPSSh     11.24 11.21 11.00 11.16 

     Average 11.47 11.41 11.21 11.46 

     SD c 0.17 0.16 0.14 0.17 
a Geometry optimization and harmonic analysis for the [Ru(H2O)18]

3+ cluster at the TZQS level were 

performed using only GGA and MGGA type functionals. Results of the TZQS calculations are omitted; 

they are identical to o
IG∆ (TZQ) within 0.05 eV.  

b Zero-point energies for H/TZQ and HM/TZQ were taken from B3LYP/MWB28. c Standard deviation  
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TABLE 6: Partial Atomic Charges on the Metal and on the First and Second Hydration Shells 

in the [Ru(H2O)n]q+ Clusters at the MPWB1K/LANL2DZ/6-31+G(d,p) Level 

q n Ru Atom 1st Shell 2nd Shell 

2+ 6 0.61 1.39  

 18 0.48 0.97 0.55 

3+ 6 1.13 1.87  

 18 0.94 1.20 0.86 
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TABLE 7: Ionization Potentials Ie (in eV) Calculated by Wave Function Theory Methods a 

Method 1S Ru2+ [Ru(H2O)6]
2+ [Ru(H2O)18]

2+ 

HF/TZQ 28.86 15.69 11.31 

MP2/TZQ 29.91 16.28 11.52 

 a Values of Ie were calculated as the total energy difference at the equilibrium geometries of [Ru(H2O)n]
q+ (n 

= 6, 18; q = 2, 3) optimized at MPWB1K/MWB28.
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TABLE 8: Free Energies of Solvation o
SG∆∆  (in eV) with the First Hydration Shell Explicitly 

Included a 

Method LANL2DZ DZQ MWB28 TZQ Method LANL2DZ DZQ MWB28 TZQ 

GGA H 

BLYP –10.69 –10.58 –10.56 –10.59 B3LYP –10.84 –10.68 –10.66 –10.69 

BP86 –10.72 –10.61 –10.61 –10.63 B3P86 –10.87 –10.72 –10.70 –10.76 

BPBE –10.73 –10.62 –10.61 –10.63 B3PW91 –10.86 –10.70 –10.69 –10.75 

BPW91 –10.73 –10.62 –10.61 –10.63 B97-1 –10.81 –10.69 –10.67 –10.70 

G96LYP –10.69 –10.59 –10.58 –10.60 B97-2 –10.88 –10.76 –10.74 –10.78 

HCTH –10.78 –10.66 –10.65 –10.68 B98 –10.81 –10.70 –10.67 –10.71 

mPWLYP –10.69 –10.59 –10.57 –10.59 BH&HLYP –10.99 –10.86 –10.82 –10.87 

mPWPBE –10.74 –10.63 –10.62 –10.64 mPW1PW –10.85 –10.74 –10.71 –10.75 

mPWPW –10.73 –10.63 –10.61 –10.64 O3LYP –10.82 –10.71 –10.69 –10.72 

OLYP –10.76 –10.63 –10.62 –10.65 PBEh –10.89 –10.73 –10.72 –10.75 

PBE –10.74 –10.63 –10.62 –10.64 Average –10.86 –10.73 –10.71 –10.75 

Average –10.73 –10.62 –10.61 –10.63 SD b 0.05 0.05 0.05 0.05 

SD b 0.03 0.02 0.03 0.03      

MGGA HM 

BB95  –10.71 –10.61 –10.61 –10.63 B1B95     –10.90 –10.74 –10.73 –10.76 

mPWB95 –10.72 –10.62 –10.62 –10.64 BB1K      –10.95 –10.82 –10.80 –10.84 

mPWKCIS –10.71 –10.60 –10.59 –10.62 MPW1B95   –10.92 –10.76 –10.74 –10.78 

PBEKCIS –10.71 –10.60 –10.59 –10.62 MPW1KCIS  –10.82 –10.70 –10.68 –10.71 

TPSSKCIS –10.75 –10.64 –10.63 –10.65 MPWKCIS1K –10.95 –10.82 –10.79 –10.83 

TPSS  –10.76 –10.65 –10.64 –10.67 PBE1KCIS  –10.86 –10.74 –10.71 –10.75 

VSXC  –10.89 –10.78 –10.78 –10.79 MPWB1K     –10.96 –10.84 –10.81 –10.85 

Average –10.75 –10.64 –10.64 –10.66 TPSS1KCIS –10.83 –10.68 –10.67 –10.71 

SD b 0.06 0.06 0.06 0.06 TPSSh     –10.82 –10.68 –10.67 –10.70 

     Average –10.89 –10.75 –10.73 –10.77 

     SD b 0.06 0.06 0.06 0.06 
a Solvation energies for the TZQS and TZQ gas-phase geometries are calculated at MWB28/6-31+G(d,p). 

Results of the TZQS calculations are omitted; they are identical to o
SG∆∆ (TZQ) within 0.03 eV. 

b Standard deviation
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TABLE 9: Free Energies of Solvation o
SG∆∆  (in eV) with the First and Second Hydration Shells 

Explicitly Included a 

Method LANL2DZ DZQ MWB28 TZQ Method LANL2DZ DZQ MWB28 TZQ 

GGA H 

BLYP –7.14 –7.10 –7.00 –6.99 B3LYP –7.26 –7.22 –7.11 –7.10 

BP86 –7.21 –7.17 –7.07 –7.06 B3P86 –7.32 –7.28 –7.17 –7.17 

BPBE –7.19 –7.16 –7.06 –7.04 B3PW91 –7.29 –7.24 –7.14 –7.13 

BPW91 –7.19 –7.16 –7.06 –7.04 B97-1 –7.27 –7.22 –7.12 –7.11 

G96LYP –7.15 –7.12 –7.02 –7.00 B97-2 –7.26 –7.22 –7.12 –7.09 

HCTH –7.06 –7.03 –6.95 –6.91 B98 –7.27 –7.23 –7.12 –7.11 

mPWLYP –7.15 –7.12 –7.01 –7.01 BH&HLYP –7.38 –7.34 –7.22 –7.22 

mPWPBE –7.20 –7.17 –7.07 –7.06 mPW1PW –7.30 –7.27 –7.17 –7.16 

mPWPW –7.20 –7.17 –7.07 –7.06 O3LYP –7.02 –7.00 –6.91 –6.90 

OLYP –6.95 –6.93 –6.85 –6.83 PBEh –7.31 –7.27 –7.17 –7.16 

PBE –7.20 –7.17 –7.06 –7.06 Average –7.27 –7.23 –7.13 –7.12 

Average –7.15 –7.12 –7.02 –7.01 SD b 0.09 0.09 0.08 0.08 

SD b 0.08 0.07 0.07 0.07      

MGGA HM 

BB95  –7.15 –7.11 –7.02 –6.99 B1B95     –7.27 –7.24 –7.13 –7.12 

mPWB95 –7.16 –7.13 –7.03 –7.01 BB1K      –7.34 –7.29 –7.18 –7.14 

mPWKCIS –7.17 –7.13 –7.03 –7.02 MPW1B95   –7.31 –7.27 –7.16 –7.11 

PBEKCIS –7.17 –7.13 –7.03 –7.02 MPW1KCIS  –7.23 –7.19 –7.11 –7.08 

TPSSKCIS –7.20 –7.17 –7.07 –7.05 MPWKCIS1K –7.35 –7.30 –7.20 –7.18 

TPSS  –7.22 –7.19 –7.09 –7.08 PBE1KCIS  –7.27 –7.23 –7.12 –7.11 

VSXC  –7.45 –7.44 –7.38 –7.35 MPWB1K     –7.36 –7.32 –7.21 –7.15 

Average –7.22 –7.18 –7.09 –7.07 TPSS1KCIS –7.26 –7.22 –7.12 –7.10 

SD b 0.10 0.11 0.13 0.12 TPSSh     –7.26 –7.23 –7.13 –7.11 

     Average –7.30 –7.25 –7.15 –7.12 

     SD b 0.05 0.04 0.04 0.03 
a,b See footnotes to Table 8 
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TABLE 10: Components of o
SG∆ (in eV) at the MPWB1K/MWB28 Level as Functions of the Ru 

atomic radius (in Å) 

ρRu q n ∆G°S ∆GEP GCDS 

2.00 2+ 6 –8.81 –8.61 –0.20 

  18 –6.90 –6.12 –0.78 

2.00 3+ 6 –19.67 –19.50 –0.16 

  18 –14.05 –13.32 –0.73 

1.74 2+ 6 –8.82 –8.62 –0.20 

  18 –6.93 –6.15 –0.78 

1.74 3+ 6 –19.69 –19.52 –0.16 

  18 –14.06 –13.33 –0.73 

2.26 2+ 6 –8.79 –8.58 –0.20 

  18 –6.85 –6.07 –0.78 

2.26 3+ 6 –19.62 –19.46 –0.16 

  18 –14.05 –13.32 –0.73 
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TABLE 11: Standard Reduction Potential o

Ru|Ru 23 ++E (in V) with the First Hydration Shell 

Explicitly Included a 

Method LANL2DZ DZQ MWB28 TZQ Method LANL2DZ DZQ MWB28 TZQ 

GGA H 

BLYP 0.81 0.86 0.70 0.83 B3LYP 1.17 1.22 1.00 1.10 

BP86 0.89 0.93 0.75 0.88 B3P86 1.61 1.63 1.45 1.52 

BPBE 0.79 0.82 0.64 0.75 B3PW91 1.07 1.09 0.87 0.98 

BPW91 0.82 0.85 0.67 0.79 B97-1 1.09 1.11 0.93 1.01 

G96LYP 0.77 0.80 0.62 0.76 B97-2 1.12 1.15 0.94 1.02 

HCTH 1.12 1.12 0.93 1.03 B98 1.11 1.16 0.91 1.00 

mPWLYP 0.86 0.90 0.73 0.86 BH&HLYP 1.34 1.39 1.14 1.20 

mPWPBE 0.79 0.84 0.67 0.78 mPW1PW 1.04 1.10 0.88 0.95 

mPWPW 0.81 0.88 0.70 0.82 O3LYP 1.03 1.06 0.86 0.94 

OLYP 0.87 0.87 0.70 0.72 PBEh 1.01 1.05 0.82 0.91 

PBE 0.79 0.81 0.63 0.74 Average 1.16 1.19 0.98 1.06 

Average 0.85 0.88 0.71 0.81 SD b 0.18 0.18 0.19 0.18 

SD b 0.10 0.09 0.09 0.09      

MGGA HM 

BB95  0.79 0.84 0.67 0.80 B1B95     1.11 1.15 0.95 0.96 

mPWB95 0.82 0.87 0.71 0.81 BB1K      1.23 1.27 1.04 1.08 

mPWKCIS 0.89 0.90 0.73 0.83 MPW1B95   1.15 1.18 0.94 1.02 

PBEKCIS 0.85 0.87 0.69 0.80 MPW1KCIS  1.03 1.06 0.87 0.95 

TPSSKCIS 0.75 0.80 0.62 0.72 MPWKCIS1K 1.24 1.29 1.06 1.09 

TPSS  0.70 0.77 0.59 0.67 PBE1KCIS  1.07 1.11 0.90 0.97 

VSXC  1.33 1.35 1.16 1.26 MPWB1K     1.25 1.30 1.07 1.10 

Average 0.87 0.92 0.74 0.84 TPSS1KCIS 0.91 0.93 0.72 0.82 

SD b 0.21 0.20 0.19 0.19 TPSSh     0.84 0.85 0.67 0.75 

     Average 1.09 1.13 0.91 0.97 

     SD b 0.15 0.16 0.14 0.12 

a Results of the TZQS calculations are omitted; they are identical to o

Ru|Ru 23 ++E (TZQ) within 0.05 V. 

b Standard deviation 
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TABLE 12: Standard Reduction Potential o

Ru|Ru 23 ++E (in V) with the First and Second Hydration 

Shells Explicitly Included a 

Method LANL2DZ DZQ MWB28 TZQ Method LANL2DZ DZQ MWB28 TZQ 

GGA H 

BLYP –0.22 –0.24 –0.31 –0.12 B3LYP 0.13 0.12 0.00 0.20 

BP86 –0.29 –0.30 –0.37 –0.20 B3P86 0.42 0.42 0.31 0.47 

BPBE –0.39 –0.41 –0.49 –0.34 B3PW91 –0.07 –0.07 –0.19 –0.01 

BPW91 –0.35 –0.37 –0.45 –0.29 B97-1 0.08 0.09 –0.05 0.09 

G96LYP –0.36 –0.38 –0.47 –0.28 B97-2 0.01 0.01 –0.12 0.10 

HCTH –0.11 –0.15 –0.23 –0.06 B98 0.08 0.09 –0.05 0.11 

mPWLYP –0.20 –0.22 –0.29 –0.09 BH&HLYP 0.31 0.31 0.15 0.25 

mPWPBE –0.37 –0.39 –0.46 –0.30 mPW1PW –0.05 –0.05 –0.18 –0.03 

mPWPW –0.33 –0.35 –0.42 –0.25 O3LYP –0.35 –0.37 –0.50 0.08 

OLYP –0.39 –0.53 –0.58 –0.49 PBEh –0.09 –0.10 –0.22 –0.08 

PBE –0.37 –0.38 –0.45 –0.28 Average 0.05 0.05 –0.08 0.12 

Average –0.31 –0.34 –0.41 –0.25 SD b 0.22 0.22 0.22 0.16 

SD b 0.09 0.10 0.10 0.12      

MGGA HM 

BB95  –0.27 –0.20 –0.36 –0.29 B1B95     0.04 –0.08 –0.14 0.08 

mPWB95 –0.19 –0.09 –0.26 –0.14 BB1K      –0.14 –0.16 –0.23 0.19 

mPWKCIS –0.27 –0.29 –0.36 –0.20 MPW1B95   –0.19 –0.22 –0.27 0.14 

PBEKCIS –0.26 –0.27 –0.35 –0.18 MPW1KCIS  –0.09 –0.09 –0.22 0.00 

TPSSKCIS –0.36 –0.37 –0.46 –0.31 MPWKCIS1K 0.18 0.18 0.03 0.17 

TPSS  –0.41 –0.42 –0.51 –0.36 PBE1KCIS  –0.01 –0.01 –0.13 0.04 

VSXC  1.05 0.89 0.91 1.02 MPWB1K     –0.22 –0.21 –0.31 0.23 

Average –0.10 –0.11 –0.20 –0.07 TPSS1KCIS –0.21 –0.21 –0.32 –0.13 

SD b –0.27 –0.20 –0.36 –0.29 TPSSh     –0.30 –0.30 –0.41 –0.23 

     Average –0.10 –0.12 –0.22 0.05 

     SD b 0.15 0.14 0.13 0.15 
a, b See footnotes to Table 11 
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TABLE 13: Free Energies of Solvation o
SG∆∆  (in eV): SM6 versus IEF-PCM a 

Method n SM6 IEF-PCM/UFF IEF-PCM/UAHF IEF-PCM/Bondi 

BLYP/MWB28  6 –10.56 –10.24 –11.39 –10.28 

BLYP/MWB28 18 –7.00 –6.61 –6.59 –6.65 

B3LYP/LANL2DZ 6 –10.84 –10.33 –11.42 –10.39 

B3LYP/LANL2DZ 18 –7.26 –6.64 –6.62 –6.68 

MPWB1K/DZQ 6 –10.84 –10.39 –11.40 –10.46 

MPWB1K/DZQ 18 –7.32 –6.62 –6.63 –6.74 

a Gas-phase geometries were optimized at the corresponding level of theory. We used the following 

models for atomic radii in the IEF-PCM calculations: the united-atom universal force field topological 

model (UFF), the united-atom Hartree-Fock model (UAHF), and the Bondi atomic radii (Bondi).
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Figure 1. Conformations of the [Ru(H2O)6]
2+/3+ Clusters. 
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Figure 2. Conformations of the [Ru(H2O)18]
2+/3+ Clusters. 

 


