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Direct calculation of coupled diabatic potential-energy surfaces
for ammonia and mapping of a four-dimensional conical
intersection seam
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We used multiconfiguration quasidegenerate perturbation theory and the fourfold-way direct
diabatization scheme to calculate ab initio potential-energy surfaces at 3600 nuclear geometries of
NH3. The calculations yield the adiabatic and diabatic potential-energy surfaces for the ground and
first electronically excited singlet states and also the diabatic coupling surfaces. The diabatic
surfaces and coupling were fitted analytically to functional forms to obtain a permutationally
invariant 2�2 diabatic potential-energy matrix. An analytic representation of the adiabatic
potential-energy surfaces is then obtained by diagonalizing the diabatic potential-energy matrix. The
analytic representation of the surfaces gives an analytic representation of the four-dimensional
conical intersection seam which is discussed in detail. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2168447�
I. INTRODUCTION

The electronically excited states and photochemistry of
ammonia have been studied extensively both theoretically1–9

and experimentally.10–30 Photodissociation of ammonia

through the first singlet excited �Ã 1A2
�� state is a prototype

problem for nonadiabatic dynamics. The electronic ground

state �X̃ 1A1� has two C3� minima connected by a low-
frequency inversion mode with a D3h saddle point. The ex-
cited state is quasibound with a trigonal planar D3h minimum
and a C2� transition state in the N–H dissociation channel
leading to NH2+H products. The ground electronic state has

a conical intersection with the Ã excited singlet electronic
state, leading to competition between the adiabatic and nona-
diabatic NH2+H pathways for dissociation:

NH3�Ã 1A2
�� →�NH2�X̃ 2B1� + H �dissociation 1� ,

NH2�Ã 2A1� + H �dissociation 2� .

The ground electronic state of the NH2 products �2B1� corre-
lates diabatically with the first excited �1A2

�� state of NH3,
while the first excited state of NH2 products �2A1� correlates
diabatically with the ground state �1A1� of ammonia. For
general planar geometries, the symmetry of the 1A1 ground
state becomes 1A�, the symmetry of the 1B1 state becomes
1A�, and the adiabatic potential-energy surfaces cross at a
four-dimensional conical intersection seam. �For the one-
dimensional subspace the symmetries become 1A1

� and 1A2
�,

respectively.� However, in general nonplanar geometries
both the 1A� �1A1

�� and the 1A� �1A2
�� states have the same 1A

symmetry, and nonplanar geometries have avoided crossings.
The topographies of these coupled potential-energy surfaces

are critical for the photofragmentation dynamics of the Ã

a�
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state, which has been studied in recent state-selective
experiments.25–30

In the present study we present coupled potential-energy
surfaces for simulating the photofragmentation process. Tra-
ditionally, potential-energy surfaces are generated by com-
puting the eigenstates of an electronic Hamiltonian for a grid
of nuclear geometries and fitting the energies to a function of
the nuclear coordinates. The coupling between the adiabatic
potential-energy surfaces, which is needed for dynamical cal-
culations, can then be obtained by calculating nuclear mo-
mentum matrix elements between the eigenstates. This vec-
tor coupling �commonly referred to as the nonadiabatic
coupling� is a function of nuclear coordinates that can be
rapidly varying in the regions of avoided crossings and sin-
gular at conical intersections.31,32 When fitting surfaces in the
adiabatic representation, it is difficult to ensure that singu-
larities occur where the adiabats cross and that the slopes of
the upper and lower adiabats are consistent at the multidi-
mensional crossing, where these slopes are discontinuous.

Recently, a promising alternative was presented; this in-
volves directly computing diabatic states based on configu-
rational uniformity.33–36 Diabatic states can be defined as
states whose nuclear momentum vector coupling terms are
negligibly small.32 Strict diabatic states where these terms
are zero do not exist in general since the nuclear momentum
coupling terms cannot be made to simultaneously vanish in
all nuclear coordinates over a finite region of space,37 and
therefore diabatic states are sometimes called quasidiabatic
states, but we will use the shorter notation. In fact, one may
divide the nuclear momentum coupling into a transverse part
that cannot be transformed away and longitudinal part that
can be.37 The transverse part is not only nonzero in all rep-
resentations, but far from a conical intersection it is not even
smaller, in general, than the longitudinal part.37,38 However,

we can find diabatic bases where the nuclear momentum
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coupling is everywhere as small in order of magnitude as it is
in conventional Born-Oppenheimer situations in which the
ground state is widely separated from all the excited
states.32,38 Therefore, neglecting nuclear momentum cou-
pling in such diabaticbases has the same validity as making
the Born-Oppenheimer approximation when there are no
low-lying states.38 There is no unique way to find such di-
abatic states, but we will use the recently proposed fourfold
way,34–36 which involves first using multiconfiguration
quasidegenerate perturbation theory �MC-QDPT�,39,40 then
transforming to diabatic states on the basis of configurational
uniformity.33,34 Although the inconvenient nuclear momen-
tum coupling can be neglected in a diabatic representation,
the states are still coupled. However, the diabatic coupling is
a smooth, nonsingular, scalar function and it is much more
convenient to handle in dynamics calculations. The fourfold-
way diabatization scheme is called direct because, unlike
most previous methods for finding diabatic states,33,34 the
fourfold way does not require following a path through con-
figuration space.

This paper is organized as follows. The details of the
ab initio calculations are described in Sec. II. The functional
forms for fitting the six-dimensional diabatic surfaces and
couplings are presented in Sec. III. Section IV includes a
discussion of the quality of the fit and the procedure of di-
agonalizing the diabatic matrix to obtain adiabatic states. The
conclusions are provided in Sec. V.

II. AB INITIO ELECTRONIC STRUCTURE
CALCULATIONS

The diabatization scheme is presented in detail in previ-
ous papers.34–36 In Sec. II.A, we summarize the key concepts
and introduce the terminology to be used, and in Sec. II.B,
we present the application of the general scheme to
ammonia.

II.A. Summary of the diabatization procedure
and theory

The two lowest-energy diabatic states �1 and �2 are ob-
tained by an orthogonal transformation of the two lowest
adiabatic states �1 and �2:

�k = �
n=1

2

Tnk�n, �1�

where Tnk is an element of the adiabatic/diabatic transforma-
tion matrix. Each adiabatic state is expressed as a linear com-
bination of L orthonormal configuration state functions
�CSFs� denoted by ��:

�n = �
�=1

L

C�n��, �2�

where C�n is determined by a perturbation-theory calcula-
tion. In particular, we use multiconfiguration quasidegenerate
perturbation theory39,40 based on a complete active space
self-consistent-field41 �CASSCF� reference state. The CSFs
are symmetry-adapted combinations of the Slater determi-

nants built from canonical CASSCF molecular orbitals.
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The first step in the diabatization scheme is to define the
weak-interaction regions and identify the potential reference
geometries, i.e., geometries where the adiabatic states are
well separated in energy, and the nonadiabatic coupling is
negligible, so that the adiabatic states are found to be good
approximations to the diabatic states. A potential reference
geometry Qref is expected to be dominated by a small num-
ber of CSFs that are assumed to be good prototypes for the
diabatic states. The diabatic prototypes are required to have
the following properties. �1� Each diabatic state �k should be
dominated by a unique group of CSFs called Gk. �2� The
group list Gk should remain the same for all nuclear
geometries.

A potential reference geometry that is used to determine
the dominant CSF list is called a reference geometry. A sys-
tem with more than one product arrangement requires refer-
ence geometries in each arrangement, and a consistent domi-
nant CSF list for the entire system for all nuclear geometries
is obtained by combining the CSF lists of all the reference
geometries in each arrangement.35 For the present applica-
tion to NH3, as discussed further below, we used six refer-
ence geometries.

A key aspect of the diabatization procedure is configu-
rational uniformity. Since diabatic states are smooth func-
tions of coordinates, the molecular orbitals �MOs� participat-
ing in the dominant CSFs that define the diabatic prototypes
should deform smoothly along paths in the nuclear coordi-
nate space. Such smoothly varying MOs are called diabatic
molecular orbitals �DMOs�.

The determination of DMOs from the canonical
CASSCF adiabatic MOs u� used in the CSFs is carried out
by a systematic and general scheme called the fourfold
way.34–36 The first step of the fourfold way is the maximiza-
tion of threefold density criterion defined as

D3��N,�R,�T� = 2DNO + DON + 0.5DTD. �3�

The functionals DNO, DON, and DTD in Eq. �3� are the natural
orbital, occupation number, and the transition density terms,
respectively. More specifically, the natural orbital functional
is defined as

DNO = N�
�=1

�

�p̄���2, �4�

where � is the number of MOs that are used to construct
CSFs, N is the number of diabatic states, and p̄ is a state-
averaged density matrix given as

p̄ =
1

N
�
n=1

N

pn, �5�

where pn is a matrix with elements p��
n , which is the one-

particle density-matrix element of the adiabatic wave func-
tion �n, and � and � are the molecular-orbital labels. The
occupation number functional is defined as

DON = �
�=1

�

�
n=1

N

�p��
n �2. �6�
Finally, the transition density functional is defined as
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DTD =
2

N − 1 �
�=1

�

�
m	n

N

�p��
mm�2, �7�

where pmn is the transition density matrix between adiabatic
states �m and �n. The maximization of the D3 functional at a
reference geometry allows us to find DMOs in which to re-
express the CSFs. For the present application to NH3, �
=102 and N=2.

Since the reference geometries are chosen in weak-
interaction regions, the DMOs identified by the threefold cri-
terion need not to remain smooth in the strong-interaction
regions. A fourth criterion involving maximum overlap ref-
erence MOs �MORMOs� is therefore applied in addition to
the threefold density criterion. For this purpose a subset of
the DMOs is selected as reference MOs, which is denoted as
u


ref, 
=1,2 , . . . ,�. These reference MOs are used to calcu-
late the reference overlap functional DRO given by

DRO = �

=1

�

��

�Q,Q�
ref��2, �8�

where �

�Q ,Qref� is an overlap quantity34 involving orbital
u
 at an arbitrary geometry Q and u
 at the reference geom-
etry Qref. For the present application to NH3, �=1.

II.B. Computational procedure

The 6-31+ +G�3df ,3pd� basis set42,43 is used for the
calculations, which are carried out using the HONDOPLUS,
v.4.5 �Refs. 44 and 45� electronic structure package. The
active space consists of seven orbitals with eight electrons,
which corresponds for NH3 to a full valence active space. In
the MC-QDPT step, one inactive orbital corresponding to the
1s core orbital of N was frozen �that is kept doubly occupied
in all CSFs�, and the perturbation includes electronic excita-
tion from all of the active orbitals through second order.

Figure 1 shows the internal coordinate system with the
three N–H internuclear distances r1, r2, and r3; a trisector
angle 
, defined as an angle that any of the N–H bond axes
makes with the NN� trisector direction; �1, �2, and �3 are the

FIG. 1. Internal coordinates used for fitting diabatic potential-energy sur-
faces and nonadiabatic coupling. The N–H bond distances are shown by r1,
r2, and r3, and the H–N–H bond angles are shown by �1, �2, and �3. NN�
is the trisector direction, and 
 is the angle between the any N–H bond and
NN�. The prime denotes the projection of the atoms on a plane perpendicu-
lar to the NN� direction.
H–N–H bond angles. The trisector angle varies in the range
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0�
��, and 
=� /2 denotes a planar ammonia geometry.
�The use of the trisector angle as an internal coordinate was
suggested in earlier studies46–49 in which the ground-state
potential-energy surface was fit.� The internal coordinates are
represented as Q=r1 ,r2 ,r3 ,�1 ,�2 ,�3, and 
. Note that we
use seven internal coordinates, so one of them is redundant;
this does not cause any problem and in fact the use of all
seven of the coordinates makes it easier to impose permuta-
tional symmetry than it would be if one of the �i was
omitted.

We are interested in photodissociation of ammonia to
form NH2+H products, and we have not considered the
fragmentation of NH3 to NH+H2 or NH+2H products in this
study. As in the case of multiarrangement reactions, more
than one reference geometry are required, and we used
six reference geometries. Reference geometries Qi

ref

�r1 ,r2 ,r3 ,�1 ,�2 ,�3 ,
� were chosen with at least one in each
of the asymptotic regions for dissociation of each of the three
H atoms, and they include both planar and nonplanar geom-
etries, in particular,

Q1
ref = �5.0,1.1,1.1,2�/3,2�/3,2�/3,�/2� ,

Q2
ref = �1.1,5.0,1.1,2�/3,2�/3,2�/3,�/2� ,

Q3
ref = �1.1,1.1,5.0,2�/3,2�/3,2�/3,�/2� ,

�9�
Q4

ref = �5.0,1.1,1.1,2�/3,2�/3,2�/3,�/6� ,

Q5
ref = �5.0,1.1,1.1,2�/3,5�/6,�/2,�/3� ,

Q6
ref = �5.0,1.1,1.1,�,�/2,�/2,�/3� ,

where distances are in angstroms. The reference geometries
in different asymptotic regions have different diabatic proto-
types. For example, Q1

ref has DMOs localized on Ha

+HbNHc, whereas Q2
ref has DMOs on Hb+HaNHc. Similar

relationships exist between other reference geometries; there-
fore it is important to establish a one-to-one correspondence
between them in order to make a consistent dominant CSF
list. The procedure used is summarized here: �1� With initial
geometry Q equal to Q1

ref, we carry out a threefold density
calculation and find the DMOs u
 �Q�. �2� Then we select
another geometry Q� close to Q and find the DMOs u
 �Q��
and identify a one-to-one correspondence between the
DMOs at the two geometries. �3� With the Q� now labeled
consistently with Q we repeat step �2� with geometries Q�
successively translated in small steps until Q2

ref is reached.
This establishes one-to-one correspondence between the

set of DMOs u
�Q1
ref� and u
 �Q2

ref� for these two geometries.
We follow steps �1�–�3� starting at Q1

ref and connect it to
Q3,. . .,6

ref in order to establish correspondence between u


�Q1,. . .,6
ref � DMOs at all six reference geometries. Since the

DMOs obtained should be independent of the path followed
in steps �1�–�3� we test the correspondence by following dif-
ferent intermediate paths to connect the reference geom-
etries. As mentioned above, different reference geometries
will have different characters and different sets of DMOs,

and this can lead to a CSF grouping problem. It was found
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that some of the DMOs in planar reference geometries �i.e.,
Q1

ref, Q2
ref, and Q3

ref� were missing from the nonplanar refer-
ence geometries �Q4

ref, Q5
ref, and Q6

ref�. To obtain a consistent
CSF list for all six reference geometries we took a union of
all CSFs obtained at each reference geometry. The final
dominant CSF lists for the diabatic states �1 and �2 are G1

= ��1 ,�2 ,�3� and G2= ��4 ,�5 ,�6�, respectively. Each �� is
defined by seven valence molecular orbitals u
, where the
electronic configuration of each �� is as follows:

�1:�u1�2�u2�2�u3�2�u4�2�u5�0�u6�0�u7�0,

�2:�u1�2�u2�2�u3�1�u4�2�u5�1�u6�0�u7�0,

�3:�u1�2�u2�2�u3�2�u4�0�u5�2�u6�0�u7�0,

�10�
�4:�u1�2�u2�2�u3�2�u4�1�u5�1�u6�0�u7�0,

�5:�u1�2�u2�2�u3�1�u4�1�u5�2�u6�0�u7�0,

�6:�u1�2�u2�1�u3�2�u4�2�u5�1�u6�0�u7�0.

These lists do not include the doubly occupied core orbital
on N, and the valence u
 are numbered in order of increasing
orbital energy.

III. FIT TO THE DIABATIC POTENTIAL-ENERGY
SURFACES

The diabatic electronic states �1 and �2 and the matrix
elements of the electronic Hamiltonian in the diabatic repre-
sentation are

U11 = 	�1
Hel
�1� , �11�

U22 = 	�2
Hel
�2� , �12�

U12 = 	�1
Hel
�2� , �13�

where the off-diagonal term is the diabatic coupling term.
Note that, following the standard convention, Hel includes
the nuclear repulsion. The electronic Hamiltonian expressed
in the diabatic basis is a 2�2 matrix of

U = �U11�Q� U12�Q�
U12�Q� U22�Q� 
 , �14�

where Q is the set of nuclear coordinates as defined in Sec.
II.B. Since the electronic Hamiltonian provides the potential-
energy surfaces on which the nuclei move, the U matrix is
also known as the diabatic potential-energy matrix. The MC-
QDPT method was used to generate U11, U22, and U12 at
3600 geometries. The nuclear geometries were chosen to
form a grid in six dimensions such that r1

=0.8,1.02,1.5,2.0, and 5.0 Å; r2 and r3=0.8,1.02, and
1.5 Å; �1, �2, and �3=� /3 ,� /2 ,2� /3, and 5� /6; 

=� /12,� /6 ,� /4 ,� /3, and � /2. This includes 720 geom-
etries with one H atom 5 Å from NH2, plus 720 geometries
corresponding to planar NH3 and 2160 points corresponding
to nonplanar NH3.

There are three identical hydrogen atoms in ammonia,

and the fitted diabatic potential-energy matrix should be in-
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variant to the labeling of the three hydrogen atoms. In the
present study, we incorporated permutation symmetry be-
tween the three hydrogen atoms by introducing a symmetriz-
ing operator, which is described in Sec. III.A. During the
fitting procedure, the symmetrizer operates on all the matrix
elements of U.

III.A. Symmetrizer

The group of all possible permutations involving the hy-
drogen atoms in ammonia is the symmetric group S3. There
are six permutation operations in S3, the identity operator e,
three transposition operators, and two cyclic operators.50 The
transposition operators are of the form pij with i , j=1, . . . ,3;
i	 j, and they involve switching any two hydrogen atoms
while keeping the third one fixed. The final two permutation
operators are cyclic permutations of the form pijk with i� j
�k. To represent the six permutations in a compact notation,
we will introduce a generic p� such that

p� = �1,12,13,23,123,321�; �15�

thus �=1,2 , . . . ,6 denotes the six permutations. Each of the
six permutation operators can be represented as a 3�3 ma-
trix, and the matrix representations of the operators are given
in supporting information.51 Note that p� is a number opera-
tor and operates on the indices of the three hydrogen atoms.
The representation of the permutation operator in terms of
the internal coordinate Q is denoted as P�. The operator P�

operates on the seven-dimensional vector Q and is repre-
sented using a 7�7 matrix. The matrix representation of P�

is expressed by the following direct sum:

P� = p� � p� � I1, �16�

and has the form

�17�

where I1 is the identity matrix in one dimension. The sym-
metrizer S is defined as a �3! �−1 times a sum over all P�:

S =
1

6�
�

P� =
1

6
�e + P12 + P13 + P23 + P123 + P321� . �18�

III.B. U11 surface

The lower-energy diabatic surface was fitted with the
symmetrized functional form

U11�Q� = �
i�j�k

l�m�n

p

Cijklmnp
�1� �

�

Aijklmnp
�1� �P�Q� , �19�
where
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Aijklmnp
��� �Q� = f��r1�i f��r2� j f��r3�kg���1,r2,r3�l

� g���2,r1,r3�mg���3,r1,r2�nh�p,
� , �20�

where

f��r� = 1 − ���e−���r−ro��� , �21�

g���a,rb,rc�l = �� − �o��le−���rb
2+rc

2� + ��
l �1 − e−���rb

2+rc
2��

�a,b,c = 1,2,3;a � b � c� , �22�

h�p,
� = cos�p�
 −
�

2
�
 , �23�

with 0� i , j ,k�2, 0� l ,m ,n�2, and 0� p�4. Note that if
p were restricted to p=0, then Eq. �19� would be a six-
dimensional multinomial, but p is a Fourier cosine series
coefficient, not a power. For cases with p	4, the constraints
in the indices are i+ j+k�4 and l+m+n�2. For p=4, i+ j
+k�4, l+m+n�2, and i+ j+k+ l+m+n�0. There are total
of 127 coefficients for �=1. The values of the coefficients
were obtained by linear squares fitting routine for given val-
ues of nonlinear parameters �discussed in the next paragraph�
and are provided in the supporting information.51

The function f� in Eqs. �20� and �21� is a Morse func-
tion, and powers of this function are used to describe each of
the three N–H stretches. The ro1 parameter in Eq. �21� cor-
responds to the ground-state equilibrium N–H distance, and
the �1 parameter was optimized manually to obtain a mini-
mum root-mean-square �rms� deviation of the fit from the
data. The parameters are given in the supporting
information.51 The bend displacement about each angular co-
ordinate �in radians� is described by the g� function. The
presence of Gaussian functions in g� ensures that in the dis-
sociation limit the bending terms associated with the break-
ing bond vanish for the product geometry. The inversion co-
ordinate is symmetric about the D3h, geometry and is
therefore described by a cosine function with a � /2 refer-
ence angle.

The shape of the U11 surface was found to be very im-
portant for describing key features of the ground adiabatic
surface such as the equilibrium geometry, the saddle-point
geometry for inversion, and the inversion barrier height. For
fitting U11, the 47 geometries with energies less than or equal
to 0.5 eV were weighted higher than the other 3553 geom-
etries by a factor of 5. This allowed us to obtain a better fit in
the regions that are most important for the experiments of
Refs. 10–30.

III.C. U22 surface

The higher-energy diabatic surface U22�Q� was repre-
sented as the eigenvalue of a 2�2 matrix of the form

W = �W11�Q� W12�Q�
W12�Q� W22�Q� 
 , �24�

where the matrix elements are all fitting functions. The low-
est root is

U22�Q� = 1 ��W22 + W11� − ��W22 − W11�2 + 4W12
2 � . �25�
2
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The diagonal matrix elements in Eq. �24� were deter-
mined by simultaneous least-squares fits. The functional
form of the symmetrized W11�Q� surface is given as

W11�Q� = �
i�j�k

l�m�n

p

Cijklmnp
�2� �

�

Aijklmnp
�2� �P�Q� , �26�

with 0� i , j ,k�2, 0� l ,m ,n�2, and 0� p�4 with addi-
tional constraints i+ j+k�4, l+m+n�2, and i+ j+k+ l+m
+n�0. We set �2 and �2 equal to �1 and �1, respectively.
The functional form of the symmetrized W22�Q� surface is
given as

W22�Q� = �
i�j�k

l�m�n

p

Cijklmnp
�3� �

�

Aijklmnp
�3� �P�Q� , �27�

with the same upper limits and as for W11�Q�. We set �3 and
�3 equal to �1 and �1, respectively. The off-diagonal cou-
pling W12�Q� is fixed at 0.8 eV for all geometries. The U22

surface was constructed by first fitting the two W11 and W22

surfaces and then calculating U22 using Eq. �25�.
The use of a multiconfigurational representation involv-

ing the W11 and W22 surfaces was motivated by the need to fit
features such as the excited-state minimum and the saddle
point for dissociation on the U22 surface. To better describe
the region of conical intersection and the saddle point for the
dissociation 772 geometries with U22 in the range of
4−6 eV were given a weight of 3 for fitting both W11 and
W22, and the remaining 2828 geometries were given a weight
of unity. The lists of 124 coefficients and the new nonlinear
parameters for �=2 and �=3 are provided in the supporting
information.51

III.D. U12 surface

The nonadiabatic coupling obtained by the diabatization
procedure was fitted using the following symmetrized func-
tional form:

U12�Q� = �
i�j�k

l�m�n

p

Cijklmnp
�4� �

�

Bijklmnp
�4� �P�Q� , �28�

where Bijklmnp�Q� has the form

Bijklmnp�Q� = r1
i r2

j r3
kF�r1�F�r2�F�r3��1

l �2
m�3

nG�p,
� , �29�

where

F�r� = 1 − 0.5 tanh��r − ro4�� , �30�

G�p,
� = sin�p�
 −
�

2
�
 , �31�

where 0� i , j ,k�2 and 0� l ,m ,n�2 with additional con-
straints i+ j+k�2, l+m+n�2, and i+ j+k+ l+m+n�0;
and where ro4 is listed in the supporting information.51 In the
present fit we used 3� p�5 because this choice yields a

better fit and lower rms deviation of errors than 1� p�3.
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With either choice, U12 is linear in �
−� /2� for values close
to � /2.

A key element of the present direct procedure is that U12

is obtained directly from the diabatization then fit indepen-
dently of U11 and U22, whereas in indirect procedures it is
sometimes fit to minimize the errors in the adiabatic sur-

TABLE I. Mean unsigned deviation of the fitted U11 energies from their
mean value for several energy ranges.

U11 �eV� Na Mean unsigned deviation �eV�

0–1 75 0.02
0–2 84 0.05
0–3 132 0.07
0–4 208 0.09
0–5 354 0.09
0–6 534 0.11
0–7 922 0.12
0–8 1325 0.15
0–9 1785 0.17
0–10 2223 0.20

aN is the number of points in the indicated energy range.

FIG. 2. �Color online� Contour plots of the U11 potential-energy surface of
ammonia along �a� N–H stretch r1 and the inversion angle 
 and �b� two
N–H stretches r1 and r2. For each plot all other degrees of freedom are fixed
at the equilibrium ground-state geometry of ammonia. The contour spacing

is 0.5 eV.
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faces. �Our fitting procedure does not use the adiabatic sur-
face at all.� The least-squares fit for U12 was carried out with
a uniform unit weight for all geometries. A list of 45 nonzero
unique coefficients that were optimized by minimizing the
rms deviation from the MC-QDPT values is provided in the
supporting information.51

III.E. Availability

The fitted surfaces, including analytic gradients in Car-
tesian coordinates, have been deposited in the POTLIB

52,53

potential-energy surface library, where they are freely avail-
able to all interested parties.

IV. DISCUSSION

The mean unsigned error �MUE� of the fit to U11 is
tabulated as a function of energy in Table I, where the zero of
energy throughout this article is the equilibrium geometry of
ground-state NH3. For energies below 1 eV the fit agrees

TABLE II. Mean unsigned deviation of the fitted U22 energies from their
mean value for several energy ranges.

U22 �eV� Na Mean unsigned deviation �eV�

0–5 265 0.09
0–6 507 0.09
0–7 1134 0.10
0–8 1554 0.12
0–9 2166 0.15
0–10 2671 0.19
0–11 2995 0.21
0–12 3175 0.21
0–13 3329 0.23
0–14 3411 0.25

aN is the number of points in the indicated energy range.

FIG. 3. �Color online� Three-dimensional plot of the U12 potential-energy
surfaces for ammonia along the N–H stretch r1 and the inversion angle 
.
All other coordinates were fixed at the equilibrium geometry. The coupling
term goes to zero at 
=� /2 and is positive for 
	� /2 and negative for


�� /2.
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with the ab initio data within 0.02 eV, on average. For
higher-energy geometries, but still below the dissociation
limit ��5 eV�, the MUE of the fit is 0.1 eV. We consider this
to be good agreement between the data and the fit, since the
fit is a global one spanning energies from the minimum to far
above the dissociation limit of ammonia. Figure 2�a� shows

TABLE III. Mean unsigned deviation of the fitted U12 energies from their
mean value for several energy ranges.


U12
 �eV� Na Mean unsigned deviation �eV�

0–0.25 2247 0.01
0–0.50 3077 0.01
0–0.75 3219 0.01
0–1.00 3337 0.01
0–1.25 3416 0.01
0–1.50 3485 0.02
0–1.75 3528 0.02
0–2.00 3600 0.02

aN is the number of points in the indicated energy range.

FIG. 4. �Color online� Three-dimensional plots of �a� the U11 and U22 di-
abatic potential-energy surfaces showing the diabatic crossing of the two
surfaces and �b� the V1 and V2 adiabatic potential-energy surfaces of ammo-
nia showing the conical intersection along the N–H stretch r1 and the in-
version angle 
. The conical intersection forms at r1=2.13 Å and 
=� /2

with all other coordinates fixed at the equilibrium geometry.

Downloaded 18 Apr 2006 to 128.101.98.21. Redistribution subject to 
the contours of the U11 surface near the minimum as a func-
tion of the N–H stretch r1 and inversion angle 
 with other
coordinates fixed at r2=r3=1.020 Å and �1=�2=�3=107.5°.
The plot shows the location of two C3v minima at r1

=1.02 Å and 
=67.5° and 112.5°. The two minima are sepa-
rated by an inversion barrier of 0.25 eV at the planar D3h

geometry with r1=1.02 Å and 
=� /2. Figure 2�b� shows
the contours of the U11 surface along r1 and r2 with other
coordinates fixed at r3=1.02 Å, �1=�2=�3=107.5°, and 


=67.5°. The lowest-energy contour shows the minimum in
U11 at the C3v geometry with r2=r3=1.02 Å.

FIG. 5. �Color online� Three-dimensional plot of adiabatic potential-energy
surfaces for ammonia up to the dissociation limit of r1 and over a wide range
of the inversion angle 
. The conical intersection appears at 
=� /2, and all
other coordinates were fixed at the equilibrium geometry. The contour spac-
ing is 1 eV.

FIG. 6. �Color online� Contour plot of V2 adiabatic potential-energy surface
of ammonia. On the plot the excited-state minimum-energy point is labeled
as A, and the geometry of the conical intersection is labeled as C. The saddle
point of the dissociation channel is labeled as B. The contour spacing is

0.5 eV.
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The key features in the excited adiabatic states that de-
pend strongly on the shape of the U22 surface are the excited-
state minimum-energy geometry, the conical intersection,

TABLE IV. Key features of the fitted adiabatic surfaces.

Quantity Present fit

V1

Equilibrium geometry �Å and deg�
r1 1.010
�1 108.4

Vibrational frequencies �cm−1�
�1 3898
�2 1005
�3 3655
�4 1703

Inversion barrier �cm−1� 1959
N–H distance at inversion saddle point �Å� 0.998

Vibrational frequenices at the saddle point �cm−1�
�1 3252
�2 903i
�3 3523
�4 1596

N–H bond dissociation energy De�eV� 4.40

V2

Energy at minimum-energy geometry �eV� 5.75
Equilibrium geometry �Å and deg�

r1 1.043
�1 120

Saddle point of the N–H dissociation
Barrier height for N–H dissociation �cm−1� 2931
Saddle-point energy �eV� 6.11

Saddle-point geometry �Å and deg�
r1 1.270
r2 1.070
r3 1.070
�1 120
�2 120
�3 120

 90

Intersection of V1 and V2

Lowest-energy intersection �eV� 4.93
Geometry of the lowest-energy intersection �Å and deg�
r1 2.37
r2 1.020
r3 1.020
�1 120
�2 120
�3 90

 90

aReference 54.
bReference 55.
cReference 56.
dReference 57.
eReference 58.
and the barrier for photodissociation. Table II shows the
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MUE in U22 as a function of energy. In the low-energy re-
gions �E	5 eV� the MUE is 0.09 eV, whereas for geom-
etries with energies below E	10 eV the mean unsigned er-

Best previous estimate�s� Experiment

1.011a 1.011b 1.013c

106.8a 106.7b 106.5c

3480e 3485e

1084d

3609d 3624c

1680d 1678c

1783a 1792b 1867c 1885f

0.995a 0.994b 0.996c

3637g

822ig

3835g

1577g

4.70h

5.76h 5.72i

1.048h 1.08i

120h 120i

2639h 2348j

6.09h

1.302h 1.323
1.041h 1.042
1.041h 1.042
114h

123h

123h

90

fReference 59.
gReference 47.
hReference 9.
iReference 4.
jReference 25.
ror is 0.19 eV.
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The U12 coupling is an odd function of �
−� /2� and
changes sign when the system passes through planar geom-
etries. The values of U12 range between −2 and +2 eV. Fig-
ure 3 shows U12 as a function of bond distance and the in-
version angle for geometries where one of N–H bonds is
stretched. Table III lists the MUE as a function of energy for
the fit of U12.

The adiabatic potential-energy surfaces V1 and V2 are
obtained for a given geometry without any further approxi-
mation by diagonalizing Eq. �14�, i.e.,

V1�2��Q� = 1
2 �U11�Q� + U22�Q��

�
1
2
��U22�Q� − U11�Q��2 + 4U12

2 �Q� . �32�

Figure 4 shows �a� the smooth crossing between the U11 and
U22 diabatic surfaces and �b� the conical intersection between
the ground state V1 and the first excited state V2. The plots
show how the U12 coupling splits the surfaces and gives rise
to a conical intersection. A plot of the adiabatic surfaces for
a wide range of inversion angle is shown in Fig. 5. Figure 6

TABLE V. Comparison of the adiabatic energies for conical intersection
geometries of Ref. 9 with the MC-QDPT results. Distances are in Å, angles
are in degrees, and energies are in eV.

Internal coordinatesa Ref. 9 MC-QDPT

Symmetry r1 r2 r3 �1 �2 �3 V1 V2 V1 V2

C2v 1.955 1.021 1.021 110 125 125 5.11 5.11 5.02 5.05
1.8 1.066 1.066 86 137 137 5.50 5.50 4.93 5.47
1.6 1.175 1.175 62 149 149 6.95 6.95 6.54 6.90
1.5 1.265 1.265 52 154 154 7.96 7.96 7.66 8.14

Cs 1.8 1.033 1.033 103 89 168 5.28 5.24 5.11 5.30
1.6 1.014 1.164 118 73 169 5.77 5.77 5.01 5.76
1.6 1.014 1.164 138 63 159 6.03 6.03 5.06 6.47

aFor all points in this table, the final internal coordinate 
 is � /2.
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is a contour plot of V2 for a region that includes the excited-
state minimum and saddle point for the dissociation.

Having obtained the adiabatic surfaces we can character-
ize them in terms of their key features. This is done in Table
IV, where the results are compared to the best
previous4,9,25,47,54–59 estimates when available. For the
ground-state V1 potential-energy surface the equilibrium
N–H distance req is 1.010 Å, and the HNH equilibrium
angle �eq is 108.4°. Both these values are in good agreement
to the best previous estimates.54–56 The vibrational frequen-
cies at the ground-state equilibrium geometry are 3898,
1005, 3655, and 1703 cm−1 and are in reasonable agreement
with the previous theoretical57 and experimental58 values.
The N–H distance at the inversion saddle point is 0.998 Å,
and the inversion barrier height is 1959 cm−1. The vibra-
tional frequencies at the saddle point are listed in Table IV.
The N–H bond dissociation energy De is 4.40 eV.

The excited-state minimum-energy geometry and the en-
ergy at that geometry are listed in Table IV and are in good
agreement with previous best estimates.4,9 The excited-state
saddle point along the N–H dissociation coordinate is a C2v
geometry the with a barrier height of 2931 cm−1. The values
of the internal coordinates at this saddle point are listed in
Table IV. Also in Table IV, the geometry and the energy for
the lowest-energy conical intersection are listed.

The conical intersections of a molecule occur in at most
a �3N−8�-dimensional manifold, where N is the number of
atoms. For ammonia, N=4 and thus the intersection manifold
is at most four dimensional. However, U12 apparently van-
ishes only for planar geometries, which form a five-
dimensional manifold, because �2N−3�=5. However, al-
though U12 is zero for all planar geometries, U11 does not
equal to U22 for all planar geometries. This again shows that
the conical intersection manifold is at most four dimensional.
In particular, it consists of all planar geometries for which

FIG. 7. �Color online� Correlation of
orbitals at large and small internuclear
distances of ammonia molecule in pla-
nar D3h geometry and dissociated
NH2+H fragment in C2v point group
for both the ground and the first ex-
cited states. At the extreme left are the
atomic orbitals of the united atom, and
on the extreme right are the orbitals
for the separated fragments. The
ground-state �GS� and excited-state
�ES� electronic configurations are
separated by vertical dashed line for
both NH3 and NH2 molecules. The
transformation of orbitals from D3h to
C2v is shown by horizontal dashed
lines, whereas for that between united
atom to NH3 and NH2 to separated
fragments it is shown by dotted lines.
The arrows in the orbitals represent
the electrons.
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U11=U22. The D3h manifold is one dimensional, but U11

=U22 at only a subset of this manifold. The C2v manifold is
three dimensional, and the conical intersection need not be
restricted to C2v geometries. In fact, Yarkony9 showed that
the conical intersection manifold is not restricted to the
three-dimensional C2v manifold but also includes Cs geom-
etries. In particular, Yarkony found four C2v points and three
Cs points on the conical intersection. Since we have analytic
representation of the diabatic potentials, setting U11 equal to
U22 for planar geometries gives an analytic representation of
the entire conical intersection manifold. We are not restricted
to a finite number of points of intersection. Nevertheless the
only way to compare to the previous calculations is carry out
calculations at Yarkony’s seven points of intersection; this is
done in Table V. We see that the splitting of our adiabatic
potentials at these seven points is 0.03, 0.46, 0.48, 0.54, and
1.41 eV, respectively. Thus we are not in quantitative agree-
ment for the location of the seam. It is not clear which cal-
culation is more reliable. In particular, Yarkony uses a larger
active space and more contracted basis functions on nitrogen
atom; he also used multireference configuration interaction,
which is more complete than multireference perturbation
theory. However, and this may be the most important differ-
ence, he obtained orbitals by a CASSCF calculation aver-
aged over three states, whereas we averaged over only two,
which should be more accurate for the two states under con-
sideration here. Furthermore, we used more contracted func-
tions on each hydrogen atom. Further work will be necessary
to understand the quantitative importance of the differences.
The question then arises of which additional geometries are
contained in the conical intersection manifold.

For ammonia, the presence of a conical intersection and
the crossing of a diabatic states can be understood by a group
theoretical treatment. In particular, consider a set of geom-

TABLE VI. Dimensionalities.

Dimensions
Space Nonplanar Cs C2v D3h

Full 6 5 3 1
Conical intersection 4 4 2 0a

aA zero-dimensional seam is a point.

FIG. 8. Cut through the potential-energy surfaces for D3h geometries. For
such geometries V1=min�U11 ,U22� and V2=max�U11 ,U22�. Note that al-

though the results are plotted vs r1, for D3h geometries, r1=r2=r3.

Downloaded 18 Apr 2006 to 128.101.98.21. Redistribution subject to 
etries at which ammonia is planar, and use the irreducible
representations of the D3h point group to label the ground
and the first excited electronic states. Figure 7 shows the
correlation diagram for the orbitals of NH3 �in the D3h point
group� and those of NH2+H �in the C2v point group�. Along
the abscissa is a generalized coordinate representing one �on
the right� or three �on the left� N–H internuclear distances,
and along ordinate �but not to scale� are the energies of the
orbitals. The energies of the united atom with 1s, 2s, 2p, and
3s atomic orbitals are shown on the extreme left in Fig. 7,
while those for separated NH2 and H fragments are shown on
the extreme right. Next to the united atom, we show the
electronic configuration in planar NH3 with spin-up and spin-
down electrons represented by arrows. The ground state �GS�
of ammonia is �1a1��

2�2a1��
2�1e��4�1a2��

2, and the first excited
2 2 4 1 1

FIG. 9. �Color online� Contour plots of conical intersections of ammonia in
C2v geometries. Plot of V2−V1 with respect to varying �a� r1 and r2, with
r2=r3 and �1=�2=�3=120°; �b� r1 and �1, with r2=r3=1.39 Å and �2=�3;
�c� r2 and �1, with r2=r3 for all geometries, �2=�3, and r1=1.39 Å. The
contour spacing is 0.5 eV for �a�, 0.1 eV for �b�, and 0.2 eV for �c�. In each
plot the null contour showing the conical intersection seam is marked by a
solid black contour.
state �ES� is �1a1�� �2a1�� �1e�� �1a2�� �3a1�� . Next to the ex-
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treme right are the molecular-orbital energies corresponding
to the orbitals of NH2+H �C2v�. The 1s orbitals of two H
atoms in NH2 give molecular orbitals b2 and a1 �in C2v�, and
the orbital of the separated third H atom has a1 symmetry.
The ground electronic configuration of NH2 is
�1a1�2�2a1�2�1b2�2�3a1�2�1b1�1, and the first excited elec-
tronic configuration is �1a1�2�2a1�2�1b2�2�3a1�1�1b1�2, as
shown in Fig. 7. The transformation of the irreducible
representations from D3h to C2v �shown by dashed lines in
Fig. 7� is carried out using the correlation tables of
Herzberg.60 We find that as we transform from the D3h to the
C2v point group the highest occupied molecular orbital
�HOMO� �1a2��

2 of ground-state D3h ammonia transforms as
�1b1�2, and the lowest unoccupied molecular orbital �LUMO�
�3a1�� of ground-state D3h ammonia transforms as �3a1�. As
the N–H distance increases, the relative energy difference
between the HOMO 1a2� and the LUMO 3a1� decreases, and
at large N–H distances, the 3a1 orbital has a lower energy
than the b1 orbital. Since the 1a2� and the 3a1� orbitals are of
different symmetry, they can cross each other. Note that at
the crossover point, 1a2� and 3a1� are degenerate, and
the electronic configuration of the ground
�1a1��

2�2a1��
2�1e��4�1a2��

2�3a1��
0 and the excited

�1a1��
2�2a1��

2�1e��4�1a2��
1�3a1��

1 electronic states give the
same adiabatic energy. Thus, in an uncorrelated treatment,
the crossover point is the location of the conical intersection.
Adding correlation energy changes the quantitative location
of the conical intersection, but the qualitative nature of the
states remains as just described.

The overall symmetry of the electronic states is obtained
by carrying out direct product of the irreducible representa-
tions of the molecular orbitals. The orbital picture just de-
scribed is consistent with the earlier observation that the
ground electronic state of the NH2 products �2B1� correlates
diabatically with the first excited �1A2

�� state of NH3, while
the first excited state of NH2 products �2A1� correlates dia-
batically with the ground state �1A1� of ammonia. Note that
here we have used the standard convention to use lowercase
letters to represent the symmetry of the orbitals and upper
case letters to represent the overall symmetry of the elec-
tronic states.

Although the considerations involving the orbitals of
Fig. 7 provide a qualitative understanding of the intersection,
our surface fits allow a more complete discussion of the mul-
tidimensional shape of the four-dimensional �4D� conical in-
tersection seam. Table VI summarizes the relevant dimen-
sionalities. Since all planar geometries have U12=0, the
dimensionality of the seam is one lower than the full dimen-
sionality for planar geometries, as illustrated in the last three
columns of Table VI. We will start in the last column �D3h�
and then successively lower the symmetry to C2v and Cs.
Figure 8 allows us to identify the conical intersection within
the one-dimensional D3h manifold and it shows a conical
intersection at the point where the N–H distance is equal to
1.390 Å. Starting from this D3h conical intersection geom-
etry we then systematically lower the symmetry to C2v ge-
ometries so as to explore the three-dimensional C2v mani-
fold. We keep three internal coordinates fixed at the D3h
conical intersection geometry and vary two coordinates si-

Downloaded 18 Apr 2006 to 128.101.98.21. Redistribution subject to 
multaneously, and the intersection shows up as the null con-
tour in a contour map of V2−V1 versus the two varying co-
ordinates. Figures 9�a�–9�c� show such contour plots of
conical intersections seams in the C2v manifold. We further
lower the symmetry from C2v to Cs to explore the four-
dimensional Cs seam. This is done by choosing a C2v geom-
etry from the conical intersection seam in Fig. 9 and varying
any one of the internal coordinates with the remaining four
fixed. The conical intersection then shows up as a point as
shown in Figs. 10�a�–10�f�. Additional cuts of Cs geometries
where the conical intersection shows up as a point are shown
in Fig. 11. With analytic fits to the diabats, it is relatively
straight forward to make plots like Figs. 8–11 that com-
pletely map out the conical intersection scheme. These fig-
ures show that it is now possible to fully map out a conical
intersection scheme rather than simply searching for isolated
high-symmetry and low-symmetry points on the seam.

V. CONCLUSIONS

In this paper we have used the fourfold-way diabatiza-

FIG. 10. Cuts through the diabatic potential-energy surfaces of ammonia,
U11 �solid� and U22 �dashed�, for Cs geometries. The plots attempt to map
out the conical intersections in Cs geometries by moving along one internal
coordinates starting from a C2v geometry. The fixed internal coordinates are
�a� r1=1.2 Å, r3=1.5 Å, and �1=�2=�3=120°; �b� r2=r3=1.39 Å, �1

=120°, �2=150°, and �3=90°; �c� r1=1.5 Å, r2=r3=1.39 Å, and �2=155°;
�d� r1=1.2 Å, r2=1.39 Å, �1=90°, and �2=�3=135°; �e� r1=1.39 Å, r3

=1.05 Å, �1=140°, and �2=110°; �f� r1=1.36 Å, r2=r3=1.0 Å, and �2

=120°. For planar geometries, the adiabats are V1=min�U11 ,U22� and V2

=max�U11 ,U22�.
tion scheme to obtain diabatic potential-energy surfaces and
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couplings for ammonia. The method performed quite satis-
factorily and yields globally smooth diabatic potentials. We
then fit analytic global functions incorporating the correct
permutation symmetry. This method allows us to avoid the
problem of fitting surfaces in the adiabatic representation
where conical intersections and avoided crossings are not
smooth. The direct diabatic calculations not only make fitting
the potential-energy surface more convenient and provide an
unprecedented analytic representation of a four-dimensional
intersection seam, they also provide a scalar, smooth, and a
singularity-free representation of the potential-energy sur-
faces and couplings for dynamical calculations.
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FIG. 11. Cuts through the diabatic potential-energy surfaces of ammonia,
U11 �solid� and U22 �dashed�, for Cs geometries along one internal coordi-
nate with the rest of the coordinates fixed in planar geometry. The fixed
internal coordinates are �a� r2=r3=1.08 Å, �1=103°, and �2=89°; �b� r1

=1.5 Å, r3=1.4 Å, �1=103°, and �2=89°; �c� r1=1.65 Å, r2=1.1 Å, �1

=102°; and �2=150°; �d� r1=1.45 Å, r2=1.25 Å, r3=1.17 Å, and �2=120°;
�e� r1=1.5 Å, r2=1.1 Å, r3=1.2 Å, and �1=127°. For planar geometries, the
adiabats are V1=min�U11 ,U22� and V2=max�U11 ,U22�.
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