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Abstract

Multiconfiguration molecular mechanics (MCMM) is a general algorithm for construct-

ing potential energy surfaces for reactive systems (Kim, Y.; Corchado, J. C.; Villà, J.;

Xing, J. and Truhlar, D. G. J. Chem. Phys. 2000, 112, 2718). This paper illustrates

how the performance of the MCMM method can be improved by adopting improved

molecular mechanics parameters. We carry out calculations of reaction rate constants

using variational transition state theory with optimized multidimensional tunneling on

the MCMM PESs for three hydrogen transfer reactions, and we compare the results to

direct dynamics. We find that the MCMM method with as little as one electronic struc-

ture Hessian can describe the dynamically important regions of the ground-electronic

state PES, including the corner-cutting-tunneling region of the reaction swath, with

practical accuracy.
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1. Introduction

Multiconfiguration molecular mechanics1 (MCMM) has been developed as a sys-

tematic scheme to generate potential energy surfaces for chemical reactions by fitting

high-level electronic structure data by taking advantage of previously available non-

reactive molecular mechanics2−5 potentials to build in a zero-order description of the

nonreactive modes. In this way, MCMM extends molecular mechanics2−5 (MM) to

reactive systems. In the MCMM method, the Born-Oppenheimer potential energy at

a geometry q is represented as the lowest eigenvalue of the 2×2 electronically diabatic

Hamiltonian matrix:

V(q) =

(

V11(q) V12(q)
V12(q) V22(q)

)

, (1)

where, following Warshel and Weiss,6 the diagonal elements are analytic MM PESs for

reactants and products. The diagonal elements may be interpreted as the energies of in-

dividual valence bond configurations, as in semiempirical valence bond theory,7−23 and

therefore the off-diagonal element (diabatic coupling) may be interpreted as a resonance

integral. The resonance integral and its Taylor’s series expansion24, 25 at a geometry q,

are obtained from electronic structure calculations of the Born-Oppenheimer potential

energy, and in MCMM these Taylor’s series have been joined into a global potential

energy surface (PES) by means of multidimensional Shepard interpolation27, 28 in in-

ternal coordinates.1 (An alternative recently proposed is to fit V12 by a polynomial

times a spherical Gaussian.26) Implementation of nuclear permutation symmetry into

the MCMM algorithm will be described elsewhere.29

The MCMM procedure has been tested by rate constant calculations for several

hydrogen transfer reactions.1, 30 A partial electronic-structure-Hessian scheme31 has

been developed to facilitate the application of the MCMM method to larger systems;

it reduces computational effort to generate electronic structure Hessians as input for

MCMM. More recently, combined molecular mechanics - quantum mechanics methods
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have been used to generate data at Shepard points.32 The present paper reports that

refinement of the molecular mechanics parameters considerably improves the efficiency

of the MCMM method as compared to the previous1, 30, 31 work. We test the MCMM

method with the improved MM parameters for three of the reactions considered in the

previous papers,1, 30, 31 in particular:

Cl + HBr → Br + HCl (R1)

OH + CH4 → CH3 + H2O (R2)

and

NH2 + CH4 → CH3 + NH3. (R3)

2. Molecular mechanics

In the present work, we use the MM3 force field33−36 augmented with a few new

parameters30 (for functionalities that are not present in MM3) and with a modified van

der Waals energy term. In the original MM3 force field, the van der Waals interaction

energy between two atoms is represented by the Exp-6 potential:

VExp−6(r) = ǫ

[

Ae−Br/ro

− C
(ro

r

)6
]

, (2)

where ro is the sum of the van der Waals radii, and ǫ is an energy parameter. The

van der Waals term in the mc-tinker program that has been used for MCMM

calculations1, 30−32 is written as a linear combination of (1) and an r−12 repulsive term:

Vvdw(r) = ǫ

[

Ae−Br/ro

− C
(ro

r

)6
]

+ DE
(ro

r

)12

, (3)

where E is defined as

E =
V6−Exp(r)

(

ro

r

)12

∣

∣

∣

∣

∣

r= 1

2
ro

. (4)

The values for A, B, and C are the same as in the original MM3 formulation,34 viz.

184000.0, 12.0, and 2.25, respectively. In MM3, D is zero. However, in our previous
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work (mentioned in the manual of mc-tinker
37 but not in the articles1, 30, 31) we set

D=0.2 to avoid VExp−6(r) tending to −∞ as r → 0. In the present work we found that

the convergence of the MCMM procedure is more sensitive than we had expected to

introducing this change in VExp−6(r).

Within MM3, the van der Waals energy between two molecules is computed as a

sum of individual interactions for each pair of atoms (excluding 1–2, 1–3, and 1–4 in-

teractions), and the largest component is usually the one that describes the interaction

between the atoms that come into closest proximity. In particular, in the hydrogen

transfer reactions Y + HX → YH + X, the largest components usually correspond to

the Y· · ·H interaction in the X—H· · ·Y MM term and to the X· · ·H interaction in

the X· · ·H—Y MM term. In the regions of the PESs close to the saddle point of the

reaction, the van der Waals terms often dominate all other MM terms and thus control

the magnitudes of the the matrix elements V11 and V22.

Figure 1 illustrates the magnitudes of the MM terms in the dynamically impor-

tant region of reaction R3. In the MCMM-N notation used in the figure captions and

throughout this paper, N indicates the number of nonstationary points with electronic

structure input (energy, gradient, and Hessian) included in the Shepard interpolation.

We also use the energy and Hessian at the saddle point, so the total number NH of

electronic structure Hessians used is N+1. For example, MCMM-0 means that the

interpolated surface is constructed using input information at three points, i.e., elec-

tronic structure data at the reaction saddle points and MM data at two MM minima;

MCMM-1 means that in addition to these three points, one nonstationary point with

electronic structure Hessian is added, and so on. Because we also place Shepard points

at the reactant and product van der Waals well (V12 and its derivatives are zero at these

points), the number of Shepard points is N+3. In Figure 1, VvdW (I) and VvdW (II) de-

note the van der Waals energies of valence bond configurations I and II that describe
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the reactants and products, respectively; and V ′ denotes all other contributions to the

MM energy of configuration (I), resulting from the bond stretching and valence bend-

ing terms. Setting D as large as 0.2, as was done in the previous work, leads to large

values of VvdW , which, in turn, lead to large values of V11 and V22. Then, to fit the

Born-Oppenheimer potential energy surface, one needs a large value V12. Effectively

one requires a cancellation between a high value of the diabatic energy and a large

energy lowering due to resonance. As one moves away from the point where Born-

Oppenheimer data was used for the fit, this cancellation may be imperfect, and the

resulting MCMM fit may deteriorate. In the previous work that resulted in an under-

estimation of the potential energy on the concave side of the reaction path (cf. Figure

12 of Ref. 30). This is illustrated in Table 1, which lists the MCMM energies along

with the corresponding matrix elements at three geometries for reaction R3. With

D=0.2, even with 11 electronic structure Hessians (MCMM-10, Ref. 30), the PES is

inaccurate at geometries far away from the locations of the data points.

It is therefore instructive to monitor the magnitudes of the matrix elements in the

dynamically important region. To make the van der Waals function (1) softer at small

r, we reduced the value of D and set it, in particular, to 0.01 (in fact the results are not

overly sensitive to D values of about this magnitude, and D=0.005–0.01 seems quite

reasonable for a few other reactions we examined as well). A rather convenient way to

find a good value for D for a particular reaction is to choose the one that minimizes

the deviations of MCMM energies from single-point accurate energies for a few points

on both the convex and concave sides of the MEP. On the one hand it is encouraging

that we obtained useful accuracy in previous work even without such optimization of

MM parameters. On the other hand, it is even more encouraging that, as we will

see below, even such economical partial optimization of the MM parameters in the

present work gives dramatic improvement. The use of a softer function in (1) makes
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the matrix elements V11, V22, and V12 smaller in the saddle point region and eliminates

the problems associated with the appearance of artificial energy wells encountered in

the previous work. This will be discussed in Section 3.

We note that if further adjustment were necessary one could adjust ro instead of

D, if desired. We have not tested other functional forms for the van der Waals energy,

and we restricted ourselves to the use of eq. 2 because it is based on the standard MM3

force field, and it leads to rather accurate final results. Another strategy one might

employ to reduce the magnitude of V11 and V22 near the saddle point is to replace

the harmonic or almost-harmonic bond stretching terms (these terms dominate V ′ at

geometries where it is large in Figure 1) by Morse potentials, which are more realistic

for large bond extensions. One must however be careful to ensure that V11 and V22 both

exceed the Born-Oppenheimer potential energy at all geometries. If not, V12 becomes

imaginary, and one cannot fit the Born-Oppenheimer surface with a real V12. Thus

there is a tradeoff. One wants V11 and V22 to be steep enough to avoid this problem

but not so steep as to make the fit unstable or to yield unphysical results at geometries

away from the Hessian input points.

3. MCMM surfaces and rate constants

For the present purposes, we consider a PES to be converged if it yields converged

rate constants. Rate constants for reactions R1-R3 were calculated using MCMM PESs

and compared to direct dynamics calculations in which potential energies and their

derivatives are computed quantum mechanically on the fly. These rate constants (see

Tables 2–4) were obtained by variational transition state theory with multidimensional

tunneling (VTST/MT).38−45 The direct dynamics results used for comparison are taken

from the previous work.30, 31 The electronic structure methods used in the direct dy-

namics calculations30, 31 were MP2(fc)/6-31G(d)46 for R1 and MPW1K/6-31+G(d,p)47

for R2 and R3, and we used the same methods to generate data at the Shepard points.
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For consistency, we use the same dynamical algorithms to calculate MEPs and the

vibrationally adiabatic energy curves as employed previously.30 The electronic struc-

ture calculations to obtain the input for the MCMM surfaces were performed with the

Gaussian 0348 suite of programs. MCMM calculations were carried out with a mod-

ified mc-tinker code, and the dynamics calculations on the MCMM surfaces were

performed using tinkerate
49 which interfaces the VTST/MT code polyrate

50 to

mc-tinker.

In keeping with the previous work, the results shown in Tables 1–5 are based on

the standard strategy that was presented earlier30 for placement of Shepard points.

In addition to the MCMM-0 estimate that uses only information at stationary points

and the MCMM-10 scheme that was recommended30 to converge kCV T/LCT , the results

with some intermediate numbers of nonstationary points are also shown. All results

presented in Tables 2-5 were obtained with D=0.01.

Tables 2-5 show that the canonical variational transition state rate constants, kCV T ,

are well converged using the MCMM-0 PESs. The deviations of the MCMM-N rate

constants from their direct dynamics counterparts (shown as mean unsigned percentage

errors (MUPEs) in Table 5) sometimes get larger when the number of Shepard points

is increased. This happens due primarily to the interpolative noise in the frequencies1

that are used to calculate the vibrationally adiabatic ground-state potential energy

curve. As we mentioned before,30 we consider convergence of rate constants to better

than 25% to be very good, keeping in mind that electronic structure calculations and,

in fact, the experiments are seldom more accurate.

It is of special interest to examine the success the MCMM method in reproduc-

ing the direct dynamics rate constants including tunneling because these are sensitive

to more than the potential in a localized dynamical bottleneck region. We consider

zero-, small-, and large-curvature (ZCT,39 SCT,41, 42 LCT41, 43, 45) approximations as
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well as microcanonically optimized multidimensional tunneling (µOMT 43, 45), which

involves accepting the larger of the SCT and LCT results at each total energy. For

large-curvature tunneling, we consider both the full LCT calculation and a restricted

one, LCT(0), where only tunneling into the ground-state diabatic accepting mode is

considered. Convergence of kCV T/LCT and kCV T/µOMT are particularly interesting be-

cause they depend on the quality of the PES over the broadest region, including points

in the reaction swath that are too far from the MEP to be represented by a power

series in deviations from the MEP. As such, LCT and µOMT calculations are sensi-

tive to the semiglobal shape of the PES, rather than only to the potential near the

MEP. In the previous work,30, 31 large-curvature tunneling was poorly described on

MCMM-N PESs with N<8 due to inaccurate PESs far away from the reaction path

when all Shepard points are near the MEP. However, for all reactions considered in

this paper, even MCMM-0 reproduces kCV T/ZCT , kCV T/SCT , and kCV T/LCT of the di-

rect dynamics calculations reasonably well. These differences can be clearly seen by

comparing the MUPEs for these values calculated using MCMM-0 PES with both new

and old parameterizations. In particular, the corresponding errors are 48 (new) vs. 85

(old) (kCV T/ZCT ) and 23 (new) vs. 110 (old) (kCV T/SCT ) for R1; 12 (new) vs. > 5000

(old) (kCV T/ZCT ) and 18 (new) vs. > 5000 (old) (kCV T/SCT ) for R2; 6 (new) vs. 48

(old) (kCV T/ZCT ) and 18 (new) vs. 490 (old) (kCV T/SCT ) for R3. While the MCMM-0

esimates for kCV T/LCT using old parametrization are unreliable (cf. Tables 4, 6, and

7 of Ref. 30), the corresponding values obtained employing the partly optimized MM

are reasonably accurate, and they are listed in Table 5. Adding supplementary points

does not necessarily improve the results, indicating that the rate constants are already

well converged in the MCMM-0 run. The large-curvature tunneling contributions into

the vibrationally excited versus the ground state are reproduced well for R1 in the

MCMM-10 run, as indicated by the magnitudes of kCV T/LCT versus kCV T/LCT (0) shown
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in Table 2. For R2, the tunneling into excited states is already well reproduced in the

MCMM-0 run. In the past work,30, 31 it was necessary to place electronic structure data

points near the representative large-curvature tunneling path in order to get meaningful

kCV T/LCT (cf. Tables 4–11 of Ref. 30) because of the presence of artificial energy wells

(cf. Table 1) on the concave side of the MEP that resulted in unphysically large LCT

transmission coefficients.30 The presence of these wells is not however, a consequence

of a failure of the interpolation method, but rather resulted from the overestimation

of VvdW (r) as we discussed above. To illustrate the shapes of the MCMM PESs, Fig-

ures 2–4 display two-dimensional sections through multidimensional PESs for R1-R3

plotted as functions of the two stretching coordinates, namely, the bond-breaking and

bond-making distances. Starting from MCMM-0, the MCMM PESs exhibit poten-

tial maxima at about rBrH=1.59, rClH=1.57 (R1), rCH=1.28, rOH=1.22 (R2), and

rCH=1.26, rNH=1.31 (R3), respectively, in good accord with the electronic structure

results,30, 31 and they show no artificial wells on the concave sides of the reaction paths.

4. Concluding remarks

We conclude that the MCMM-0 estimates of the rate constants including tunneling

are reasonably accurate when appropriate MM potentials are used in MCMM. The

agreement with direct dynamics of kCV T/LCT calculated using MCMM-0 PES is re-

markable, indicating that MCMM-0 describes the shape of the PES reasonably well

not only near the reaction path but also in the large-curvature-tunneling swath of the

hydrogen-transfer reactions. The previously proposed strategy for placement of sup-

plementary points works well not only for the originally employed MM parameters but

also for the MCMM surfaces with improved MM parameters; however, the interpo-

lated PESs are now equally accurate with fewer points. In fact, the results are not

very sensitive to the location of Shepard points on the MEP, and the data points can

alternatively be placed at locations where more input seems to be needed, e.g., at a
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spike of the vibrationally adiabatic ground-state potential energy curve, if one encoun-

teres such a spike, or in a flat region if the MEP becomes too flat for following the

negative gradient.

One reason why the MCMM method is so powerful is that it builds on previously

calibrated MM potentials for nonreactive degrees of freedom. Therefore, it is a very

encouraging finding of this study that when these MM potentials in reactive coordi-

nates are roughly optimized for MCMM (which requires only a couple of single-point

energy calculations), even the most economical MCMM-0 calculations provide a useful

approximation of the expensive full dynamics results for both small-curvature tun-

neling and large-curvature tunneling. This means that only one high-level electronic

structure Hessian (at the saddle point) is needed to get a reasonable estimate for rate

constants. These results suggest that the MCMM method is a computationally very

efficient method for constructing PESs for polyatomic reactive systems.
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Table 1: Values of the matrix elements of V(q) of reaction R3 and the lowest eigenvalue V
versus target energy, with different values of D for two different values NH of the number
of electronic structure Hessians.1 The data are shown at a geometry (rCH=1.35, rNH=1.35)
close to the saddle point, and at two representative geometries on the concave (rCH=1.50,
rNH=1.50) and convex (rCH=1.10, rNH=1.10) sides of the MEP. Energies are in kcal/mol,
relative to the reactant asymptote.

D NH V V accurate V

rCH=1.10, rNH=1.10

0.2 1

(

310.3 153.7
153.7 242.9

)

119.2 34.4

0.2 11

(

310.3 145.2
145.2 242.9

)

127.5 34.4

0.01 1

(

83.2 44.5
44.5 68.8

)

31.0 34.4

0.01 11

(

83.2 45.2
45.2 68.9

)

30.3 34.4

rCH=1.35, rNH=1.35

0.2 1

(

66.4 56.0
56.0 68.4

)

11.4 15.7

0.2 11

(

66.4 52.5
52.5 68.4

)

14.9 15.7

0.01 1

(

46.8 34.6
34.6 54.4

)

15.6 15.7

0.01 11

(

46.8 35.0
35.0 54.4

)

15.3 15.7

rCH=1.50, rNH=1.50

0.2 1

(

56.2 97.9
97.9 89.8

)

-26.4 26.4

0.2 11

(

56.2 56.5
56.5 89.8

)

14.1 26.4

0.01 1

(

50.5 29.0
29.0 85.4

)

34.1 26.4

0.01 11

(

50.6 37.8
37.8 85.4

)

26.4 26.4

1 The location of the data points for NH=11 (which is called MCMM-10) is determined

according to the prescription of Ref. 30.
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Table 2: Rate Constants (cm3
·molecule−1

·s−1) by Direct Dynamics and MCMM for R1.

T(K) CVT CVT/ CVT/ CVT/ CVT/ CVT/
ZCT SCT LCT(0) LCT µOMT

Direct Dynamics

300 2.09·10−18 6.92·10−18 3.03·10−17 1.45·10−17 1.61·10−17 3.05·10−17

400 1.40·10−16 2.20·10−16 5.05·10−16 2.90·10−16 3.31·10−16 5.10·10−16

600 9.78·10−15 1.13·10−14 1.63·10−14 1.23·10−14 1.34·10−14 1.65·10−14

MCMM-0

300 2.41·10−18 9.15·10−18 1.80·10−17 1.40·10−17 1.41·10−17 1.81·10−17

400 1.64·10−16 3.44·10−16 5.01·10−16 4.15·10−16 4.17·10−16 5.05·10−16

600 1.29·10−14 1.75·10−14 2.06·10−14 1.87·10−14 1.87·10−14 2.07·10−14

MCMM-1

300 2.02·10−18 6.29·10−18 1.47·10−17 1.12·10−17 1.12·10−17 1.48·10−17

400 1.38·10−16 2.45·10−16 4.00·10−16 3.19·10−16 3.19·10−16 4.00·10−16

600 1.03·10−15 1.30·10−15 1.61·10−15 1.42·10−15 1.42·10−15 1.61·10−15

MCMM-5

300 1.93·10−18 6.79·10−18 2.08·10−17 1.50·10−17 1.57·10−17 2.08·10−17

400 1.33·10−16 2.48·10−16 4.43·10−16 3.43·10−16 3.65·10−16 4.43·10−16

600 1.00·10−14 1.28·10−14 1.63·10−15 1.42·10−15 1.49·10−15 1.63·10−15

MCMM-10

300 1.83·10−18 6.11·10−18 2.28·10−17 1.28·10−17 1.40·10−17 2.29·10−17

400 1.22·10−16 2.19·10−16 4.43·10−16 2.91·10−16 3.24·10−16 4.44·10−16

600 8.98·10−14 1.13·10−14 1.52·10−14 1.23·10−14 1.32·10−14 1.52·10−14
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Table 3: Rate Constants (cm3
·molecule−1

·s−1) by Direct Dynamics and MCMM for R2.

T(K) CVT CVT/ CVT/ CVT/ CVT/ CVT/
ZCT SCT LCT(0) LCT µOMT

Direct Dynamics

300 2.59·10−16 4.84·10−16 7.64·10−16 5.39·10−16 6.23·10−16 7.65·10−16

400 5.36·10−14 7.55·10−15 9.87·10−15 7.90·10−15 8.64·10−15 9.88·10−15

600 1.39·10−13 1.59·10−13 1.80·10−13 1.62·10−13 1.69·10−13 1.80·10−13

MCMM-0

300 2.90·10−16 6.08·10−16 1.04·10−15 7.42·10−16 8.20·10−16 1.04·10−15

400 5.49·10−14 8.31·10−14 1.14·10−15 9.03·10−15 9.55·10−15 1.14·10−14

600 1.31·10−13 1.57·10−13 1.82·10−13 1.61·10−13 1.65·10−13 1.82·10−13

MCMM-1

300 3.33·10−16 5.10·10−16 7.28·10−16 5.59·10−16 5.80·10−16 7.30·10−16

400 6.21·10−14 1.77·10−15 9.43·10−15 8.02·10−15 8.20·10−15 9.43·10−15

600 1.46·10−13 1.58·10−13 1.72·10−13 1.60·10−13 1.61·10−13 1.72·10−13

MCMM-2

300 3.12·10−16 4.89·10−16 6.99·10−16 5.40·10−16 5.80·10−16 7.30·10−16

400 5.92·10−14 7.50·10−15 9.12·10−15 7.77·10−15 8.20·10−15 9.43·10−15

600 1.41·10−13 1.54·10−13 1.68·10−13 1.56·10−13 1.61·10−13 1.72·10−13

MCMM-10

300 3.28·10−16 6.31·10−16 8.88·10−16 6.96·10−16 7.51·10−16 8.91·10−16

400 6.98·10−15 1.01·10−14 1.23.·10−14 1.05·10−14 1.11·10−14 1.23·10−14

600 1.86·10−13 2.19·10−13 2.41·10−13 2.11·10−13 2.28·10−13 2.41·10−13
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Table 4: Rate Constants (cm3
·molecule−1

·s−1) by Direct Dynamics and MCMM for R3.

T(K) CVT CVT/ CVT/ CVT/ CVT/ CVT/
ZCT SCT LCT(0) LCT µOMT

Direct Dynamics

300 6.18·10−22 3.21·10−21 7.57·10−21 1.70·10−20 1.70·10−20 1.77·10−20

400 2.06·10−19 5.41·10−19 8.65·10−19 1.08·10−18 1.08·10−18 1.16·10−18

600 9.28·10−17 1.45·10−16 1.78·10−16 1.81·10−16 1.81·10−16 1.91·10−16

MCMM-0

300 5.28·10−22 3.38·10−21 5.93·10−21 1.87·10−20 1.87·10−20 1.88·10−20

400 1.76·10−19 5.30·10−19 7.20·10−19 1.23·10−18 1.23·10−18 1.24·10−18

600 7.86·10−17 1.31·10−16 1.50·10−16 1.78·10−16 1.78·10−16 1.80·10−16

MCMM-3

300 5.28·10−22 2.78·10−21 5.31·10−21 6.39·10−21 6.39·10−21 6.96·10−21

400 1.76·10−19 4.69·10−19 6.59·10−19 7.02·10−19 7.02·10−19 7.56·10−19

600 7.86·10−17 1.24·10−16 1.43·10−16 1.44·10−16 1.44·10−16 1.51·10−16

MCMM-7

300 5.28·10−22 2.61·10−21 5.31·10−21 1.01·10−20 1.01·10−20 1.04·10−20

400 1.76·10−19 4.49·10−19 6.54·10−19 8.19·10−19 8.19·10−19 8.62·10−19

600 7.86·10−17 1.21·10−16 1.42·10−16 1.48·10−16 1.48·10−16 1.54·10−16

MCMM-10

300 5.28·10−22 2.62·10−21 5.44·10−21 1.03·10−20 1.03·10−20 1.07·10−20

400 1.76·10−19 4.50·10−19 6.65·10−19 8.24·10−19 8.24·10−19 8.71·10−19

600 7.86·10−17 1.21·10−16 1.43·10−16 1.49·10−16 1.49·10−16 1.55·10−16
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Table 5: Mean Unsigned Percentage Errors Averaged over Three Temperatures (300K, 400K,
and 600K) for R1–R3.

CVT CVT/ CVT/ CVT/ CVT/ CVT/
ZCT SCT LCT(0) LCT µOMT

Cl + BrH → ClH + Br

MCMM-0 21 48 23 33 23 24
MCMM-1 2 12 25 16 13 25
MCMM-5 5 9 5 13 8 15
MCMM-10 11 4 15 4 8 11

CH4 + OH → CH3 + H2O

MCMM-0 7 12 18 17 15 18
MCMM-1 16 3 5 2 6 16
MCMM-2 11 2 8 2 6 5
MCMM-10 30 34 25 33 28 25

CH4 + NH2 → CH3 + NH3

MCMM-0 15 6 18 8 8 6
MCMM-3 15 14 24 39 39 39
MCMM-7 15 17 25 28 28 29
MCMM-10 15 17 24 27 27 28

20



Figure Captions

Figure 1. van der Waals energies of the two valence bond configurations (I for re-

actants and II for products) of R3 and their largest components that describe the

N· · ·H and C· · ·H interactions plotted as functions of the rCH distance with all in-

ternal coordinates fixed at their values at the MPW1K/6-31+G(d,p) saddle point viz.

rNH (in NH2)=1.016Å, ∠HNH (in NH2)≈105o, rCH (in CH4)=1.083Å, ∠HCH (in

CH3)≈113o, ∠ NHtC≈171o. V ′ is a sum of all other MM terms except VvdW (I). The

corresponding value for configuration II is a constant and is not shown for clarity. Also

shown in this Figure is the resonance integral V12, using NH=11. All values correspond

to D = 0.2 (upper panel) and D = 0.01 (lower panel) in eq. (2). Geometrically, the

lower panel corresponds to the one-dimensional cut through the PESs shown in Figure

4 (see below) at rNH=1.1 Å.

Figure 2. Equipotential contours of the electronic ground state energy V (q) as the low-

est eigenvalue of (1) of the MCMM-0 (upper panel) and MCMM-10 (lower panel) PESs

of reaction R1 plotted as a function of r(HCl) and r(HBr) bond distances. ∠ClHBr is

fixed at 152o. Zero of energy corresponds to the reactant asymptote. Contour labels

are in kcal/mol. Above 21 kcal/mol, contours are equally spaced by 4 kcal/mol.

Figure 3. Same as Figure 2 except for R2 plotted as a function of r(CH) and r(OH) bond

distances. The remaining geometrical parameters are rOH(OH)=0.962Å, ∠HOHt≈

99.9o, rCH(CH4)=1.083Å, ∠HCH(CH3)≈ 113o, ∠OHtC=173.7o. Starting at 9 kcal/mol,

contours are equally spaced by 2 kcal/mol.

Figure 4. Same as Figure 2 except for R3 plotted as a function of r(NH) and r(OH)

bond distances. The remaining internal coordinates are fixed at their values at the

MPW1K/6-31+G(d,p) saddle point (see caption in Figure 1).
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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