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In many applications of multilevel/multiscale methods, an active zone must be modeled 

by a high-level electronic structure method, while a larger environmental zone can be 

safely modeled by a lower-level electronic structure method, molecular mechanics, or an 

analytic potential energy function.  In some cases though, the active zone must be 

redefined as a function of simulation time.  Examples include a reactive moiety diffusing 

through a liquid or solid, a dislocation propagating through a material, or solvent 

molecules in a second coordination sphere (which is environmental) exchanging with 

solvent molecules in an active first coordination shell.  In this article, we present a 

procedure for combining the levels smoothly and efficiently in such systems in which 

atoms or groups of atoms move between high-level and low-level zones.  The method 

dynamically partitions the system into the high-level and low-level zones and, unlike 

previous algorithms, removes all discontinuities in the potential energy and force 

whenever atoms or groups of atoms cross boundaries and change zones.  The new 

adaptive partitioning (AP) method is compared to Rode’s “hot spot” method and 

Morokuma’s “ONIOM-XS” method that were designed for multilevel MD simulations.  

MD simulations in the microcanonical ensemble show that the AP method conserves both 

total energy and momentum, while the ONIOM-XS method fails to conserve total energy, 
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and the hot spot method fails to conserve both total energy and momentum.  Two 

versions of the AP method are presented, one scaling as O(2N) and one with linear scaling 

in N, where N is the number of groups in a buffer zone separating the active high-level 

zone from the environmental low-level zone.  The AP method is also extended to systems 

with multiple high-level zones to allow, e.g., the study of ions and counterions in solution 

using the multilevel approach.   
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1. Introduction 

 Increasing computational resources and improved algorithms are stimulating more 

realistic simulations of condensed-phase processes and complex materials at the atomic 

level and thereby motivating the development of more flexible and more efficient 

algorithms.  Methods for modeling potential energy functions that are commonly 

employed for the study of large systems, for example molecular mechanics,1 analytic 

potential energy functions,2,3 or affordable direct dynamics methods,4 are often not 

accurate enough to describe the atomistic dynamics at active sites where solute-solvent 

coupling is strong and dynamic, where dislocations or cracks are forming, where grain 

boundaries are moving, or where reaction is occurring.  In contrast, high-level electronic 

structure methods that model these features accurately are too computationally expensive 

to be used for long-time simulations, large systems, or full ensemble averaging.  One 

solution is to use multilevel methods such as combined QM/MM methods that combine 
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quantum mechanical (QM) electronic structure for an active zone with molecular 

mechanics (MM) for an environmental zone.5-24  (By MM, we mean any generally 

parameterized analytic potential.)  The efficiency of such multilevel methods allows one 

to perform accurate calculations for large and complex systems over long time scales.  

Although we use the language of QM and MM, the method is equally applicable to 

combining high-level QM with low-level MM or combining high-level MM (e.g., a 

many-body potential) with low-level MM (e.g., a pairwise additive potential). 

 Most systems studied with multilevel methods that are based on partitioning 

consist of a small localized active region treated at a high level of theory (the active zone) 

immersed in an extended system treated at a low level of theory (the environmental 

zone).  To study the dynamical and structural properties of these systems, the multilevel 

methods are combined with sampling schemes and/or dynamical methods, such as 

molecular dynamics (MD) or Monte Carlo (MC) algorithms.  When the active region in 

these systems is localized, the same atoms are in the active region during the entire 

simulation, and the level of theory used to describe their interaction does not change 

during the simulation.   

 In the present article, we are interested in systems with non-localized active 

regions, such as processes in solution,25-30 diffusion, reaction, and island evolution studies 

on catalytic surfaces or nanoparticles or in membranes,31-35 defect propagation in 

materials,36 and complex gas-phase reactive systems.37  The method presented here can 

be used to combine multilevel methods with sampling schemes for systems with atoms or 

groups of atoms entering or leaving the active zone (the QM region) during the 

simulation.  Since an atom should be treated at a high level of theory when it is in the 
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active zone (for accuracy) and at a lower level of theory otherwise (for efficiency) the 

level of theory used to describe an atom changing zones changes during the simulation.  

A simple change in the level of theory used to describe the interaction of an atom with 

the surrounding atomistic environment would result in a discontinuity in the potential 

energy and force on each atom in the system.  Since the quality of the level of theories 

used to describe the atoms in the system often differs significantly, the discontinuities in 

the potential energy and forces can be large and can result in numerical instabilities,38 a 

lack of conservation of total energy in a molecular dynamics simulation, sampling of 

configuration space from an unknown, possibly non-equilibrium ensemble,39 and 

simulation results that show artifacts.40   

 The algorithm presented here removes all discontinuities in the potential energy 

and force whenever atoms or groups of atoms cross zone boundaries.  Two versions of 

the new method are presented, one scaling as O(2N) and one with linear scaling in N, 

where N is the number of groups in a buffer zone.   

 The article is organized as follows.  In Section 2, previous methods developed for 

combining multilevel methods with sampling schemes are reviewed and their strengths 

and weaknesses are analyzed.  Section 3 introduces a new method for dynamically 

partitioning a multilevel system into high-level and low-level zones such that all 

discontinuities are removed in the potential energy and force whenever atoms or groups 

of atoms change zones.  Applications of two versions of the newly developed method are 

presented in section 4, and the results are compared to those obtained by the “hot spot” 

method of Rode41,42 and the ONIOM-XS method of Kerdcharoen and Morokuma.39  

Although the active zone in these sample applications is a spherical region surrounding a 
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central atom, more generally the active zone may also be a molecular reagent or a 

complex, the active site of an enzyme, or any subsystem which one wants to treat at a 

high-level.  In Section 5, extensions of the newly developed method are presented to 

simulate systems with multiple active regions that possibly merge during the simulation. 

 

2. Previous adaptive multilevel methods 

 Rode and coworkers41-43 were the first to study systems with a non-localized 

active region by MD simulations employing QM/MM potentials.  In particular they 

studied the structure and dynamics of metal ions in solution.26,30,40 To study the ligand 

exchange around a metal ion, they divided a system consisting of one metal ion and a few 

hundred solvent molecules into a spherical, high-level, active zone with radius minr , a 

small buffer zone surrounding the active zone, and the remainder of the system, which we 

will call the environmental zone.   

 In discussing Rode’s hot spot algorithm, Kerdcharoen and Morokuma’s ONIOM-

XS algorithm, and our own adaptive partitioning algorithm, we will use the language of 

groups.  A group may be an atom (e.g., a Ne atom for modeling solvation in a rare-gas 

liquid or for modeling a solid Ne host lattice), a molecule (for example a water molecule 

in aqueous solution), a protein residue, a monomer in a polymer, a formula unit in a solid 

salt, and so forth.  At any time, all the atoms of a given group are always considered to be 

in the same zone.  Although the schemes can all be defined more generally we will 

discuss them here in terms of a spherical active zone surrounded by a spherical-shell 

buffer zone, and an environmental zone (which comprises the rest of the system, which 

need not be spherical).  The buffer zone was defined by Rode and coworkers as a shell 
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with inner and outer radii, minr  and maxr .  The metal ion defines the center of the active 

zone in these ligand exchange studies, but more generally any one group, to be called the 

primary group, can be singled out, and the radial distance r is measured from that primary 

group.  In practice, Rode chose the radius of the active zone such that the active zone 

includes the first26,42-67 and sometimes also the second68-74 solvation shell.  The purpose 

of the buffer zone is to smooth the force components on groups, such as a water 

molecule, that are entering or leaving the active zone.  The thickness of the buffer 

depends on the levels of theory used for the multilevel simulation and is usually chosen 

to be 0.2 Å.41,42  Figure 1 illustrates the partitioning of the system into multiple zones.   

 The potential energy, V, and the force, if , acting on each atom, i, during the MD 

simulation are defined in Rode’s hot spot method41,42 in a similar way to the Integrated 

Molecular Orbital Molecular Mechanics (IMOMM) scheme of Maseras and Morokuma:7 

  ( ) ( ) ( )⎟
⎠
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⎝
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where ( )MMV entire  is the potential energy of the entire system calculated at the low 

level of theory, and ( )QMV BA+  and ( )MMV BA+  are the potential energies of all 

groups in the active (A) and buffer (B) zones treated at the high and low level of theory, 

respectively.  The zero of energy is defined for both levels of theory as the sum of 

energies of the isolated groups, with each isolated group, in its equilibrium geometry (if it 

has more than one atom).  The force components obtained from the gradients of the 

corresponding energy terms are ( )MMentire
if , ( )QMBA

i
+f , and ( )MMBA

i
+f , each of 
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which is a 3-dimensional vector.  To calculate trajectories in a MD simulation it is not 

necessary to determine the potential energy; only the forces need to be calculated, and 

Rode smoothed the force components of atoms belonging to groups in the buffer zone; 

this was accomplished by using the smoothing function ( )irS :41 
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where ir  is the radial coordinate of group i.  In most applications of the hot spot method 

the potential energy is not evaluated or defined.41,44-77 

 An advantage of the hot spot method is that it does not need any additional high-

level force calculations to determine the forces acting on atoms in the buffer zone.  The 

hot spot method was criticized by Kerdcharoen and Morokuma because it employs a 

smoothing function only on groups in the buffer zone and therefore does not remove 

discontinuities in the force on atoms outside the buffer zone.38,39  As a result, hot spot 

simulations suffer from numerical instabilities and do not conserve energy in MD 

simulations in the microcanonical ensemble.  Furthermore, there is no potential energy 

expression corresponding to the forces so that the hot spot method cannot be applied to 

Monte Carlo or free energy simulations.  Finally, momentum is not conserved in 

simulations using the hot spot method.  Newton’s third law is not fulfilled because only 

forces on atoms in the buffer zone are smoothed.   

Rode and coworkers performed simulations in the canonical ensemble (called the 

NVT ensemble) using the Berendsen algorithm.78  As a result, despite the lack of 

momentum conservation, the kinetic energy of the system is approximately constant, and 
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numerical instabilities are reduced.  Nevertheless, not conserving energy and momentum 

in the conservative dynamics risks sampling of configuration space from an unknown, 

possibly non-equilibrium ensemble.  For example, Kerdcharoen and Morokuma showed 

that a simple multilevel simulation scheme without the removal of discontinuities was not 

able to sample equilibrium configurations in NVT simulations.39   

 To remove some of the limitations of the hot spot method, Kerdcharoen and 

Morokuma39 developed the ONIOM-XS (XS = eXtension to Solvation) method.  In the 

ONIOM-XS method two multilevel energy calculations are performed whenever at least 

one group is present in the buffer zone.  The smoothed potential energy is defined as:  

  ( ) ABA VPVPV −+= + 1  (4) 

where BAV +  is the potential energy determined with all groups in the active and buffer 

zone treated at the high level of theory, and AV  is the corresponding potential energy 

determined with only the active zone treated at the high level of theory.  The smoothing 

function P  is defined as the arithmetic average of the set of smoothing functions ( )iiP α  

for every individual group in the buffer zone: 

  ( )∑=
=

N

i
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where N is the number of groups in the buffer zone, iP  is a fifth order spline: 

  ( ) 110156 345 +−+−= iiiiiP αααα  (6) 

and iα  is given by: 
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 The ONIOM-XS method removes all discontinuities in the potential energy and 

force if only one group is present in the buffer zone, but it fails to remove all 

discontinuities in the potential energy and force if more groups are present in the buffer 

zone (N changes discontinuously).  As a result, the ONIOM-XS method does not 

conserve energy in an NVE simulation, and it is unclear whether equilibrium 

configurations are sampled in studies using the ONIOM-XS method in the general case.   

 

3. The adaptive partitioning method 

 In this section, we present a simulation scheme that adaptively partitions a system 

into a high-level and a low-level zone in such a way that the composition of the high-

level zone may change as a function of time (in MD) or as a function of the geometry of a 

sample (in MC).  The scheme is designed to remove all discontinuities in the potential 

energy and forces whenever groups change zone.  We call this method the adaptive 

partitioning method (AP).  The method is equivalent to the ONIOM-XS method if only 

one group is present in the buffer zone and removes all discontinuities in the potential 

energy and force whenever more than one group is present.   

 

3.A. Permuted AP method 

 In one version of the AP method, called the permuted adaptive partitioning 

(permuted AP) method, the potential energy is defined as a linear combination of all 

possible combinations of multilevel energies that are obtained by treating the active zone 

and a subset of the N groups in the buffer zone at a high level of theory: 

  { } { } ⎟
⎠
⎞

⎜
⎝
⎛= A

Nall
A
jiall

A
i

A VVVVVV ,,2,1, ,,,, KK  (8) 
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where AV  is the energy determined with the active zone treated at the high level of 

theory.  A
iV  is the energy determined with the active zone and group i in the buffer zone 

treated at the high level of theory.  A
jiV ,  is the energy determined with the active zone and 

groups i and j in the buffer zone treated at the high level of theory.  Finally, A
NV ,,2,1 K  is 

the energy determined with the active and buffer zone treated at the high level of theory.  

For N groups in the buffer zone, 2N multilevel energy calculations are performed in the 

permuted AP method to obtain a smooth potential energy value. 

 The energy obtained by treating the active and buffer zone at the high level of 

theory can be written as: 
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 In the permuted AP method all high-level energy contributions from groups in the 

buffer zone are smoothed according to their radial coordinate: 
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where iP  is a smoothing function.  All derivatives of the potential energy with respect to 

the coordinates vary smoothly in this method up to the same order for which the 

smoothing functions iP  vary continuously.  For example, if one uses the smoothing 

functions of equations 6 and 7, then V and its first and second derivatives are continuous.  

 In practical applications of the permuted AP method where the energy 

contribution of the terms in the series in equation 9 decrease rapidly, it may be advisable 

to truncate the series in equation 10.  While this procedure significantly decreases the 

computational effort of the permuted AP method for systems with many groups in the 

buffer zone, it also creates small (but controllable) discontinuities in the potential energy 

and its derivatives. 

 

3.B. Sorted AP method 

 While the permuted AP method can be used in multilevel MD and MC 

simulations, the computational effort of the permuted AP method scales poorly with the 

number of groups in the buffer zone.  This section presents a method, the sorted adaptive 

partitioning (sorted AP) method, whose computational effort scales linearly with the 
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number of groups in the buffer zone.  The modification requires that all groups in the 

buffer zone be sorted in some canonical order.  We choose to sort the buffer-zone groups 

with respect to their radial coordinate, i.e., the buffer-zone group closest to the primary 

group is numbered 1, the next closest group is numbered 2, etc.  Next, 1+N  multilevel 

calculations are performed.  One multilevel calculation has only the active zone treated at 

the high level of theory, one multilevel calculation has the active zone and group 1 in the 

buffer zone treated at the high level of theory, one multilevel calculation has the active 

zone and groups 1 and 2 in the buffer zone treated at the high level of theory, etc.  The 

sorted AP potential V is a function of the 1+N  computed multilevel energies, i.e.: 

  ( )A
N

AAA VVVVVV ,,2,12,11 ,,,, KK=  (11) 

Note that A
jV ,,2,1 K  is a multilevel calculation (in particular, a two-level calculation 

because the groups in the active zone and groups 1,2,…, j are treated at the high-level and 

all other groups in the buffer zone and in the environmental zone are treated at the low 

level).  A smooth potential energy is computed in the sorted AP method by the recursion 

relation:  

  ( ) AiiA
iii VVNiVVV ≡≤≤Φ−+Φ= − 01,,2,1 with1,1K  (12) 

where iΦ  is a smoothing function that depends on irrr ,,, 21 K , and VVN ≡  is the 

potential energy of the system.  The energy term, iV , in equation 12 can be interpreted as 

a weighted sum of the energy A
iV ,,2,1 K  (calculated with the active zone and the first i 

groups in the buffer zone treated at the high level of theory) and an energy term 1−iV  
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computed from weighted sums of energies that treat the active zone and up to i-1 groups 

in the buffer zone at the high level of theory.   

To compute the force on the atoms in the sorted AP method, equation 12 is 

rewritten as: 

  ( ) 1with1 0
0 1

,,2,1 ≡Φ∑ ⎟
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For the sorted AP method to define a smooth potential energy (continuous first and 

second derivatives) the smoothing functions jΦ  have to fulfill a number of requirements 

when group 1 crosses the boundary from 1r  equals +≡+ minmin rr ε  to −≡− minmin rr ε  

(or when a group crosses in the opposite direction), when group N crosses the boundary 

from Nr  equals −≡− maxmax rr ε  to +≡+ maxmax rr ε , or when groups m and l switch 

their order because lr  changes from +≡+ mm rr ε  to −≡− mm rr ε .  (Note that we define ε  

as a positive infinitesimal.)  We will summarize these requirements next.  To simplify the 

notation, we will list only the arguments of iΦ  that have critical values; thus, for 

example, ( )+=Φ mki rr  is shorthand for ( )imki rrrrr ,,,,, 21 KK +=Φ .  The continuity 

conditions at the inner boundary are 

  ( ) 1min11 ==Φ +rr  (14) 

  ( ) ( ) Njrrrr jj ,,2formin11min1 K==Φ==Φ −
−

+  (15) 

  ( )( ) 0==Φ +
min11grad rr  (16) 

 ( )( ) ( )( ) Njrrrr jj ,,2forgradgrad min11min1 K==Φ==Φ −
−

+  (17) 
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those at the outer boundary are 

  ( ) 0max ==Φ −rrNN  (18) 

  ( ) ( ) 1,,1formaxmax −==Φ==Φ −+ Njrrrr NjNj K  (19) 

  ( )( ) 0==Φ +
mingrad rrNN  (20) 

  ( )( ) ( )( ) 1,,1forgradgrad minmin −==Φ==Φ −+ Njrrrr NjNj K  (21) 

and whenever the ordering of two groups m and 1+m  in the buffer zone changes, we 

require  

  ( ) 01 ==Φ +
+ mmm rr  (22) 

  ( )( ) 0==Φ +
+ mmm rr 1grad  (23) 

  ( )( ) ( )( ) Njrrrr mmjmmj ,,1forgradgrad 11 K==Φ==Φ −
+

+
+  (24) 

Equations 14 - 24 make it clear why we defined the smoothing functions jΦ  to depend 

on the coordinates of all groups in the buffer zone.  (Smoothing function jΦ  has to 

depend on group 1−m , m, and 1+m  to consider changes in the ordering of group m.  In 

addition, jΦ  has to depend on all other groups that might change ordering with group  

1−m  and 1+m .  And so on, until it depends on all coordinates.)   

One possible functional form for the smoothing functions, iΦ , is given by 

  ( ) 31 −+=Φ ii χ  (25) 
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where iP  is a one-dimensional smoothing function; we will use the function given in 

equation 6.  Figure 2 illustrates the variation of the smoothing functions 1Φ , 2Φ , and 

3Φ  for a system with three groups, i, j, k, in the buffer zone.  Group i is moving through 

the buffer zone (initially group 1, then group 2, and finally group 3), group j is located at 

( ) ( ) 1.0minmaxmin =−− rrrrj , and group k is located at 

( ) ( ) 5.0minmaxmin =−− rrrrk .  As required by equation 22, the smoothing functions 

1Φ  and 2Φ  are zero when group i and j change their order, and 2Φ  and 3Φ  are zero 

when group i and k change their order. 

There are many possible functional forms for the sorted smoothing functions, iΦ .  

Sometimes they must change rapidly to satisfy all the constraints, as shown in Figure 2.  

Under these circumstances, the force component from the gradient of the smoothing 

functions 1Φ  and 2Φ  can give a significant contribution to the force on the atoms in the 

buffer zone and the primary group in the active zone (to fulfill Newton’s third law the 

gradient of iΦ  exerts a force on these groups through the gradient of iP ).  In particular, 

the sign of the force from the gradient of the smoothing functions changes when the sort 

order changes.  The magnitude of this force component depends on the functional form of 

the smoothing functions iΦ .  The force components from the smoothing functions 

almost cancel if the levels of theory used to calculate the energy give similar results, e.g., 

if the energy differences between AV , AV1 , and AV2  are small.   

To evaluate the quality of a number of functional forms for the smoothing 

functions iΦ , we performed multiple tests using the sorted AP method with different 

functional forms for the smoothing functions iΦ .  Some of these tests are given in 
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supporting information.  These tests show that the function in equation 25 is a reasonable 

choice, and we will use this choice in the rest of this article. 

To conclude, the number of multilevel calculations required to define a smooth 

potential energy (whenever groups of atoms cross boundaries and change subsystem) is 

reduced in the sorted AP method in comparison to the permuted AP method by sorting 

the groups in the buffer zone and using “smart” smoothing functions that depend on the 

coordinates of all groups in the buffer zone. 

 

4. Comparison of multilevel simulation schemes  

4.A. H2O molecule leaves the first solvation shell of a Li+ ion 

 In this section, we compare the two versions of the newly developed AP method 

with Rode’s hot spot method41,42 and Kerdcharoen and Morokuma’s ONIOM-XS 

method39 for the path of a water molecule leaving the first solvation shell of a Li+ ion.  

Lithium salts are widely used in industrial applications, synthesis, and medicine, and they 

have been studied theoretically by San-Roman et al.,79 Loeffler et al.,47,75,80 and 

Spangberg et al.81  Since the inclusion of many-body effects is often crucial for the 

description of ions in solution,81,82 Loeffler et al.47,75,80 studied the hydration of Li+ by hot 

spot MD simulations with a QM/MM potential.  We will use this system to illustrate the 

change in potential energy and force when a water molecule leaves the first solvation 

shell of a Li+ ion, crosses the buffer zone, and enters the environmental zone in a 

simulation using the hot spot, ONIOM-XS, permuted AP, and sorted AP methods.  The 

model system studied consists of one Li+ ion (the primary group defining the center of 

the active zone) and eight water molecules.  Initially, four water molecules (the first 
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solvation shell around the Li+ ion) are in the active zone with radius 7 a0, where  

1 a0 ≡ 1 bohr = 0.5292 Å, two water molecules are in a buffer zone that is 1 a0 thick, and 

two water molecules are in the environmental zone.  Figure 3 illustrates the initial 

configuration of the system of Li+ in water that was obtained by minimizing the potential 

energy from a random configuration of the system with the low-level potential used to 

describe the interaction between the molecules.  The low-level intermolecular potential 

between the water molecules was computed with the CF2 water model83 augmented with 

an intramolecular three-body potential (BJH water model).84  The low-level Li+ - H2O 

interactions were described by a three-body potential from Loeffler and Rode.47,75,80,85  

For the high-level potential energy, we performed density functional calculations with the 

PBEh (also called PBE0) functional86,87 with a very fine (m5)88 numerical grid and a split 

valence basis set of double zeta quality with polarization functions (SV(P)).89  The two 

levels are combined using the IMOMM scheme from Maseras and Morokuma.7  The test 

consists of the movement of one water molecule from the first solvation shell of a cluster 

(we use a cluster rather than a liquid to provide a simple test case) into the environmental 

zone (see Figure 3).  No other molecule is moved during the simulation.  Each water 

molecule is a group.  The distance of a water molecule to the primary group (Li+) is 

defined as the Li+-to-O distance.  Figure 4 illustrates the change of the potential energy 

along the path using the hot spot, ONIOM-XS, permuted AP, and sorted AP method.  

The potential energy varies smoothly in simulations using the permuted and sorted 

version of the AP method.  In contrast, in simulations using the hot spot and ONIOM-XS 

method, there are significant discontinuities in the potential energy curve.  In simulations 

using the hot spot method the discontinuity in the potential energy curve at the boundary 
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between buffer and environmental zone is 3 kcal/mol.  In simulations using the ONIOM-

XS method, there are two discontinuities in the potential energy curve on both sides of 

the boundary of the buffer zone of up to 1 kcal/mol.  (The potential energy curves of the 

different methods do not agree in the active and environmental zone since at least two 

groups of atoms are always present in the buffer zone during the simulation, and all 

methods smooth their contributions differently.)   

Figures 5 and 6 illustrate the change in the force (magnitude of atomic force 

vector) on atom H1, Li+, and O2 (see Figure 4) along the path.  The variation of the force 

on atom H1, see Figure 5, is characteristic of most atoms in the system.  Simulations with 

both versions of the newly developed AP method lead to smooth changes in forces 

whenever a group of atoms changes zones.  Simulations with the hot spot and ONIOM-

XS methods, in contrast, lead to significant jumps in the forces on the atoms in the 

system.  Figure 6b illustrates that the only force components smoothed in the hot spot 

method are the ones from the moving group, i.e., the forces on atom O2.  Furthermore, 

Figure 6 shows that the discontinuities in the forces in the ONIOM-XS simulation are 

often as large as in the hot spot method if multiple groups are present in the buffer zone.  

Finally, Figure 6a illustrates that there can be rapid non-monotonic changes in the force 

components in simulations using the sorted AP method.  These rapid non-monotonic 

changes can occur if the energy difference between multilevel calculations computed 

with different groups treated at a high level of theory is significant.  Rapid non-

monotonic changes in the forces can be minimized by optimizing the low-level 

interaction potential for use in multilevel calculations with the high-level interaction 
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potential.  No method joining low-level and high-level calculations will be free of such 

problems if the low-level method differs too greatly from the high-level one. 

 

4.B. NVE simulations  

 To analyze the consequences of discontinuities in the potential energy and its 

derivatives on molecular simulation results, we performed molecular dynamics 

simulations in the microcanonical ensemble (NVE).  The model system consists of 171 

argon atoms in a periodic box with a box length of 20 Å (this is a dense supercritical fluid 

for the conditions of our simulation).90  One argon atom is chosen to be the primary 

group, and the radius of the active zone is Å5min =r .  The interaction energy is 

calculated as the multilevel energy (IMMMM-type scheme)7 with the Lennard-Jones 

potential  
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describing the low-level interaction ( kcal/mol23787.0=ε , Å405.3=σ )90 and the 

Morse potential  
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describing the high-level interaction ( kcal/mol23787.0=D , Å822.3=er , and 

1-Å570.1=a ).  All pairwise interactions of argon atoms further than σ5.2  apart were 

neglected.  To remove the discontinuities in the low-level and high-level interaction 

potentials due to the cut-off radius, we used the shift-force modification of the Lennard-

Jones and Morse potentials.91  The initial configuration of the argon atoms in the NVE 
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simulations was obtained from a short NVT simulation at 180 K.  Newton’s equations of 

motion were integrated with the velocity Verlet algorithm92 with a time step of 0.1 fs.   

 Figure 7 illustrates the total energy during the first 400 ps of simulations using the 

hot spot, ONIOM-XS, permuted AP, and sorted AP methods with a buffer zone 0.5 Å 

thick and also a scheme with an infinitesimally narrow buffer zone 

( Å5.5maxmin == rr ).  It is shown that both versions of the AP method conserve the 

total energy during the simulation.  (Using a larger time step of 1 fs in simulations using 

the sorted AP method results in a small drift in the total energy of 0.02 kcal/mol.)  

Simulations using an infinitesimally narrow buffer zone or using the hot spot and the 

ONIOM-XS methods do not conserve total energy well; significant drifts in the total 

energy are observed, and they result in a continuous heating of the simulation system.  

Figure 8 illustrates the average temperature (averaged from the beginning of the 

simulation to time t) of the simulation system.  While the average temperature does not 

change in simulations using the AP method (it is about 172 K), the temperature increases 

to 195 K in simulations using the ONIOM-XS method.  In simulations using an 

infinitesimally narrow buffer zone, the temperature increases to 202 K, and in simulations 

using the hot spot method the temperature increases to 319 K.  It is interesting to note that 

simulations using the hot spot method heat up even faster than simulations using an 

infinitesimally narrow buffer zone, which is the same as no smoothing.  In fact, the hot 

spot method caused the simulation to become unstable (total energy not conserved by 

many orders of magnitude) after 500 ps (not shown).  In summary, the only simulation 

protocol that properly samples configurations from an equilibrium distribution is the AP 

method. 
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 Figure 9a illustrates the radial distribution function (RDF) of the primary argon 

atom relative to all other argon atoms in the system.  The RDFs are obtained from 

configurations sampled during the time interval from 200 to 1000 ps (due to stability 

problems in simulations using an infinitesimally narrow buffer zone and the hot spot 

method the sampling period is reduced in these simulations to the time interval from 200 

to 400 ps).  Figure 9a shows that the location of the buffer zone was chosen in all 

simulations to be between the first and second shell of argon atoms around the primary 

argon atom.  The RDFs obtained with the permuted AP method and sorted AP method 

are essentially identical except for a small difference in the buffer zone.  In contrast, 

simulations using an infinitesimally narrow buffer zone, the hot spot method, or the 

ONIOM-XS method lead to RDFs that differ significantly; the increase in the system 

temperature during the simulation leads to a reduction of all peaks in the RDF. 

 Figure 10a explains why simulations that use the hot spot method heat up even 

faster than those with an infinitesimally narrow buffer zone.  The total momentum is not 

conserved in simulations using the hot spot method (unlike all other algorithms).  The 

simulation system starts to drift in a random direction, and a convective flow of atoms is 

superimposed on the diffusive movement of the atoms.   

 To remove all discontinuities in the potential energy and force in multilevel 

simulations, the AP method performs multiple multilevel calculations per time step (in 

contrast to the hot spot method).  During the MD simulations presented in this study the 

permuted version of the AP method performed on average 8.8 multilevel calculations per 

time step.  The sorted AP method required 3.3 multilevel calculations per time step, and 
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the ONIOM-XS method needed 1.9 multilevel calculations per time step.  On average 2.4 

argon atoms were present in the buffer zone during the simulations. 

 

4.C. NVT simulations  

 Since a number of studies have been published where ligand exchange rates and 

diffusion rates have been computed with the hot spot method in the NVT 

ensemble,29,42,61,62,64,66,67,74,76,77,80 we repeated the argon simulations in the canonical 

ensemble to test the reliability of the computed data in these studies.  The average 

temperature was set in these simulations at 172 K using the Nosé-Hoover two-chain 

thermostat.92  Again the time step was 0.1 fs.  Figure 9b illustrates the RDFs of the 

primary argon atom relative to all other argon atoms in the system.  The RDFs are 

obtained from configurations sampled during the time interval from 200 to 1000 ps.  All 

simulation protocols give similar RDFs with only small variations in the first peak height 

and around the buffer zone.  Figure 10b illustrates the total momentum during the 

simulation in the NVT ensemble.  Simulations using the hot spot method show a 

significant momentum drift and overall convective flow of argon atoms.  As a result, we 

believe any dynamical property obtained with multilevel MD simulations using the hot 

spot method should be carefully analyzed.   

 

5. Extension to multiple active zones 

 In this section, we extend the AP method to study systems with multiple active 

zones, including the possibility that they merge during the simulation.  Examples of 

systems where this extension could be useful are solutions containing multiple ions and 
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counterions or a system of multiple reagents diffusing through a microporous catalyst.  In 

the limit of only one active region the algorithm is equivalent to the one presented in 

section 3.   

 We assume that there are M active zones in the system that are each surrounded 

by a buffer zone.  All active zones and their buffer zones are immersed in a single 

environmental zone.  As before the buffer and environmental zones contain groups, and 

each active zone is centered on a primary group.  Altogether there are N groups in the 

buffer zones.  The first step of the AP method is to calculate the distance ikr  of all N 

groups i in the buffer zones to all M primary groups k.  Notice that we have generalized 

ir  of previous sections to ikr .  Assuming spherical active zones, dimensionless distances 

are defined: 

  kikk
kk
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ik rrr

rr
rr

max,min,
min,max,

min, for, <<
−

−
=α  (29) 

where krmin,  and krmax,  define the buffer zone around the active zone k.  (The AP 

method is not limited to spherical active and buffer zones.  In fact, both zones can have 

an arbitrary shape and only the parameter ikα , defined in equation 29, has to be adjusted 

to the geometric shape of both zones.)  Next, the smoothing functions ikS  are calculated: 

  110156 345 +−+−= ikikikikS ααα  (30) 

To define a global smoothing function iP  of group i in the system that is 0 only if all 

( )MkSik ,,1 K=  are 0, 1 whenever at least one ( )MkSik ,,1 K=  is 1, and increases 

monotonously with increasing ( )MkSik ,,1 K= , we set: 
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In the permuted AP method with multiple active zones, equation 10 is used where now 

AV  is the energy with only active zones treated at a high level of theory, A
iV  is the 

energy with active zones and group i in one of the buffer zones treated at a high level of 

theory, etc.  Altogether, 2N calculations are performed in the permuted AP method to 

obtain a smooth potential energy and force whenever groups change subsystems or high-

level active zones merge in the multilevel simulation. 

 For systems with one active zone, all groups in the buffer zone are sorted in the 

sorted AP method with respect to their iP  values, which measures their distance from the 

primary group (see section 3).  For simulations with multiple active zones, all groups 

present in at least one buffer zone are sorted with respect to decreasing iP  values, 

although iP  is now more complex.  In the sorted AP method with multiple active zones, 

the smoothing functions iΦ  are again calculated using equation 25 and 26.  The smooth 

potential energy is obtained in the sorted AP method using equation 13, where A
iV ,,2,1 K  is 

now the energy with the active zones and the first i groups in the buffer zones treated at a 

high level of theory.  Altogether, 1+N  multilevel calculations are performed in the 

sorted AP method for systems with multiple active zones. 

 

6. Software 

 Quantum chemical electronic structure calculations have been performed with the 

TURBOMOLE V5.7 suite of programs.93  The classical MD simulations presented in 

section 4 have been performed with the AP, ONIOM-XS, and hot spot algorithms added 

to the ANT program.94  The permuted and sorted AP algorithms, for the cases of one or 
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multiple active zones, is being added as options to the QMMM package for combined 

quantum mechanical and molecular mechanical calculations.95   

 

7. Conclusions 

 A new method, called the adaptive partitioning (AP) method, has been presented 

for combining multilevel methods, such as QM/MM methods, with sampling schemes, 

such as MD or MC methods, for applications to systems with non-localized active 

regions in which atoms or groups of atoms move between high-level and low-level zones.  

The method dynamically partitions the system into high-level and low-level zones and 

removes all discontinuities in the potential energy and force whenever groups of atoms 

cross boundaries and change zones.  It has been demonstrated that multilevel MD 

simulations in the microcanonical ensemble that use the AP method conserve total energy 

and momentum.  The AP method can be extended to study systems with multiple active 

zones that merge during the simulation, and therefore allows, e.g. the multilevel study of 

ions and counterions in solution or the study of molecules diffusing and reacting on 

catalytic surfaces and in membranes.  Two versions of the new method have been 

presented, one scaling as O(2N) and one with linear scaling in N, where N is the number 

of groups in one or more buffer zones separating the active zones from the environmental 

zone.   

 It has been shown that the hot spot and ONIOM-XS method, which are algorithms 

that were designed for multilevel MD simulations, do not remove all discontinuities in 

the potential energy and force on the atoms in the system.  As a result, it is unclear if 

configurations from equilibrium distributions are sampled in simulations using these 
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algorithms.39  The hot spot and ONIOM-XS methods did not conserve total energy in a 

multilevel MD test simulation of 171 argon atoms in a periodic box.  The simulation 

system heated up significantly.  The hot spot method also does not conserve momentum 

and performed worse in our test simulations than a method that does not alter the forces 

on the atoms at all when groups of atoms change subsystem; therefore, we do not 

recommend the hot spot method for demanding applications.  The ONIOM-XS method 

performed in our tests slightly better than the hot spot method, but it only removes 

discontinuities in the potential energy and force if at most one group of atoms is present 

in the buffer zone.  Under these circumstances, the algorithm is equivalent to the 

permuted AP method.  Only when the ONIOM-XS method fails to compute a smooth 

potential energy and force does the AP method require more multilevel calculations.  As 

a result, we believe the AP method should be used in multilevel simulations whenever the 

discontinuities in the potential energy and force are significant enough that equilibrium 

configurations cannot be sampled reliably with a simulation scheme that does not remove 

any discontinuities. 

 The tradeoff between the permuted and sorted version of the AP algorithm is as 

follows.  The permuted AP scheme is more expensive but requires only mild continuity 

conditions on the permuted smoothing functions iP .  The sorted AP scheme is less 

expensive but places complicated constraints on the sorted smoothing functions iΦ .  

Nevertheless, these constraints are manageable, and the sorted AP is preferred for 

simulations of complex systems or systems with large active zones, where the average 

number of groups in the buffer zone may necessarily be large.  If, however, the average 

number of groups in the buffer zone is only 2, the permuted AP is only about 33% more 
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expensive than the sorted AP, and it may be more efficient if it allows a larger time step 

because it yields a smoother potential energy function. 

 A key advantage of the way that we define the AP method is that it is blind to the 

choice of high-level and low-level methods.  For example, the high-level theory could be 

coupled cluster theory and the low-level one could be Hartree-Fock theory, combined by 

an integrated molecular orbital method with a correlated capped subsystem,8 or the high-

level theory could be DFT, and the low-level one molecular mechanics, linked by 

generalized hybrid orbitals.19 
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Figure Caption 

Fig. 1   Partitioning of a multilevel system into an active (core) zone, buffer zone, and 

environmental zone. 

 

Fig. 2   Variation of smoothing functions 1Φ , 2Φ , and 3Φ  of the sorted AP method for 

a system with three groups, i, j, k, in the buffer zone.  Group i is moving through the 

buffer zone, group j is located at ( ) ( ) 1.0minmaxmin =−− rrrrj , and group k is located 

at ( ) ( ) 5.0minmaxmin =−− rrrrk .  The smoothing functions 1Φ  and 2Φ  are zero when 

group i and j change their order; 2Φ  and 3Φ  are zero when group i and k change their 

order. 

 

Fig. 3   Initial configuration for the simulation of a Li+ atom surrounded by a water 

cluster.  The system is partitioned into an active zone with initially four water molecules, 

a buffer zone with initially two water molecules, and an environmental zone with initially 

two water molecules.  The arrow illustrates the movement of the water molecule leaving 

the first solvation shell of the Li+ atom. 

 

Fig. 4   Potential energy of the Li+ - H2O system illustrated in Figure 3 when a water 

molecule leaves the high-level active zone.  Energies are computed with the hot spot, 

ONIOM-XS, permuted AP, and sorted AP methods. 
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Fig. 5   Magnitude of the force vector on atom H1 (see Figure 3) when a water molecule 

leaves the high-level active zone around a Li+ atom.  Forces are computed with the hot 

spot, ONIOM-XS, permuted AP, and sorted AP methods. 

 

Fig. 6   Magnitude of the force vector on the O2 and the Li+ atom (see Figure 3) when a 

water molecule leaves the high-level active zone around a Li+ atom.  Forces are computed 

with the hot spot, ONIOM-XS, permuted AP, and sorted AP methods. 

 

Fig. 7   Total energy during an MD simulation in the microcanonical ensemble.  The 

system consists of 171 argon atoms in a periodic box with a box length of 20 Å.  One 

atom is chosen to be the primary group, and the radius of the active zone is Å5min =r .  

Trajectories are computed using the hot spot, ONIOM-XS, permuted AP, and sorted AP 

methods with a buffer zone 0.5 Å thick and also a scheme with an infinitesimally narrow 

buffer zone ( Å5.5maxmin == rr ).  Total energy data from the simulation using the 

permuted AP method are directly underneath the data from the sorted AP simulation. 

 

Fig. 8   Average temperature during an MD simulation in the microcanonical ensemble 

(the average is performed from the beginning of the simulation to time t).  The system 

consists of 171 argon atoms in a periodic box with a box length of 20 Å.  One atom is 

chosen to be the primary group, and the radius of the active zone is Å5min =r .  

Trajectories are computed using the hot spot, ONIOM-XS, permuted AP, and sorted AP 

methods with a buffer zone 0.5 Å thick and also a scheme with an infinitesimally narrow 

buffer zone ( Å5.5maxmin == rr ).   
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Fig. 9   Radial distribution function of the primary Ar atom relative to all other Ar atoms 

in the system.  The system consists of 171 argon atoms in a periodic box with a box 

length of 20 Å.  The radius of the active zone is Å5min =r .  Trajectories are computed 

using the hot spot, ONIOM-XS, permuted AP, and sorted AP methods with a buffer zone 

0.5 Å thick and also a scheme with an infinitesimally narrow buffer zone 

( Å5.5maxmin == rr ).  (a) Simulations are performed in the NVE ensemble.  (b) 

Simulations are performed in the NVT ensemble at a temperature of 172 K. 

 

Fig. 10   Total momentum per atom ( ∑
α

αP
171
1 ) during an MD simulation.  The system 

consists of 171 argon atoms in a periodic box with a box length of 20 Å.  One atom is 

chosen to be the primary group, and the radius of the active zone is Å5min =r .  

Trajectories are computed using the hot spot, ONIOM-XS, permuted AP, and sorted AP 

methods with a buffer zone 0.5 Å thick and also a scheme with an infinitesimally narrow 

buffer zone ( Å5.5maxmin == rr ).  Total momentum computed in simulations using the 

hot spot method is illustrated on the right ordinate, whereas the scale is given on the left 

for the other methods.  (a) Simulations are performed in the NVE ensemble.  (b) 

Simulations are performed in the NVT ensemble at a temperature of 172 K. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

rmax

rmincore 

buffer 

environment

center of 
active site 



39 

Figure 2 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

(ri - rmin)/(rmax - rmin)

Φ1

Φ2

Φ3

Φ

 



40 

 Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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