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Abstract  

The multi-configuration molecular mechanics (MCMM) method is a general algorithm 

for generating potential energy surfaces for chemical reactions by fitting high-level 

electronic structure data with the help of molecular mechanical (MM) potentials. It 

was previously developed as an extension of standard MM to reactive systems by 

inclusion of multi-dimensional resonance interactions between MM configurations 

corresponding to specific valence bonding patterns, with the resonance matrix element 

obtained from quantum mechanical (QM) electronic structure calculations. In 

particular, the resonance matrix element is obtained by multidimensional interpolation 

employing a finite number of geometries at which electronic-structure calculations of 

the energy, gradient, and Hessian are carried out. In this paper, we present a strategy 

for combining MCMM with hybrid quantum mechanical molecular mechanical 

(QM/MM) methods. In the new scheme, electronic-structure information for obtaining 

the resonance integral is obtained by means of hybrid QM/MM calculations instead of 

fully QM calculations. As such, the new strategy can be applied to the studies of very 

large reactive systems. The new MCMM scheme is tested for two hydrogen-transfer 

reactions. Very encouraging convergence is obtained for rate constants including 

tunneling, suggesting that the new MCMM method, called QM/MM-MCMM, is a 

very general, stable, and efficient procedure for generating potential energy surfaces 

for large reactive systems. The results are found to converge well with respect to the 

number of Hessians. The results are also compared to calculations in which the 

resonance integral data are obtained by pure QM, and this illustrates the sensitivity of 

reaction rate calculations to the treatment of the QM-MM border. For the smaller of 

the two systems, comparison is also made to direct dynamics calculations in which the 

potential energies are computed quantum mechanically on the fly.  
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I. Introduction  

 
An accurate potential energy surface is an essential element in carrying out reliable dynamics 

simulations of a chemical reaction. Direct dynamics,1–11 where the potential energy surface is 

calculated on the fly by electronic structure theory, is limited to relatively small systems or low 

levels of electronic structure theory due to the high computational costs of reliable electronic 

structure calculations. Multi-configuration molecular mechanics (MCMM),13–17 which is an 

extension of conventional molecular mechanics (MM)18–47 so that it can be used for chemical 

reactions, is an alternative way to generate reactive potential energy surfaces with significantly 

reduced computational effort.  

In MCMM,13–17 as in earlier semiempirical48–55 and empirical56–62 valence bond 

formulations, the actual representation for a system at any a given geometry is obtained by 

mixing multiple (usually two: reactant and product) MM configurations; and as in empirical 

valence bond theory,56–62 one constructs an electronically nonadiabatic (i.e., diabatic) 

Hamiltonian matrix V whose diagonal elements (V11 and V22) are given by MM. The MM 

configuration of reactant (or product) is the bonding pattern for the system in the reactant (or 

product) state, and the corresponding energy is interpreted as a diagonal element of a valence 

bond configuration interaction Hamiltonian matrix. These valence bond states are also sometimes 

called diabatic electronic states. For example, in an atom transfer reaction AB + C  A + BC, the 

electronic wave function for any geometry can be considered to be composed of two interacting 

valence-bond or diabatic configurations (A–B, C) and (A, B–C), where “–” denotes a bond in 

MM and paired set of bonding orbitals in valence bond theory. Configuration interaction between 

the reactant and product configurations of different bonding patterns leads to the ground-state 

potential energy surface.  
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The resonance integral (V12 , which equals V21) is the most critical element in MCMM, and it 

is at the heart of the MCMM methodology. In our implementation of MCMM,13,14 the resonance 

integral is obtained by Shepard interpolation of quadratic expansions around a set of points where 

electronic structure data are available. The Born-Oppenheimer potential energy surface is 

approximated by the lowest eigenvalue of the matrix V, and the resonance integral reproduces a 

quadratic expansion57 of the QM data in the vicinity of each electronic structure data point. This 

kind of non-diagonal representation of the Hamiltonian has been widely used in a variety of 

contexts for modeling reactive systems,4,48–66 but in work prior to MCMM, the resonance 

integral was usually a simple functional form (even a constant) fit to one or more data and 

potential energy surface feature (e.g., barrier height) rather than, as in MCMM, a systematically 

improvable function fit to reproduce data at as many geometries as required to achieve 

convergence.  

The MCMM approach is similar to the empirical valence-bond56–62 (EVB) treatment but also 

contains critical differences.13-15 (1) As mentioned in the previous paragraph, the resonance 

between valence-bond configurations is calibrated to the electronic-structure calculations instead 

of to often-limited kinetic data from experiments or accurate data only at the saddle point. (2) A 

very general scheme (the Shepard interpolation67,68 scheme) is used to generate a semi-global 

potential energy surface. In work reported so far and in the present article, the semiglobal surface 

is designed to be accurate in the kinetically important region for reaction-path rate calculations 

and large-curvature tunneling calculations (called the reaction swath,7,69 i.e., the region near the 

reaction path including the region associated with small-curvature tunneling7,70-74 and also the 

larger region on the concave side of the reaction valley that is critical for large-curvature 

tunneling7,69,74-79). In future work, MCMM will be extended to cover the entire region of the 

potential energy surface required to run classical trajectories.  
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The MCMM method can be considered to be a general and efficient fitting scheme for 

creating potential energy surfaces for reactive systems. A merit of the MCMM method is that it 

does not require the human judgment traditionally associated with the “art” of fitting 

multidimensional functions. The MCMM fitting process is unique and automatic, except for the 

choice of geometries to include, the choice of MM functions, and the choice of QM level. In 

principle the results converge to a numerically accurate interpolation of the potential energy 

surface for any reasonable scheme of adding data, although in practice one strategy of adding 

data points may converge the results faster than another strategy does. Moreover, MCMM does 

not require a uniform grid for adding data points; this flexibility of using a non-uniform 

distribution of data points allows one to obtain a fairly high accuracy from a reasonably small 

amount of electronic structure data by putting a dense set of data points in interesting region 

while a sparse set of data points is used in other regions and one can always improve the accuracy 

by including more data points whenever needed. Once constructed, the MCMM surface is 

inexpensive to calculate, with a cost roughly the same as conventional MM. Another notable 

merit of the MCMM method is that the constructed potential energy surface is full dimensional, 

since both the diagonal and off-diagonal elements in the diabatic Hamiltonian are full 

dimensional. The full-dimensional nature of the potential energy surface is critical for realistic 

modeling of chemical reactions. 

An alternative approach is to restrict the functional form of the resonance matrix element and 

to obtain the parameters in the assumed functional form by global least squares fitting.59 This is a 

promising approach, but it is not systematically improvable like the MCMM algorithm based on 

Shepard interpolation. An alternative to straight Shepard interpolation that could be employed in 

MCMM is to combine it with interpolant moving least squares, as proposed by Ishida and 

Schatz.80 In this method, one first performs local least squares fitting with restricted functional 
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forms (e.g., polynomials) for the energies from electronic-structure calculations at a set of given 

geometries, and one then computes the gradients and Hessians at these geometries by employing 

the locally fitted functions. Finally, one carries out Shepard interpolation based on these 

electronic-structure energies and approximate gradients and Hessians. This is a very promising 

method, because it maintains the merit of Shepard interpolation and avoids the electronic-

structure calculations of gradients and Hessians, which are more expensive than for energies. 

However, we note that, as a trade-off, this method requires a large amount of energetic data in 

order to assure the approximated derivatives are accurate representations of the true (electronic-

structure) derivatives. Whether one uses straight Shepard interpolation or an intermediate 

interpolant least squares step, the key feature that reduces the data requirements in MCMM is that 

one interpolates the relatively smooth V12 and combines it with powerful pre-existing MM 

functions, whereas other work employing Shepard interpolation67,68,81 interpolates the more 

structured ground state potential energy surface and does not take advantage of MM for the 

dependence of the potential on spectator degrees of freedom. 

The usefulness of the MCMM scheme has been established for rate constant calculations, as 

demonstrated by tests,13,14,16,17 against a diverse set of reactions involving hydrogen transfer 

using variational transition state theory with multi-dimensional tunneling7,73,74,79,82-86 

(VTST/MT). It should be noted that the reactions used for tests are challenging ones, because of 

significant variational and tunneling effects. It is encouraging that a scheme involving pre-

determined locations for the points was able to predict rates in good agreement (~10%) with 

direct dynamics for all reactions studied with only a dozen (or less) electronic-structure 

Hessians13 or partial electronic-structure Hessians.16   

As a fitting scheme for creating potential energy surfaces for reactive systems, the success of 

the MCMM method relies on the electronic-structure data at the Shepard input points. Electronic-
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structure calculations are feasible for small- and medium- size systems comprising tens to 

hundreds of atoms, depending on the level of theory involved. The partial electronic-structure 

Hessian scheme,16 which uses electronic-structure calculated Hessian elements for active atoms 

and interpolated Hessian elements for spectator atoms for non-stationary Shepard points, reduces 

the computational cost by up to an order of magnitude, making it feasible to apply MCMM 

dynamics to large organic reactions. However, for even larger reactive systems such as enzymes, 

electronic-structure calculations are too expensive to be applied to the whole system, even just at 

the saddle point, and an alternative solution must be found.  

Combined quantum mechanical and molecular mechanical (QM/MM) methods87–145 are a 

very promising as a practical way to extend electronic-structure calculations to large reactive 

systems where reaction takes place in a localized region. (Extensions to cases where the localized 

region can change are also available.95,110,132,145) A QM/MM method treats this localized 

region, e.g., the active site and its neighbors in an enzyme (called the primary subsystem, PS), by 

a QM method and includes the influence of the surroundings (e.g., the protein and/or solvent 

environment, called the secondary subsystem, or SS) at the MM level. The QM/MM energy for 

the entire system (ES) can be formally defined by  

E(QM/MM;ES) = E(QM;PS) + E(MM;SS) + E(QM/MM;PS|SS),   (1) 

i.e., as a summation of the energy of the PS, the energy for the SS, and the interaction energy 

between them.  

The PS is also called the QM subsystem, and the SS is often called the MM subsystem. The 

coupling between PS and SS can be treated either by mechanical embedding (ME) schemes,92,103 

where the electrostatic interaction is evaluated classically at the MM level, or by electrostatic 

embedding schemes103,107 that describe the electrostatic interaction between the PS and SS as 

one-electron operators that enter the QM Hamiltonian. The interactions other than electrostatic, 
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e.g., stretching, bending, torsion, and van der Waals interactions, are computed at the MM level 

in both mechanical embedding and electrostatic embedding schemes. Including the interactions 

between the active center and its environment allows a more realistic description of the system, in 

comparison with isolated QM calculations on subsystems, which are often called model systems. 

QM calculations on such model systems will be called cluster QM (CQM). Although the 

electronic structure for the surroundings does not change during the reaction (that is why we can 

use MM to describe it), the presence of the surroundings may affect the electronic structure of the 

active center (that is why we need to take it into account). 

It therefore appears attractive to replace full QM calculations by QM/MM calculations in 

generating input data points for MCMM. This scheme can be called QM/MM-MCMM, and it 

will be the central topic of the present contribution. In comparison, the conventional MCMM 

scheme that is based on a full QM calculations can be called QM-MCMM or simply MCMM. 

Section II presents the QM/MM-MCMM scheme in detail. 

The QM/MM and MCMM methods both represent ways to add QM elements to MM. The 

QM/MM method incorporates QM contributions based on size extension, while MCMM (or other 

valence-bond theories) builds in QM contributions vertically through inter-configurational 

resonance. Thus, the QM/MM-MCMM is a method that includes the QM contributions both 

laterally and vertically.  

Another way to combine QM and MM both laterally and vertically can be called 

MCMM/MM or (QM-MCMM)/MM, where MCMM (also called QM-MCMM) is inserted into 

the QM part of the QM/MM methodology rather than, as in the present paper, inserting QM/MM 

into MCMM. (In other words, the MCMM surface describes only the primary system in 

MCMM/MM but describes the entire system in QM/MM-MCMM.) In MCMM/MM, one 

constructs an MCMM surface for the primary system based on QM/MM calculations for the 
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entire system or based on CQM calculations on a model system, whichever is appropriate or 

practical, and uses this MCMM calculation to replace full QM calculations in subsequent 

QM/MM calculations. The MCMM/MM method may be useful in some circumstances where the 

interaction between the PS and SS can be well described at the MM level.  

Our new QM/MM-MCMM method will be demonstrated by calculations on two H-transfer 

reactions. The first reaction, R1, which is illustrated in Figure 1, is the OH radical reacting with 

propane at the primary carbon; this reaction has been studied previously with the QM-MCMM 

scheme.16 The second reaction, R2, is the OH radical reacting with camphor, as shown in Figure 

2. In particular, we will compute the abstraction of the exo-hydrogen (H5a) at the C5 position. 

We note that the reaction of OH with camphor is important for atmospheric chemistry.146-148 

However, the reader should be aware that the reaction occurs along several pathways and does 

not occur with the greatest probability at the C5 carbon position.147 One expects the H 

abstraction from a tertiary C-H bond at the C4 carbon position to have a larger rate than the 

abstraction from secondary and primary C-H bonds at the other carbon positions. Since the 

emphasis of the present study is to demonstrate the new QM/MM-MCMM methodology instead 

of to compare with experiment for the overall rate of reaction of OH with camphor (or to explain 

atmospheric chemistry), we selected the reaction at the C5 position because it is a better test for 

QM/MM. 

The dynamics algorithm, calculations, and results will be presented in Sections III, IV, and V, 

respectively, followed by a discussion of the results in Section VI and concluding remarks in 

Section VII.  

II. The MCMM Algorithm Based on QM/MM Calculations 

As explained in the introduction, the QM/MM-MCMM method involves replacing full QM 

calculations by QM/MM calculations in generating input data points for MCMM. The QM-
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MCMM method was described in detail in Ref. 13. The QM/MM methodology used here and its 

implementation were also published previously.143 Here, we only summarize briefly those 

aspects of MCMM and QM/MM related to the computations in this work, and we refer to the 

original references13,143 for details.  

II.A. QM-MCMM 

MCMM approximates the Born-Oppenheimer potential energy at a geometry defined in 

internal coordinates q as the lowest eigenvalue of a 2×2 diabatic electronic Hamiltonian matrix 

V(q): 

 V(q) = ⎟
⎠
⎞
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⎝
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where the V11 and V22 elements, as mentioned in the introduction, are classical MM potential 

functions that describe the reactant and product valence bond configurations, and the V12 matrix 

element is the resonance integral. In our implementation, the reactant (or product) configuration 

is the reactant well (or product well) valence bond configuration (for example, the reactant van 

der Waals complex of OH with propane or the product van der Waals complex of propyl radical 

with water). The lowest eigenvalue of eq. (2) is: 

 V(q) = 
2
1 {(V11(q) + V22(q)) − [(V11(q) − V22(q))2 + 4V12(q)2]1/2} (3) 

The potential energy surface V(q), and its first and second derivatives, which are required for the 

dynamical calculations, are obtained by analytic differentiation of equation (3) after we know 

V11(q), V22(q), and V12(q). The terms associated with V11(q) and V22(q) are readily available 

from MM calculations, and the central problem is how to obtain the resonance integral V12(q) 

and its derivatives.  
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The construction of V12(q) is carried out in two steps. First, at a number of selected 

geometries q(k), with k = 1, 2, ..., M, one computes the energies V(q(k)), gradients g(k), and 

Hessian matrices f(k) by electronic-structure calculations, and one evaluates V12(q;k) and its 

derivatives by using equation (2) inversely thereafter, i.e., evaluates V12(q;k) from V11(q;k), 

V22(q;k), and V(q;k).57 The set of M data points q(k) are called Shepard points. Second, based on 

this set of M data points of V12(q;k), V12 at a desired geometry q can be evaluated by Shepard 

interpolation67,68,81 as a linear combination of the quadratic expansions around these Shepard 

points: 

 )(12 q
S

V = ∑
=

M

k 1
Wk(q) );(mod

12 kV q   (4) 

where Wk(q) are normalized weights, and    V12
mod(q;k) is a modified quadratic function, as 

defined in Ref. 13. Once the interpolation is constructed, V12(q) and its derivatives are available 

analytically at any a desired geometry, and one can calculate V(q) according to equation (4). 

Because the MCMM representation of the potential surface is based on both electronic 

structure calculations and MM energies, and because the latter have different zeros of energy at 

reactant and product configurations, a unique energy scale must be defined across the potential 

energy surface. We use the same procedure here as in previous work.166 In particular, we define 

the zero of energy to be the electronic structure theory energy at the MM equilibrium geometry  

corresponding to the reactant valence bond configuration, and we adjust the MM energies for V11 

and V22 as follows: 

                                                   V11 = V11
MM – Vo(I)                                                               (5) 

                                            V22 = V22
MM – Vo(II) + ΔE,                                                          (6) 
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where Vo(I) and Vo(II) are MM energies at the MM equilibrium geometries corresponding to 

valence bond configurations I and II, and ΔE is the electronic-structure theory energy of the 

product relative to the reactant.  

As one can see from the above procedure, the accuracy of an MCMM surface depends on the 

accuracy of the Shepard data points obtained by QM or QM/MM calculations and used as input. 

In principle the results converge to a numerically accurate interpolation of the potential energy 

surface with the inclusion of more Shepard points. In practical applications, one wishes to limit 

the computational cost by using only a small number of data points. We have proposed and tested 

a general scheme14 where as sparse as 10 electronic-structure points, including the saddle point 

and 9 non-stationary points, are needed to generate a potential energy that produces reasonably 

accurate rate constants in the VTST/MT calculations. More recently, we demonstrated that the 

efficiency of this scheme could be significantly improved up to a factor of 11 by employing 

partial electronic-structure Hessians.16 We emphasize that this scheme might not be the best 

scheme for a specific reaction,17 but it was found to be applicable to a diverse set of reactions, 

and it provides a start from which future refinement can be performed. 

II.B. QM/MM 

As mentioned in the introduction, the QM/MM method can be viewed as a generalized 

electronic-structure method for large reactive systems where reaction takes place in a localized 

region (the primary system, PS). The PS is described at the QM level, and its environment (the 

secondary subsystem, SS) is treated at the MM level. The electrostatic interaction between PS 

and SS is either calculated classically at the MM level in the mechanical embedding 

schemes,92,103,144 or modeled as one-electron operators that enter the QM Hamiltonian in the 

electrostatic embedding schemes.103,107,144 The interactions other than electrostatic interaction 
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between the PS and the SS are computed at the MM level in both the mechanical embedding and 

electrostatic embedding schemes. 

A question arises in QM/MM calculations: how should one select MM parameters for the PS 

atoms in calculation of the coupling between PS and SS atoms? These MM parameters are not 

necessarily the same for the PS atoms in the reactant and product because the atom types are 

changed for some atoms, e.g., a carbon atom may change from C=O type to C−O−H type. This 

will particularly be a concern if the boundary between the PS and the SS is very close to the 

active site. An extensive discussion has been given in our recent review,144 and here we note that 

there is no unambiguous answer. Our suggestion is to use one set of MM parameters and to 

examine whether the errors introduced by using one set of parameters exceed the errors produced 

by other approximations that are introduced by the QM/MM framework. Although our treatment 

is not a perfect solution, it is very practical, and it appears to be reasonable.143 Note that this 

problem occurs for QM/MM but not for MCMM. (In the present study we used the product 

parameters; therefore we need parameters for a carbon radical atom type. See the supporting 

information for details.) 

Another important issue in QM/MM is how to treat the dangling bonds of the PS when a 

QM/MM boundary cuts through covalent bonds. Various schemes have been developed to handle 

such a situation. Those schemes differ from each other mainly in two aspects: (i) how to treat the 

degrees of freedom of the nuclei of the SS atoms that are directly bond to the PS atoms and (ii) 

how to treat the charge distribution at the boundary. The charge distribution at the boundary is 

simply ignored in the mechanical embedding scheme, and its inclusion in the electrostatic 

embedding schemes is the major source of differences among these schemes. Our treatment143 of 

the first aspect, following others, 88,89 is to saturate the dangling bond at the PS by a normal 

hydrogen atom (the so-called Hydrogen-Link atom, HL). The coordinates of HL are determined 
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as a linear combination of the coordinates of the PS and SS boundary atoms between which the 

covalent bond is cut. More precisely, we place the HL atom on the Q1–M1 bond, where the Q1 

and M1 denote the PS and SS boundary atoms, respectively. We scale the Q1−HL distance 

R(Q1−HL) with respect to the Q1−M1 distance R(Q1−M1) by a scaling factor CHL, in the same 

way as proposed by Morokuma and coworkers.99,120  

 R(Q1−HL) = CHL R(Q1−M1)  (7) 

 CHL = R0(Q1−H) / R0(Q1−M1), (8) 

where R0(Q1−H) and R0(Q1−M1) are the MM bond distance parameters for the Q1−H and 

Q1−M1 stretches, respectively, in the employed MM force field. Such a treatment eliminates the 

extra degrees of freedom due to the artificially introduced link atoms, making dynamics 

calculations meaningful. 

It is important to retain a qualitatively correct charge distribution near the QM/MM boundary, 

especially when there are MM atoms carrying substantial partial charges close to the boundary, as 

demonstrated in a recent publication.143 Such a situation motivates one to use an electrostatic 

embedding scheme, which allows the electronic structure of the PS to respond to the presence of 

the charge distribution of the SS. Here we use our recently developed redistributed charge and 

dipole (RCD) scheme143 as the electrostatic embedding scheme. The RCD scheme for 

electrostatic embedding involves distributing the M1 charge evenly onto mid-points of the 

M1−M2 bonds, where M2 is an SS atom that directly bonds to the M1 atom, and further modifies 

both the redistributed charges and the charges on the M2 atoms in order to preserve the M1–M2 

bond dipoles. For example, suppose that there are n M2 atoms bonded to the M1 atom, and that 

the charges on the M1 and M2 atoms are qM1 and qM2,k (k = 1, 2, …, n), respectively. The 

initially redistributed charge q0 is determined by 
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 q0 = qM1 / n  (9) 

and the final redistributed charge q0
RCD

 is given by 

 q0
RCD = 2q0 (10) 

and the modified M2 charges qM2,k
RCD are 

 qM2,k
RCD = qM2,k − q0  (11) 

The QM calculations are carried out in the presence of the redistributed charges and the charges 

on the SS atoms.  

The QM/MM gradient and Hessians are calculated by use of the chain rule, as described in 

Refs. 99 and 120.  

II.C. QM/MM-MCMM 

QM/MM-MCMM differs from QM-MCMM in the use of QM/MM calculations instead of 

QM calculations to provide energies, gradients, and Hessians at the Shepard points. A central 

concern in such a replacement of QM calculations by QM/MM calculations is how accurately the 

QM/MM description approximates the QM one or, since the QM one is itself approximate, how 

accurate QM/MM is in comparison to experiment. Attention should be paid to various issues. The 

first is how much the geometries and energies will change, e.g., at the stationary points of the 

potential energy surface. If used with care, QM/MM calculations may produce reasonably 

accurate geometric and energetic data in comparison with full QM calculations. Due to its 

intrinsic limitations, e.g., the prohibition of charge transfer between PS and SS, the QM/MM 

method is not designed to give the highest possible quantitative accuracy. It is probably more 

useful to stress the qualitative conclusions, and when quantitative comparisons are made, one 

should focus on relative energies where the errors may cancel to some extent. 
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The second issue is the Hessian, which determines the vibrational frequencies and their 

associated eigenvectors. The QM and QM/MM Hessians usually show substantial differences, 

due to the different QM and MM frequencies as well as the additional approximation at the 

boundary. This is especially a concern for modes that involve simultaneous motions of both PS 

and SS atoms. This makes precise correlation of QM modes with QM/MM modes ambiguous. 

Visualization of the vibrations helps to some extent, but its use is limited if the system is big. 

Thus, a one-to-one comparison between the QM, MM, and QM/MM vibrational modes is only 

approximate. 

The vibrational frequencies are important for determination of the zero-point vibrational 

energies and the vibrational partition functions. In many cases, the deviations of the QM/MM 

frequencies from the QM frequencies are similar for the reactant state, at the saddle point, at the 

product, and along the reaction path that connects these three geometries. Since it is often the 

relative zero-point energy rather than the absolute zero-point energy that matters, the systematic 

underestimation or overestimation of the frequencies in QM/MM computations can lead to at 

least partial cancellation of errors. The error cancellation is, however, less complete for the low-

frequency modes, for which the harmonic partition functions are very sensitive to the change of 

frequencies. One should take this into consideration when assessing the performance of any rate 

calculation employing the harmonic approximation. 

The eigenvector of the imaginary-frequency mode at the saddle point, which is often highly 

localized and is easily characterized, is used in determination of the reaction path. Usually, this 

imaginary-frequency mode involves motions of the PS atoms at or close to the reaction center, 

and its eigenvector is often very similar in the QM and QM/MM calculations. 

The eigenvectors of the generalized normal mode vibrational modes along the reaction path 

are also important in determination of the coupling between the motion of reaction coordinate 
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and the spectator coordinates. Such coupling plays a critical role in certain types of calculations, 

e.g., tunneling calculations. One needs considerably more experience testing QM/MM 

calculations to assess their performance for such detailed dynamical issues. 

III. Dynamics  

The dynamics calculations in this work were carried out in the framework of 

VTST/MT,73,74,79,82-86 whose validity has been well-established.149-151 The conventional 

transition state theory (TST) rate constants were determined by 

 kTST = (σ /βh) (Q ‡ /Φ R) exp(−βV ‡ )  (12) 

where σ is symmetry factor that represents the reaction path multiplicity, i.e., the number of 

equivalent reaction paths from reactant to product, and σ is 1 for the reactions in this work, 

β = kBT, kB is Boltzmann’s constant, T is the temperature, h is Planck’s constant, Q ‡  is the 

generalized partition functions for the system at the saddle point, ΦR is the partition function per 

unit volume of the reactant, and V ‡  is the classical barrier height. The generalized partition 

function is a product of partition functions for electronic, vibrational, and rotational degrees of 

freedom as well as, for bimolecular reactions, the relative translational partition function per unit 

volume: 

 Q(s,T) = Qel(s,T) Qvib(s,T) Qrot(s,T)  (13) 

 ΦR(T) = ΦR
el(T) ΦR

vib(T) ΦR
rot(T) ΦR

rel(T)  (14) 

Here s is the signed distance from the saddle point along the minimum energy path (MEP) in 

mass-scaled coordinates,152 where s = 0 corresponds to the saddle point.  

The canonical variational transition state (CVT) rate constants were computed by 

 kCVT = (σ /βh) (QCVT/ΦR)exp[−βVMEP(s*)]  (15) 
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where QCVT is the generalized total partition function at the CVT bottleneck location s* on the 

reaction path, VMEP(s*) is the potential energy on VMEP(s) at s*, and VMEP(s) is the potential 

energy along the MEP. The CVT bottleneck location, s*, is the place on the reaction path where 

the generalized free energy of activation is a maximum.84  

We considered two kinds of tunneling calculations, both of which involve the vibrationally 

adiabatic ground-state potential energy curve, which is expressed as  

 Va
G(s) = VMEP(s) + ∑

−

=

73

1

N

m
)(sG

mε ,  (16) 

where N is the total number of atoms in the system, m denotes a generalized normal-mode 

vibration transverse to the reaction coordinate, and )(sG
mε is the zero-point energy of these 

generalized normal-mode vibrations at s. The maximum of Va
G(s) is called Va

AG. The first kind 

of tunneling calculations is the small-curvature tunneling (SCT) approximation,73,74 which 

calculates the transmission coefficients semi-classically including the effects of reaction-path 

curvature,70,72,82-84,152-155 which enters the calculations through an effective mass73,74 for the 

reaction-path motion. The second type of tunneling contribution is the large-curvature tunneling 

(LCT)74,79,86 approximation, which assumes that tunneling occurs along the most direct path 

between the reactant and product valleys in the potential energy surface without necessarily 

assuming vibrational adiabaticity relative to the reaction-coordinate motion. The LCT 

calculations include tunneling into vibrationally excited diabatic vibrational states. In direct 

dynamics calculations, excited states are included to the extent that they contribute; however, in 

MCMM we include up to the vibrational quantum number of the highest excited state determined 

by a pre-specified protocol. In this protocol,16 the highest vibrational quantum number is 

increased successively until the tunneling contribution is converged within 1% or until the 

contribution from the newly added state reaches a local minimum (with respect to vibrational 
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quantum number), whichever happens first. Such a pre-specified protocol for the determination 

of how many final states to include in the LCT calculation has been shown16 to be helpful in 

avoiding artificially large tunneling rates in MCMM dynamics due to the possibly inaccurate 

potential energy surface far away from the reaction swath where Shepard points are missing. In 

analyzing the results it often useful to also consider the LCT(0) approximation, which includes 

tunneling only into ground vibrationally diabatic state. The final best tunneling approximation is 

microcanonically optimized multidimentional tunneling (μOMT), which is obtained by accepting 

the larger of the SCT and LCT results at each tunneling energy.86 All LCT and LCT(0) 

calculations in this paper were carried out with the version 479 algorithm. 

 A special note is made for the calculations of vibrational partition functions of the low-

frequency modes. An accurate calculation of thermodynamic functions for these low-frequency 

modes is, generally speaking, very challenging. Such low-frequency modes are often associated 

with large-amplitude motions, and the routinely used harmonic approximation is suspicious for 

the evaluation of vibrational partition functions for these modes. For modes of very low 

frequencies (< 10 cm–1), the use of harmonic approximation can be qualitatively incorrect and 

lead to large errors. However, an accurate and effective approach to include the anharmonicity is 

yet to be developed. Therefore, we make a compromise in this work by use of the harmonic 

approximation for all vibrational modes with a cutoff frequency in the thermodynamic 

calculations, i.e., whenever the frequency of a mode is smaller than the pre-specified (cutoff) 

frequency, the cutoff frequency will be used instead in calculations of vibrational partition 

functions. This procedure of using cutoff frequency has been adopted16 in our previous studies. 

Although one cannot expect very high accuracy from such a crude treatment, it is hoped that this 

procedure may provide a more realistic estimation of the vibrational partition functions than 

simply using the calculated harmonic frequency.  
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IV. Calculations 

IV.A. QM Calculations 

The first reaction (R1) was studied recently (as reaction R6 in Ref. 16) by direct dynamics 

and by QM-MCMM dynamics employing QM calculations at the MPW1K/6−31+G(d,p) level in 

generation of potential energy surface. Briefly, the modified Perdew-Wang 1-parameter model 

for kinetics (MPW1K)156,157 is a hybrid Hartree-Fock density functional theory (HF-DFT) 

model, whose parameters had been optimized against a selected database that consists of 20 

forward barrier heights (BHs), 20 reverse BHs, and 20 energies of reaction. The one-parameter 

hybrid Fock-Kohn-Sham operator can be written as follows: 

 F = FH + (X/100)FHFE + [1 – (X/100)] (FSE + FGCE) + FC  (17) 

where FH is the Hartree operator, FHFE is the Hartree-Fock exchange operator, X is the 

percentage of HF exchange, FSE is the Dirac-Slater local density functional for exchange, FGCE is 

the gradient corrections for the exchange functional, and FC is the total correlation functional 

including both local and gradient-corrected parts. The MPW1K model uses the Adamo and 

Barone’s modified Perdew-Wang 1991 exchange functional (mPW)158 for FGCE and Perdew and 

Wang’s 1991 correlation functional (PW91)159 for FC, and set X = 42.8. The 6-31+G(d,p)160 

basis set is also denoted as the DIDZ basis set in this paper. 

 For the second reaction (R2), we used the newly developed MPWB1K161 density function 

and again the 6-31+G(d,p) basis set. The MPWB1K model is very similar to the MPW1K model, 

but it uses the Becke95 functional162 for FC, and X was adjusted to 44. The calculations were 

carried out by use of the Gaussian03 package.163  
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IV.B. MM Calculations 

The MM calculations were performed by use of a locally modified TINKER program.164 For 

reaction R1, the MM3 force field20–22 was selected for both the QM/MM and MCMM 

calculations, and the same force field parameters as used in the previous studies14,16 were 

employed, so that the results are comparable with the previous ones.  

For reaction R2, the CHARMM27 force field37 was selected for the QM/MM calculations, 

and the MM3 force field (modified as discussed below) was used for the MCMM calculations. 

This illustrates that the QM/MM calculation and the MM calculation that are combined by the 

MCMM scheme need not be related to one another in any special way. 

Note that for the reaction R2, CHARMM27 is the same as CHARMM22. The CHARMM27 

force field used for the QM/MM calculations needs to be augmented by a set of parameters for 

atom types (e.g., carbon radical) that are not defined in the standard CHARMM27 force field. 

These augmented MM parameters were set to the parameters for similar atom types, with 

adjustment of the point charges to maintain the neutrality of the camphor and camphor radical 

species. The point charges for the OH radical are obtained in a different manner, i.e., they are 

derived using the Merz-Singh-Kollmann88,165 electrostatic potential (ESP) fitting procedure from 

electronic-structure calculations for the OH radical at the MPWB1K/DIDZ level. We assume that 

the final results are not especially sensitive to these parameter choices, and we are satisfied if the 

selected MM parameters provide a qualitatively corrected zero-order description of the system. 

A detailed description of the CHARMM parameters used here is given in Table S1 of the 

supporting information. These MM parameters are validated by comparisons between MM- and 

QM-optimized geometries of the reactant and product. Reasonably good agreement between the 

MM and QM results is achieved, as demonstrated in Table S2 in the supporting information, 

indicating that the augmented MM parameters are appropriate.  
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As mentioned above, the MM3 force field used for reaction R2 was modified. In particular, 

we use the MM320-22 parameterization with one exception. In MM3 the van der Waals 

interaction is given by the Buckingham Exp-6 potential: 

 VExp−6(r) = ε Ae−Br / ro − C ro
r
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where ro is the sum of the van der Waals radii, and ∈ is the energy parameter for the interaction 

between two atoms. The van der Waals term in the MC-TINKER program166 that we have used 

in previous work for MCMM calculations is written as a linear combination of (15) and an r–12 

term that represents repulsion: 

 Evdw (r) = ε AeBr / ro − C ro
r
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where α is defined as 

 α =
VExp−6(r)

ε ro
r
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which yields α = Ae
−1

2 − C(2.0)6⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 2.012 . (21) 

The values for the unitless parameters A, B, and C are the same as in the original MM3 

formulation,20 viz. 184000.0, 12.0, and 2.25, respectively. In the original version of MC-

TINKER, D was arbitrarily set to 0.2. However, a better value is usually in the range 0.005–0.02. 

We found that the optimum value for D for the camphor reactions is 0.01. The optimum value is 

found by running a few MCMM(0) calculations with values of D in the range 0.005–0.2 and 

selecting the one that gives the most realistic contour map. For reaction R1, we used the original 

MC-TINKER value of 0.2. 
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IV.C. QM/MM Calculations 

The QM/MM calculations were performed by use of the QMMM program,167 which calls a 

QM package and an MM package to perform required single-level calculations and then 

combines the single-level calculations into multi-level results. In this work, the QM package 

Gaussian03163 and the MM program TINKER164 are called. Geometry optimizations were carried 

out using the optimizer168 in Gaussian03 through the external option available in Gausian03.  

The partitioning of the systems into PS (QM) and SS (MM) regions is shown in Figure 1 for 

reaction R1 and in Figure 2 for reaction R2. The QM/MM boundary cuts through one C−C bond 

in R1 and two C−C bonds in R2. The PSs capped by the hydrogen-link atoms in both reactions 

are the same, i.e., OH + C2H6. The mechanical embedding scheme was selected for R1, and the 

RCD electrostatic embedding scheme described in Section II.B was chosen for R2. The 

MPW1K/6-31+G(d,p) and MPWB1K/6-31+G(d,p) levels were selected for R1 and R2, 

respectively, being the same as those in pure QM calculations. Also, the same MM parameters 

were employed as those used in the pure MM calculations, i.e., MM3 for R1, and CHARMM27 

for R2. One motivation to use different QM methods, different MM force fields, and different 

embedding schemes for these two reactions is to demonstrate the generality of the QM/MM-

MCMM algorithm, as well as the capacity of the programs in handling a diverse of QM, MM, 

and QM/MM methods. Note that the QM/MM calculations do not require special/extra 

parameterization for the given QM level of theory and/or for the given MM force field. 

IV.D. Direct Dynamics Calculations 

The direct dynamics calculations for reaction R1 have been reported previously by use of the 

GAUSSRATE program,169 and we reran the calculations by using a different cutoff frequency in 

evaluation of the thermodynamic functions. The current cutoff frequency is set to 50 cm−1, and it 
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is larger than the previous cutoff frequency (10 cm−1),16 which we think is too conservative. Due 

to the very high computational cost, we did not carry out direct dynamics calculations for 

reaction R2. 

IV.E. QM-MCMM Dynamics Calculations 

The QM-MCMM dynamics calculations for reaction R1 have been reported previously16 

employing a cutoff frequency of 10 cm−1 in evaluation of the thermodynamic functions. In the 

current study, we reran the calculations by using a different cutoff frequency of 50 cm−1. In 

calculating statistical mechanical quantities such as partition functions and free energies, any 

frequency below the cutoff is increased to the cutoff value as a way to account, very 

approximately, for anharmonic effects on low-frequency vibrations. (Often, for H transfer 

reactions, there is one low frequency near the saddle point, although when one extends the 

reaction path to large |s|, there are others because some frequencies transform to orbital-rotational 

motions).  

The QM-MCMM dynamics calculations for reaction R2 were performed following the same 

well-established procedure14 as that used in the calculations for reaction R1. Briefly, one begins 

dynamics calculations with an MCMM potential energy surface that is Shepard-interpolated on 

the basis of three stationary points (the reactant well, the product well, and the saddle point), and 

one successively adds up to 10 non-stationary points (seven in the valley of MEP and three in the 

concave-side region that is important for LCT computations) to improve the accuracy of the 

MCMM potential energy surface. Dynamics calculations based on the 3 stationary and n (n = 0, 

1, …, 10) non-stationary points are called MCMM−n dynamics calculations, and the MCMM−10 

results are the final result that are reported in this work. More details about how to locate the non-
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stationary points have been given in Ref. 14 and summarized in Table S1 (supporting 

information) in Ref. 16, and they are not repeated here. 

The Page-McIver170 method was chosen to follow the MEP in mass-scaled coordinates, 

which were scaled to a reduced mass μ of 1 amu. A step size of 0.001 a0 was used for the 

gradient, and a new Hessian was calculated every 0.01 a0 along the MEP. The reaction path was 

calculated out to s = −3.0 a0 on the reactant side and to s = 2.0 a0 on the product side. We 

included the electronically excited 2Π1/2 
state of OH with an excitation energy of 140 cm−1 in 

calculating the reactant partition functions. The generalized normal mode analyses were carried 

out using redundant internal coordinates; in particular, for reaction R1, we use the same 

redundant internal coordinates as used in our previously study,16 and for reaction R2, we use the 

set of internal coordinates listed in Table S3 in the supporting information. The harmonic 

approximation was employed for all modes. A cutoff frequency of 50 cm−1 was selected for 

computing vibrational partition functions (that is, all frequencies below 50 cm–1 were replaced by 

the value of 50 cm–1 to simulate anharmonicity in low-frequency modes). 

The QM-MCMM dynamics calculations were carried out by use of the MC-TINKERATE 

program.171  

IV.F. QM/MM-MCMM Dynamics Calculations 

The QM/MM-MCMM dynamics calculations for both reactions were carried out following 

the same procedure as the one used for the QM-MCMM dynamics calculations (see Section 

IV.E). The same setting were also used for following the MEP and for computing thermodynamic 

functions. The QM/MM-MCMM dynamics calculations were carried out by use of the MC-

TINKERATE program.171  
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V. Results 
The energetic and saddle–point geometric data are collected in Table 1. The QM data for 

reaction R1 have been reported previously, and they are tabulated here for comparison. A 

statistical summary of the comparison between QM and QM/MM vibrational frequencies is listed 

in Table 2, while the frequencies are given in Table S4 for reaction R1 and Table S5 for reaction 

R2 in the supporting information. In Table 3, we compare the locations of the first 7 non-

stationary points in the QM-MCMM and QM/MM-MCMM dynamics calculations for reaction 

R1, the locations being indicated by the value of s, the signed distance from the saddle point 

along the MEP. The reaction-path curvature, κ, is illustrated as a function of s along the MEP for 

reaction R1 in Figure 3. The convergence of the rate constants with respect to the number of 

nonstationary Hessians is shown in Tables 4 and 5. After this all MCMM results shown in the 

article (in subsequent Tables) are the final MCMM-10 ones.  

The rate constants for reactions R1 and R2 are presented in Tables 6 and 7, respectively, 

Table 8 shows the percentage error for the rate constants of R1 calculated by the QM-MCMM 

dynamics and by the QM/MM-MCMM dynamics with respect to those calculated by direct 

dynamics. Listed in Table 9 are the percentage errors for the rate constants of R2 calculated by 

QM/MM-MCMM dynamics with respect to QM-MCMM. In general, a percentage deviation is 

calculated as  

 PD = %100Std

StdCal

×
−

y

yy
  (22) 

where yCalis the quantity to be examined (e.g., rate constants calculated by MCMM dynamics), 

yStdis the standard result (e.g., rate constants calculated by direct dynamics) that the calculation 

tries to reproduce, 
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For an assessment of the overall performance of the calculations, we calculated the mean 

signed deviation (MSD) and mean unsigned deviation (MUD) for a set of quantities as follows  

 MSD = ( )∑
=
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ii yy

N 1

StdCal1   (23) 
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ii yy

N 1
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where Cal
iy is the quantity to be examined, Std

iy is the standard result that the calculation tries to 

reproduce, and N is the number of quantities for which the comparisons are made.  

The mean signed percentage deviation (MSPD) and mean unsigned percentage deviation 

(MUPD) are defined in a similar manner to the MSD and MUD: 
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Obviously, the MSPD and MUPD do not give an even-handed representation of the cases in 

which the quantities are underestimated (those cases are limited to a percentage error of 100%), 

however, they are still very instructive. 

VI. Discussion 
As can be seen Table 1, the QM/MM computations reproduce the QM barrier heights and 

reaction energies reasonably well, and the QM/MM results outperform the capped primary 

system (CPS) studies at the same QM level considerably. For reaction R1, the QM/MM barrier 

height is only 0.2 kcal/mol lower than the QM barrier height. The good agreement in energetics 

leads to excellent agreement of the MEPs calculated by the QM/MM-MCMM and QM-MCMM 

schemes, as illustrated in Fig. 3(A). For reaction R2, although the difference between the 
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QM/MM and QM barrier heights is larger (about 1 kcal/mol) than that for reaction R1, it is very 

encouraging to find that the QM/MM calculations successfully predict a lower barrier height for 

transferring the exo H5a atom than for transferring the endo H5b atom. The QM/MM barrier 

height for the exo H5a atom is lower than the QM/MM barrier height for the endo H5b atom by 

0.5 kcal/mol, in excellent agreement with the QM computations in which it is lower by 0.6 

kcal/mol.  

The QM geometries for the saddle points are also reproduced well by the QM/MM 

computations. The bond distances for the breaking/forming bonds generally agree within 0.02 Å 

between the QM and QM/MM results. The only exception is for reaction R2, where the distances 

between the O atom in the OH radical and the H atom being transferred have been shortened by 

0.04 Å for exo H5a atom and by 0.06 Å for endo H5a atom in QM/MM computations, 

respectively. 

Turning to the vibrational frequencies, one finds in Table 2 that there are usually several tens 

of wavenumbers deviations on average between the QM/MM and QM calculations, as indicated 

by the mean unsigned deviation (MUD). However, it is the mean signed deviation (MSD) that is 

more important in determination of the zero point energy, because the difference in the errors of 

the transition state and reactant zero point energies has a large effect on dynamics calculations if 

vibrational frequencies are not scaled in the dynamics step. The MSD is –32 cm−1 for the 

reactant, –26 cm−1 for the saddle point, and –35 cm−1 for the product in reaction R1. For reaction 

R2, the MSDs are close to –60 cm−1, with a variation as small as 1 cm−1. As noted previously in 

Section II.C, the same trend of over- or underestimation of a vibrational frequency along the 

reaction path leads to significant cancellation of error in evaluating the relative free energy 

profile and vibrational partition functions. This rationalizes why QM/MM-MCMM gives 
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reasonably rate constants compared with QM-MCMM. As a result, the vibrationally adiabatic 

ground-state potential energy curve, Va
G, looks very similar in the QM/MM-MCMM and the 

QM-MCMM dynamics calculations, as demonstrated in Fig. 3(B) for reaction R1. 

The coupling between the motion along the reaction coordinate and the spectator coordinates 

is very similar in the QM/MM-MCMM and QM-MCMM dynamics calculations. Taking reaction 

R1 as an example, the reaction-path curvature, which is an indication of such coupling, shows 

very small differences between QM/MM-MCMM and QM-MCMM dynamics calculations, as 

depicted in Fig. 3(C). The underlying mechanism is that usually the coupling is significant only 

for those atoms that are close to the atoms directly involved in bond breaking and bond forming, 

and often those atoms are included in the PS, which is treated at the QM level. Thus, QM/MM-

MCMM dynamics essentially retains the feature of reaction-path curvature of the QM-MCMM 

dynamics. This also implies that, under certain circumstances, one could use effective reduced-

dimensional resonance matrix element, V12
eff, to replace the full-dimensional resonance matrix 

element, V12, in the MCMM expression equation (2), without losing much accuracy in MCMM 

dynamics calculations. 

Tables 4 and 5 are the main results of the present paper. They show that the rate constants 

converge well with respect to the number of Hessians at non-stationary points. In particular, all 

MCMM-6 and MCMM-8 calculations in the two Tables agree with the MCMM-10 calculations 

within 2%. The noticeably better convergence for reaction R2 as compared to R1 comes 

primarily from a more realistic description of the van der Waals energy for R2 in the repulsion 

region (see Section IV.B). In future work, we will show that by using appropriate MM functions, 

more accurate MCMM surfaces can be generated with a fewer number of Hessians.172 

If QM/MM provides good agreement with QM for barrier heights, vibrations, energies of 

reaction, and barrier heights, QM/MM-MCMM dynamics should yield rate constants comparable 
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with QM-MCMM dynamics calculations. The R1 reaction in the present study is a nice example 

that confirms this expectation: the QM and QM/MM barrier heights differ slightly (by 0.2 

kcal/mol), and the QM and QM/MM rate constants agree with each other generally within 25%, 

as can be seen from Tables 4 and 6. (Here, we should point out that it is more meaningful to 

compare the rate constants with tunneling contributions, e.g., CVT/SCT rate constants, than the 

rate constants determined by just one point at the reaction path, e.g., the CVT rate constants, 

because the non-tunneling calculations are more vulnerable to the numerical noise in the 

computations; the calculation of the tunneling contributions involves integration over the reaction 

path, and this reduces the numerical noises significantly (since performing an integral is like 

performing an average). The barrier heights for the pathway of reaction R2 that we studied show 

larger discrepancies (about 1 kcal/mol) in QM and QM/MM computations, in comparison with 

the R1 case. The bigger errors in the R2 barrier height are not surprising, since the QM/MM 

boundary in R2 is closer to the C atom that is directly involved in bond-breaking, and one 

therefore expects more pronounced boundary effects due to the mismatch between the QM and 

MM energy approximations. Generally speaking, a 1 kcal/mol difference from QM calculations 

is quite reasonable for QM/MM calculations. Unfortunately, though, a difference as small as 1 

kcal/mol in energy can produce a large difference in rates, the effect being more pronounced at 

low temperatures, as demonstrated in Tables 5 and 7. Reactions R1 and R2 serve as examples at 

two extremes to illustrate how the accuracy of QM/MM energetic information affects the 

accuracy of QM/MM-MCMM dynamics.  

VII. Concluding Remarks 
In this paper, we introduced a new MCMM algorithm, which is called QM/MM-MCMM, for 

studies of very large reactive systems. The QM/MM-MCMM method uses QM/MM calculations 

to generate the resonance matrix element V12 of MCMM calculations, and it is tested for two 
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hydrogen-transfer reactions by comparing QM/MM-MCMM calculations to MCMM calculations 

in which the resonance matrix element is generated by full QM calculations, which is called QM-

MCMM, and also, for one reaction, by comparing to full QM direct dynamics calculations where 

the potential energies are computed quantum mechanically on the fly. Very encouraging results 

are obtained for rate constants including tunneling contributions, when the QM/MMM method 

adequately reproduces the barrier height of the QM calculations, thereby validating the QM/MM-

MCMM method as a very general and efficient procedure for generating potential energy 

surfaces for large reactive systems. As full QM calculations are usually not possible for very 

large systems like proteins or large nanoparticle catalysts, QM/MM-MCMM is an alternative 

practical way to QM-MCMM in study of these reactive systems. However, as illustrated by 

cautionary example of reaction R2, one will not get as reliable results if the QM/MM calculations 

introduce an error in the barrier height. 

The resonance matrix element V12 plays the central role in the MCMM method and in other 

methods based on valence bond theory. An advantage of our MCMM algorithm, as discussed in 

the introduction, is that the full dimensionality of the resonance matrix element V12 is included. 

Does one really need a full-dimensional resonance integral in all cases? For a large system, a full-

dimensional resonance integral might cause technical problems in handling (computing and 

storing) very large Hessian matrixes. Could one replace V12 by a reduced-dimensional effective 

resonance integral in the MCMM expression equation (2) without losing much accuracy in the 

MCMM dynamics calculations? If yes, how can we construct the effective reduced-dimensional 

resonance integral? 

It seems that, in many cases, significant coupling between the motion along the reaction 

coordinate and other motions is present only for atoms that are within a small distance from the 

active center. That is, dynamical coupling seems rather localized near to the bond-breaking and 



 32

bond-forming atoms. This justifies the use of a reduced-dimensional resonance integral, provided 

that the dynamical coupling is adequately described. Please note that even though the reduced-

dimensional resonance integral is used, the MCMM potential is still full dimensional. In other 

words, one approximates the full-dimensional MCMM potential based on the full-dimensional 

resonance integral by a full-dimensional MCMM based on a reduced-dimensional resonance 

integral.  

Now we consider the second question: how to construct the effective reduced-dimensional 

resonance integral? The most simplified possible reduced-dimensional effective resonance 

integral is a constant. Although for some reactions, the resonance matrix element is almost 

constant along the MEP, we found that it must sometimes vary appreciably off the MEP in order 

to give reasonable frequencies.13 Therefore, the assumption that the resonance matrix element is 

constant in the reaction swath is probably oversimplified for many cases. 

By fitting the resonance integral to a simple analytic function, like an exponential function or 

Gaussian, one increase the flexibility of a reduced-dimensionality scheme, and by selecting the 

parameters carefully, one might be able to reproduce some desired properties such as the 

experimental barrier height or theoretically calculated vibrational frequencies at the saddle point. 

The problem of this kind of treatment is that it is difficult to find an analytical function that is 

generally applicable for different reactions and systematically improvable by including more and 

more kinetic and electronic-structure information. 

In comparison with simple analytic functions, Shepard interpolation is a general and 

systematically improvable algorithm for constructing the resonance surface. Therefore a way to 

construct a reduced-dimensional effective resonance integral is by Shepard interpolation based on 

QM or QM/MM calculations in which the resonance integral explicitly depends on only a subset 
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of the atoms, e.g., the atoms in the model system (the atoms in the active center and possibly 

some nearby spectator atoms). We will focus our discussion on this point in the remaining text. 

The most direct treatment for reducing the dimensionality of the resonance integral is to 

perform cluster QM calculations for a model system. As an example, we note that Sierka and 

Sauer123 explored a idea of combining a method they call QM-Pot with the empirical valence-

bond theory in studying proton transfer reactions in zeolite catalysts; QM-Pot,101 which stands 

for the “combined quantum mechanics-interatomic potential functions approach”, is a 

mechanical-embedding QM/MM algorithm in the language we use, but they prefer to reserve 

“molecular mechanics” for traditional organic and biological force fields. In Ref. 123, the authors 

started by doing QM calculations on a model system, then parameterized these with an EVB 

potential function and proceeded to generate an initial guess (geometry and Hessian) for minima 

and saddle points for the entire system based on the parameterized EVB potential for the model 

system and the interatomic potential between the model system and its surroundings; finally they 

optimized those stationary points (the minima and the saddle point) employing the QM-Pot 

approach. Their way of combing the EVB for a model system and the interatomic potentials 

between the model system and its environment can be regarded as Cluster-QM-MCMM, or 

CQM-MCMM, because the resonance matrix element V12 is derived from a cluster model for the 

active site, which differs from our QM/MM-MCMM treatment where V12 is derived from 

QM/MM calculations for the entire system.  

Cluster QM calculations are much less expensive, and they can produce good results in many 

cases if used with care. However, a key problem of the cluster QM calculations is whether or not 

the model system is a faithful model for the active center of the entire system as the electronic 

structure changes during the reaction. Although the dynamical coupling seems rather localized 

near to the bond-breaking and bond-forming atoms, the environment (e.g., the solvent) may 
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perturb the electronic structure of the atoms in the active center by imposing geometric 

constraints or by polarization. Such effects can be critical in some cases, e.g. when the model 

system contains transition metals and has more than one energetically low-lying electronic 

state.173 A model system in the gas phase might not be a wise choice in such a situation, and 

QM/MM calculations, in particular electrostatic-embedding QM/MM calculations, are 

recommended, if full QM calculations for the entire system are not feasible. If a model system 

does not provide a good representation of the electronic structure of the reaction center, we doubt 

that one can get a correct potential surface for the entire system by improving only the diagonal 

terms V11 and V22, with the resonance integral based on that inappropriate model system. In 

particular, we question whether it is appropriate to use a resonance integral calculated in the gas 

phase for condensed-phase systems. A detailed and systematic examination of this issue would be 

worthwhile.  

Then how should one get the effective reduced-dimensional resonance integral from full-

dimensional QM or QM/MM calculations? One possible way is to treat explicitly the degrees of 

freedom of the atoms in the model system while considering the environment as a bath. One 

might optimize the geometry of the environment for a given geometry of the active center, i.e., 

force the environment to follow the reaction in the active site adiabatically, and evaluate the 

resonance integral accordingly. A more elaborate scheme would be to perform an ensemble 

average and use the averaged resonance integral as the effective resonance integral. After doing 

that, one simply retains in the resonance integral the degrees of freedom of the atoms in the active 

site. These schemes are surely more complicated than the scheme based on cluster QM 

calculations, but they have the reward that the resonance integral is obtained, instead of by a gas-

phase model, by a more realistic model that it is probably more accurate.  
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In the introduction we compared the present QM/MM-MCMM approach to another possible 

approach, called MCMM/MM. Whereas the former corresponds to putting QM/MM into 

MCMM, the latter corresponds to putting MCMM into QM/MM. We pointed out that 

MCMM/MM would not contain the effects of the SS in the quantum mechanical description of 

the PS, that is, it would correspond to mechanical embedding, whereas the present approach 

allows one to use, as is done in the present applications, either a mechanical embedding QM/MM 

method or an electrostatic embedding QM/MM method, which provides a more realistic 

description. (We demonstrated both mechanical and electrostatic embedding schemes in this 

study.) In addition to this question of the interaction of the subsystems, there are also 

computational considerations involved in the strategy we have chosen, as we discuss next. 

First, MCMM/MM requires QM calculations on an isolated model system (as in the cluster-

QM/MCMM that we discussed above), which are much simpler than doing QM/MM 

computation for the entire system. For example, finding the QM/MM transition-state structure for 

the entire system is in general much harder than finding the QM transition-state structure for the 

isolated model system. 

Second, we note that the MCMM/MM does not need to handle large Hessian matrices when 

constructing V12, while in QM/MM-MCMM, unless one uses a reduced-dimensional 

representation for V12, it is necessary to manipulate a full-dimensional Hessian matrix, whose 

size increases as N2 (N is the number of the atoms). Not only is such a big Hessian matrix 

expensive in calculations, but also it presents a problem in storage. Moreover, most electronic-

structure programs provide analytic derivatives for the PS atoms but not for the SS atoms, which 

are treated as background point charges in an electrostatic embedding QM/MM computation. 

Thus, the MCMM/MM is less computationally demanding for large-size systems. 
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Finally, we add a note on MCMM parameterization. It is always a great advantage if limited 

effort in parameterization is required. When using MCMM/MM we actually implicitly assume 

that the MCMM potential is transferable between different conformations of the entire system. 

(This may be also true for QM/MM-MCMM employing a reduced-dimensional effective V12.) A 

greater degree of transferability could be achieved by regarding the PS as a reacting functional 

group, which is present in various parts of a system or in different systems, just like a residue in 

proteins interacting with the solvent water molecules. Thus, one might develop a set of MCMM 

potentials for selected reactions and use them as reactive MM potentials for standard MD 

simulations, e.g., to simulate the hydrogen exchange between water molecules and a solvated 

protein, the exchange taking place for various residues at the same time. Here, one would assume 

that the reactions are taking place at the same time at different locations without interference 

between each other, which is equivalent to approximating a large (valence-bond theory) matrix 

by several sub-blocks neglecting the off-diagonal elements among the sub-blocks. This kind of 

transferability would permit MCMM/MM and/or QM/MM-MCMM with a reduced-dimensional 

V12 to be treated as generalized MM potentials for simulating reactive bio-molecules. 
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Table 1. Reaction Energies, Barrier Heights, Saddle Point Geometries, and the Vibrational 

Imaginary Frequency at the Saddle Point for the Reactions OH + Propane (R1) and OH + 

Camphor (R2).  a 

 QM QM/MM CPS 

R1 b    

ΔE −12.6  −13.2  −13.1 

V‡ 4.9 4.7 3.9 

RO(H)−Ht 1.337 1.343 1.343 

RC1−Ht 1.195 1.191 1.192 

θC1−Ht−O(H) 177.2 178.2 177.7 

ω‡ 1004i 958i 969i 

R2 c    

ΔE −16.3  −14.0  −13.1 

V‡ d 1.8 2.9 3.9 

RO(H)−H5a
 d 1.392 1.337 1.347 

RC5−H5a
 d 1.173 1.198 1.190 

θC5−H5a−O(H)
 d 172.6 167.8 178.1 

ω‡ d 538i 966i 861i 

a Energy in kcal/mol, distance in Å, angles in degree, and frequency in cm−1. The capped 

primary system (CPS) is OH + C2H6 for both reactions. 

b Reaction take place at the C1 position. The MPW1K/DIDZ level of theory is used in 

QM calculations, and the MM3 force field is used for MM calculations. See Figure 1 for 

the QM/MM boundary setup. The mechanical embedding scheme was used in QM/MM 

computations. 
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c The MPWB1K/DIDZ level of theory in QM calculations, and CHARMM27 force field 

for MM calculations. See Table S1 in supporting information for augmented MM 

parameters. See Figure 2 for the QM/MM boundary setup. The electrostatic embedding 

(EE) scheme redistributed charge and dipole (RCD) was used in QM/MM computations. 

d Abstraction of exo H5a.  
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Table 2. Statistic Summary of the Deviations between the QM and the QM/MM 

Vibrational Frequencies for the Reactions OH + propane (R1) and OH + Camphor (R2).  a 

 Reactant Product Saddle Point 

R1 b    

Num. of Modes    

  Total  27 24 32 

 |Δν| > 100 cm−1 3 3 3 

 |Δν| < 10 cm−1 11 5 14 

MSD c [cm–1] −32   −35 −26 

MUD d [cm–1] 39 50 34 

|Δν|max [cm–1] 244 247 249 

R2 e    

Num. of Modes    

 Total  75 72 80 f  

 |Δν| > 100 cm−1 13 13 13 d 13 e 

 |Δν| < 10 cm−1 11 9 8 d 14 e 

MSD c [cm–1] −61 −62 −62 d −61 e 

MUD d [cm–1] 67 72 71 d 71 e 

|Δν|max [cm–1] 332 374 352 d 360 e 

    

a Frequency in cm–1, The deviation is calculated as Δν = (νQM/MM – νQM), where the 

modes are arranged in order of decreasing magnitude. The OH and H2O species are 

always treated at the pure QM level, and they are not included in the comparisons. The 

imaginary-frequency mode has been shown in Table 1, and it is excluded from the 

comparison in this Table. 
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b Reaction take place at the C1 position. The MPW1K/DIDZ level of theory is used in 

QM calculations, and the MM3 force field is used for MM calculations. See Figure 1 for 

the QM/MM boundary setup. The mechanical embedding (ME) scheme was used in 

QM/MM computations. 

c Defined by equation (21). 

d Defined by equation (22). 

e The MPWB1K/DIDZ level of theory in QM calculations, and CHARMM27 force field 

for MM calculations. See Table S1 in supporting information for augmented MM 

parameters. See Figure 2 for the QM/MM boundary setup. The electrostatic embedding 

(EE) scheme redistributed charge and dipole (RCD) was used in QM/MM computations. 

f Abstraction of exo H5a.  
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Table 3. Comparison of the Locations of the Shepard Points in QM-MCMM and in 

QM/MM-MCMM Dynamics Calculations for the Reaction OH + propane (R1).a 

N-th Point QM-MCMM  QM/MM-MCMM 

 s E  s E 

0 b 0.00 4.91  0.00 4.72 

1 −0.51 4.26  −0.52 4.07 

2 0.19 4.09  0.19 3.93 

3 −1.22 3.08  −1.21 2.95 

4 0.29 2.48  0.29 2.36 

5 −2.11 1.85  −2.08 1.77 

6 −0.45 4.29  −0.45 4.13 

7 0.53 −3.49  0.53 −3.72 

8H −2.54 N/a  −2.51 N/a 

8L 0.51 N/a  0.51 N/a 

8 N/a 7.75  N/a 7.54 

9H −2.79 N/a  −2.77 N/a 

9L 0.96 N/a  0.97 N/a 

9 N/a 6.15  N/a 6.07 

10H −2.79 N/a  −2.77 N/a 

10L 0.96 N/a  0.97 N/a 

10 N/a 2.56  N/a 2.17 

a Only Shepard points for which QM or QM/MM calculations are needed are listed, thus 

excluding the reactant well and the product well. Energy in kcal/mol, and s in bohr. The 

scheme that was presented in Ref. 14 and summarized in Table S1 in Ref. 16 is adopted 

for determination of the locations of the Shepard points. See the cited references for 

details. The n-th Shepard point is determined on the basis of the MCMM-(n − 1) potential 
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energy surface, and therefore, the s value listed for the n-th point is corresponding to the 

MEP in the MCMM-(n − 1) potential energy surface. Reaction take place at the C1 

position. The MPW1K/DIDZ level of theory in QM calculations, and MM3 force field for 

MM calculations. See Figure 1 for the QM/MM boundary setup. The mechanical 

embedding scheme was used in QM/MM computations. 

b The saddle point.  
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Table 4. Convergence of TST, CVT, CVT/SCT, and CVT/μOMT with respect to number of 

nonstationary Hessians for QM/MM-MCMM-X (X = 2, 4, 6, 8, 10) at T = 300 and 600 K for the 

R1 reaction OH + propane.a 

 T (K) TST CVT CVT/SCT CVT/μOMT 

MCMM-0      

 300 0.0 108.8 1346.3 1334.4 
 600 0.0 40.0 153.2 151.2 
MCMM-2      
 300 0.0 -34.3 36.8 35.7 
 600 0.0 -25.0 -0.8 -1.6 
MCMM-4      
 300 0.0 -33.3 -26.4 -27.0 
 600 0.0 -24.2 -12.1 -12.8 
MCMM-6      
 300 0.0 0.7 0.8 0.0 
 600 0.0 2.4 2.4 1.6 
MCMM-8      
 300 0.0 0.0 0.0 -0.8 
 600 0.0 0.8 0.8 0.0 
MCMM-10      
 300 0.0 0.0 0.0 0.0 
 600 0.0 0.0 0.0 0.0 

 
a Convergence is indicated by (kQM/MM-MCMM-X  – kQM/MM-MCMM-10) / kQM/MM-MCMM-10 × 100.



Table 5. Convergence of TST, CVT, CVT/SCT, and CVT/μOMT with respect to number 

of nonstationary Hessians for QM/MM-MCMM-X (X = 2, 4, 6, 8, 10) at T = 300 and 600 

K for the R2 reaction OH + camphor.a 

 T (K) TST CVT CVT/SCT CVT/μOMT

MCMM-0      

 300 0.0 26.5 26.8 26.8 

 600 0.0 -8.8 -9.8 -9.8 

MCMM-2      

 300 0.0 3.2 -19.5 -19.5 

 600 0.0 2.9 -3.3 -3.3 

MCMM-4      

 300 0.0 4.5 11.0 11.0 

 600 0.0 3.6 5.9 5.9 

MCMM-6      

 300 0.0 0.0 -1.3 -1.3 

 600 0.0 0.0 0.0 0.0 

MCMM-8      

 300 0.0 0.0 1.1 1.4 

 600 0.0 0.0 0.7 0.7 

MCMM-10      

 300 0.0 0.0 0.0 0.0 

 600 0.0 0.0 0.0 0.0 
 

a Convergence is indicated by (kQM/MM-MCMM-X  – kQM/MM-MCMM-10) / kQM/MM-MCMM-10 × 

100. 
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Table 6. Rate Constants Calculated by the Direct Dynamics, by the QM-MCMM 

Dynamics, and by the QM/MM-MCMM Dynamics for the Reaction OH + 

Propane (reaction R1).a 

 

  T(K)  TST  CVT  CVT/SCT CVT/LCT(0) CVT/LCT CVT/μOMT

Direct Dynamics  

200 6.55E−16 2.89E−17 5.59E−17 4.64E−17 4.77E−17 5.59E−17

300 1.12E−14 1.46E−15 1.92E−15 1.77E−15 1.80E−15 1.92E−15

400 5.43E−14 1.19E−14 1.37E−14 1.31E−14 1.32E−14 1.37E−14

500 1.58E−13 4.60E−14 4.97E−14 4.84E−14 4.86E−14 4.97E−14

600 3.53E−13 1.22E−13 1.28E−13 1.25E−13 1.26E−13 1.28E−13

1000 2.73E−12 1.23E−12 1.24E−12 1.23E−12 1.23E−12 1.24E−12

QM-MCMM  

200 6.55E−16 1.54E−17 5.25E−17 4.12E−17 4.35E−17 5.34E−17

300 1.12E−14 9.82E−16 1.74E−15 1.56E−15 1.61E−15 1.76E−15

400 5.43E−14 8.99E−15 1.25E−14 1.17E−14 1.20E−14 1.26E−14

500 1.58E−13 3.74E−14 4.64E−14 4.45E−14 4.51E−14 4.67E−14

600 3.53E−13 1.04E−13 1.21E−13 1.18E−13 1.19E−13 1.22E−13

1000 2.73E−12 1.11E−12 1.04E−12 1.02E−12 1.03E−12 1.04E−12

QM/MM-MCMM   

200 9.71E−15 2.82E−17 8.15E−17 6.49E−17 6.78E−17 8.26E−17

300 1.46E−13 1.48E−15 2.42E−15 2.18E−15 2.23E−15 2.44E−15

400 6.60E−13 1.24E−14 1.63E−14 1.54E−14 1.57E−14 1.64E−14

500 1.84E−12 4.82E−14 4.94E−14 4.76E−14 4.80E−14 4.96E−14

600 3.99E−12 1.25E−13 1.24E−13 1.21E−13 1.22E−13 1.25E−13

1000 2.90E−11 1.22E−12 1.17E−12 1.16E−12 1.16E−12 1.17E−12
a Reaction take place at the C1 position. The MPW1K/DIDZ level of theory in QM 

calculations, and MM3 force field for MM calculations. See Figure 1 for the QM/MM 
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boundary setup. The mechanical embedding (ME) scheme was used in QM/MM 

computations. The MCMM−10 results are listed for MCMM dynamics calculations. The 

rate constant including tunneling is then given by kCVT/MT = κMT kCVT , where κMT 

is the transmission coefficient, and MT is SCT, LCT(0), LCT, or μOMT. The definitions 

of these abbreviations are given in footnote a of Table 8. 
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Table 7. Rate Constants Calculated by the QM-MCMM Dynamics and by the 

QM/MM-MCMM Dynamics for the Reaction OH + Camphor (reaction R2).a,b 

  T(K)    TST    CVT    CVT/SCT CVT/LCG0 CVT/LCG CVT/μOMT

QM-MCMM                        

200 1.29E-13 3.92E-15 9.28E-15 8.26E-15 8.64E-15 9.30E-15 

300 2.22E-13 2.52E-14 3.81E-14 3.59E-14 3.68E-14 3.81E-14 

400 3.39E-13 7.42E-14 9.41E-14 9.08E-14 9.22E-14 9.42E-14 

500 4.89E-13 1.57E-13 1.83E-13 1.79E-13 1.81E-13 1.83E-13 

600 6.82E-13 2.78E-13 3.10E-13 3.05E-13 3.07E-13 3.10E-13 

1000 2.01E-12 1.08E-12 7.65E-13 7.60E-13 7.62E-13 7.65E-13 

QM/MM-MCMM                    
200 3.53E-14 1.95E-16 5.38E-16 4.35E-16 1.14E-15 1.16E-15 

300 1.17E-13 4.00E-15 6.30E-15 5.71E-15 1.01E-14 1.02E-14 

400 2.52E-13 2.08E-14 2.69E-14 2.54E-14 3.66E-14 3.67E-14 

500 4.51E-13 6.19E-14 7.27E-14 7.01E-14 9.00E-14 9.03E-14 

600 7.27E-13 1.37E-13 1.53E-13 1.50E-13 1.79E-13 1.79E-13 

1000 2.93E-12 9.47E-13 9.85E-13 9.76E-13 1.05E-12 1.05E-12 
a The MPWB1K/DIDZ level of theory in QM calculations, and CHARMM27 

force field for MM calculations. See Table S1 in supporting information for 

augmented MM parameters. See Figure 2 for the QM/MM boundary setup. The 

electrostatic embedding (EE) scheme redistributed charge and dipole (RCD) was 

used in QM/MM computations. The MCMM−10 results are listed. The rate 

constant including tunneling is then given by kCVT/MT = κMT kCVT , where 

κMT is the transmission coefficient, and MT is SCT, LCT(0), LCT, or μOMT, 

which are defined in footnote a of Table 8.  

b Abstraction of exo H5a. 
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Table 8. Percentage Errors of Reaction Rates in QM-MCMM and QM/MM-MCMM 

Dynamics (with respect to Direct Dynamics) for the Reaction of OH + Propane (R1). a 

 T(K)  TST  CVT  CVT/SCT CVT/LCT(0) CVT/LCT CVT/μOMT

QM-MCMM 

 200 0 −47 −6 −11 −9 −4

 300 0 −33 −9 −12 −11 −8

 400 0 −24 −9 −11 −9 −8

 500 0 −19 −7 −8 −7 −6

 600 0 −15 −5 −6 −6 −5

 1000 0 −10 −16 −17 −16 −16

MSPE b
0 −25 −9 −11 −10 −8

MUPE c
0 25 9 11 10 8

QM/MM-MCMM  

 200 1382 −2 46 40 42 48

 300 1204 1 26 23 24 27

 400 1115 4 19 18 19 20

 500 1065 5 −1 −2 −1 0

 600 1030 2 −3 −3 −3 −2

 1000 962 −1 −6 −6 −6 −6

MSPE b
1126 2 14 12 12 14

MUPE b
1126 3 17 15 16 17

a Reaction take place at the C1 position. The MPW1K/DIDZ level of theory in QM 

calculations, and MM3 force field for MM calculations. See Figure 1 for the QM/MM 

boundary setup. The mechanical embedding  scheme was used in QM/MM computations. 

The MCMM−10 results are listed for MCMM dynamics calculations. The rate constant 

including tunneling is then given by kCVT/MT = κMT kCVT , where κMT is the 
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transmission coefficient, and MT is SCT, LCT(0), LCT, or μOMT. The transmission 

coefficients are defined as follows: SCT, small-curvature tunneling; LCT(0), large-

curvature tunneling only considering unexcited diabatic tunneling states; LCT, full large-

curvature tunneling; μOMT, microcanonically optimized multidimensional tunneling.  

 b Mean Signed Percentage Error (MSPE) averaged over six temperatures. 
c Mean Unsigned Percentage Error (MUPE) averaged over six temperatures. 
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Table 9. Percentage Errors of Reaction Rates in QM/MM-MCMM Dynamics with 

respect to QM-MCMM dynamics) for the Reaction of OH + Camphor (reaction R2). a,b 

 T(K) TST CVT CVT/SCT CVT/LCT(0) CVT/LCT CVT/μOMT

 200 -73 -95 -94 -95 -87 -88 

 300 -47 -84 -83 -84 -73 -73 

 400 -26 -72 -71 -72 -60 -61 

 500 -8 -61 -60 -61 -50 -51 

 600 7 -51 -51 -51 -42 -42 

 1000 46 -12 29 28 38 37 

MSPE c  -17 -62 -55 -56 -46 -46 

MUPE d  34 62 65 65 58 59 
a The MPWB1K/DIDZ level of theory in QM calculations, and CHARMM27 

force field for MM calculations. See Table S1 in supporting information for 

augmented MM parameters. See Figure 2 for the QM/MM boundary setup. The 

electrostatic embedding (EE) scheme redistributed charge and dipole (RCD) was 

used in QM/MM computations. The MCMM−10 results are listed. The rate 

constant including tunneling is then given by kCVT/MT = κMT kCVT , where 

κMT is the transmission coefficient, and MT is SCT, LCT(0), LCT, or μOMT. 

The definitions of the transmission coefficients are given in footnote a of Table 8. 

b Abstraction of the exo H5a 

c Mean Signed Percentage Error (MSPE) averaged over six temperatures. 

d Mean Unsigned Percentage Error (MUPE) averaged over six temperatures. 
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Figure Captions 

 

Fig.1. Reaction of OH with C3H8 to produce H2O and CH2CH2CH3. The QM/MM 

boundary cuts through the C2–C3 bond.  

Fig.2. Reaction of OH with camphor. The QM/MM boundary cuts through the C4–C5 

bond and the C1–C6 bond. The hydrogen atoms are shown explicitly only in the 

QM region. 

Fig.3. (A) The classical potential energy curve, VMEP, (B) the vibrationally adiabatic 

potential energy curve, Va
G, and (C) the reaction-path curvature reaction, κ, as 

functions of reaction coordinate s for the reaction OH with propane (reaction R1). 
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Fig.1. Reaction of OH with C3H8 to produce H2O and CH2CH2CH3. The QM/MM 

boundary cuts through the C2–C3 bond. 
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Fig.2. Reaction of OH with camphor. The QM/MM boundary cuts through the C4–C5 

bond and the C1–C6 bond. The hydrogen atoms are shown explicitly only in the 

QM region.  
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Fig.3. (A) The classical potential energy curve, VMEP, (B) the vibrational adiabatic 

ground-state potential energy curve, Va
G, and (C) the reaction-path curvature 

reaction, κ, as functions of reaction coordinate s for the reaction OH with propane 

(R1).  
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