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Recent progress in the theoretical treatment of electronically nonadiabatic processes is
discussed. First we discuss the generalized Born–Oppenheimer approximation, which
identifies a subset of strongly coupled states, and the relative advantages and disadvantages
of adiabatic and diabatic representations of the coupled surfaces and their interactions are
considered. Ab initio diabatic representations that do not require tracking geometric phases
or calculating singular nonadiabatic nuclear momentum coupling will be presented as one
promising approach for characterizing the coupled electronic states of polyatomic
photochemical systems. Such representations can be accomplished by methods based on
functionals of the adiabatic electronic density matrix and the identification of reference
orbitals for use in an overlap criterion. Next, four approaches to calculating or modeling
electronically nonadiabatic dynamics are discussed: (1) accurate quantum mechanical
scattering calculations, (2) approximate wave packet methods, (3) surface hopping, and (4)
self-consistent-potential semiclassical approaches. The last two of these are particularly
useful for polyatomic photochemistry, and recent refinements of these approaches will be
discussed. For example, considerable progress has been achieved in making the surface
hopping method more applicable to the study of systems with weakly coupled electronic
states. This includes introducing uncertainty principle considerations to alleviate the
problem of classically forbidden surface hops and the development of an efficient sampling
algorithm for low-probability events. A topic whose central importance in a number of
quantum mechanical fields is becoming more widely appreciated is the introduction of
decoherence into the quantal degrees of freedom to account for the effect of the classical
treatment on the other degrees of freedom, and we discuss how the introduction of
such decoherence into a self-consistent-potential approximation leads to a reasonably
accurate but very practical trajectory method for electronically nonadiabatic processes.
Finally, the performances of several dynamical methods for Landau–Zener-type and
Rosen–Zener–Demkov-type reactive scattering problems are compared.

1 Introduction

Electronically nonadiabatic processes (also called non-Born–Oppenheimer or non-BO processes)
are defined as those in which the electronic state changes nonradiatively during the dynamical
event. Electronically nonadiabatic processes are essential parts of visible and ultraviolet photo-
chemistry, collisions of electronically excited species, chemiluminescent reactions, and many
recombination reactions, heterolytic dissociations, and electron transfer processes. Often electronic
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excitation energies are much greater than the energies of nuclear motions, and electronically excited
species have different valence properties than ground-state species; consequently electronically
activated chemical systems may have dynamical mechanisms significantly different from those of
thermally activated systems.

The Born–Oppenheimer (BO) separation of electronic and nuclear motions and the use of
classical mechanics to model the nuclear part of the problem have allowed for the development and
successful application of a variety of theoretical electronic structure1 and dynamics2 methods
designed for the electronically adiabatic case where the entire effect of the electronic subsystem is
embedded in a potential energy surface that governs nuclear motion. The generalization of these
theoretical methods to handle non-BO events adds new considerations and often significantly
increases the computational demands of the calculation. From the point of view of the electronic
subsystem, the computation of excited-state electronic wave functions and energies usually requires
an open-shell formalism and expanded basis sets, and a consistent treatment of the active space is
required in configuration interaction calculations.3–8 Furthermore, computing the couplings
between the electronic states requires specialized methods, and the electronic couplings are sin-
gular, rapidly varying, high-dimensional vectors. From the point of view of the nuclear subsystem,
the treatment is complicated by the need to consider a different potential energy surface for each
electronic state and transitions between these surfaces.9 When conical intersections are present,
nuclear motion on the adiabatic surfaces also involves geometric phases.10,11 Although great
progress has been made in the quantum mechanical treatment of nuclear motion on coupled
potential energy surfaces, the practical treatment of systems with a large number of nuclear degrees
of freedom is greatly facilitated by using classical mechanics. Since the light mass and antisymmetry
requirements of the electrons preclude a classical treatment, one then requires a semiclassical
treatment that combines quantum mechanics for the electron motion with classical mechanics for
the nuclear motion. A particularly subtle issue that reaches to the heart of the probabilistic
interpretation of quantum mechanics12 (sometimes called quantum information theory or quantum
measurement theory) is the loss of coherence in the quantal (electronic) subsystem due to its
intersection with the classical subsystem (i.e., nuclear motion).13–15 In recent work, considerable
progress has been made in sorting out these issues, and we can now present a more satisfactory
theory than was possible a few years ago.

A brief theoretical discussion is presented in Section 2. In Sections 3–5, recent progress in the
theoretical treatment of non-BO chemistry is discussed along three related lines: the calculation of
potential energy surfaces and their couplings (Section 3), the development of methods for com-
puting accurate quantum mechanical scattering dynamics (Section 4), and the testing, application,
and systematic improvement of semiclassical methods for simulating non-BO dynamics (Section 5).
Section 6 is a summary.

Although the specific examples considered in the present paper are processes initiated by
collisions, the methods are general and can also be applied to unimolecular processes.

2 General theoretical considerations and definitions

The Hamiltonian for a molecular system may be written

HðR; rÞ ¼ TR þHeðR; rÞ; ð1Þ

where R and r are vectors of the nuclear and electronic coordinates, respectively, TR is the nuclear
kinetic energy operator, and He is the electronic Hamiltonian, which contains the electronic kinetic
energy operator and all Coulomb interactions, as well as the spin–orbit interaction if appropriate.

Some chemical systems may be modeled adequately within the framework of the Born–
Oppenheimer (BO) approximation.16–19 This approximation recognizes the large mass disparity of
nuclei and electrons and allows their different-time-scale motions to be decoupled. Nuclear motion
is then governed by a single BO potential energy surface V, which describes the variation of the
ground-state electronic energy with changes in the nuclear geometry, i.e., the ground-state nuclear
wave function c0 solves the equation,

½TR þ VðRÞ � E�c0ðRÞ ¼ 0; ð2Þ
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where

VðRÞ ¼ hf0jHeðR; rÞjf0ir; ð3Þ

TR is nuclear kinetic energy, He is the rest of the Hamiltonian, E is total energy, f0 is the ground-
state electronic wave function, and the integration in eqn. (3) is over the electronic coordinates r.
For non-BO processes, more than one electronic state is important in the overall dynamics, and

the single-surface treatment described by eqn. (2) is qualitatively incorrect. A proper theoretical
framework may be developed in terms of a basis set of electronic wave functions fi , where i labels
the electronic states, and optionally (but not necessarily) one may choose this basis so that f0 has
the same meaning as above. By analogy with the BO approximation, one may define potential
energy surfaces for each electronic state, i.e.,

ViiðRÞ ¼ hfijHeðR; rÞjfiir; ð4Þ

as well as off-diagonal matrix elements of the electronic Hamiltonian, which are in general
non-zero,

VijðRÞ ¼ hfijHeðR; rÞjfjir: ð5Þ

By expanding the multi-state wave function C in terms of the electronic basis, i.e.,

C R; rð Þ ¼
X
i

fi R; rð Þci Rð Þ; ð6Þ

one obtains a set of coupled equations analogous to the BO result in eqn. (2),20–22

TR þ Vii Rð Þ þ T
2ð Þ

ii Rð Þ � E
h i

ci Rð Þ ¼ �
X
j 6¼i

T
1ð Þ

ij Rð Þ þ T
2ð Þ

ij Rð Þ þ Vij Rð Þ
h i

cj Rð Þ; ð7Þ

where

T
1ð Þ

ij ¼ ��h2

2m
fi HRj jfj

D E
� HR ¼ ��h2

2m
d ij � HR; ð8Þ

T
2ð Þ

ij ¼ ��h2

2m
fi H

2
R

�� ��fj

D E
; ð9Þ

m is the reduced mass for the nuclear system, and HR is the nuclear gradient operator. The terms in
eqns. (8) and (9) arise from the action of the nuclear momentum and kinetic energy operators on
electronic basis functions and may be called the ‘‘momentum’’ and ‘‘kinetic energy’’ nonadiabatic
coupling terms, respectively. Note that T

ð1Þ
ii is zero because dij is anti-Hermitian, and T

ð2Þ
ij (for both

i ¼ j and i 6¼ j) is often neglected. The matrix elements of the nuclear gradient operator dij are called
nonadiabatic coupling vectors, and T

ð1Þ
ij cj is called a nonadiabatic coupling term (NACT).

Eqn. (7) shows that nuclear motion in each electronic state is governed by the potential energy
surface associated with that state as well as the various coupling terms in eqns. (5), (8), and (9). The
situation may be simplified somewhat by making certain choices for the electronic basis. If the
electronic basis is chosen such that Vij is diagonal, the nuclear motion is coupled only by the action
of the nonadiabatic coupling terms in eqns. (8) and (9). This choice for the electronic basis is called
the adiabatic18 electronic basis. Another choice for the electronic basis that is often useful is called
the diabatic22–44 electronic basis. It is sometimes possible to rotate the electronic states in electronic
state space (via a unitary transformation) to obtain a diabatic representation where the non-
adiabatic couplings are small enough (for many purposes) to neglect. In the diabatic representa-
tion, the electronic Hamiltonian is no longer diagonal, and the nuclear motion is coupled by the
diabatic or scalar coupling shown in eqn. (5). Alternatively, one can define or calculate approx-
imate potentials in a diabatic representation and obtain the adiabatic representation by diag-
onalization of the potential energy matrix Vij , and in that case, if no approximations are made, the
adiabatic and diabatic electronic representations yield identical results.
In general, an adiabatic-to-diabatic transformation that makes all of the components of dij zero

is not possible.45,46 Useful diabatic representations may be developed that minimize these terms
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or—more generally—that make them small enough to be neglected, and these are often called
quasidiabatic representations to emphasize the approximations involved, but we and many others
call them diabatic with the understanding that strictly diabatic representations do not exist. It has
been shown47 that in regions far from conical intersections, although one cannot make the NACTs
zero, one can make their effect as negligibly small as for cases where the Born–Oppenheimer
approximation is valid.

Finally, it is often possible to restrict theoretical attention to a subset of important electronic
states which may be strongly coupled to one another but are only weakly coupled to all of the other
electronic states. This procedure is called the generalized Born–Oppenheimer approximation.47,48

3 Coupled potential energy surfaces

In many theoretical treatments, the first step in modeling a non-BO system is the development of
analytic expressions for the potential energy surfaces in eqn. (4) and their couplings. As discussed
above, there are two possibilities for representing a set of coupled potential energy surfaces, the
unique adiabatic representation or a nonunique diabatic one. They each have strengths and
weaknesses. Some strengths of the adiabatic representation are that it is well defined, it lends itself
well to using variational and perturbation theory methods to calculate it by electronic structure
theory, it often provides a good zero-order picture when the coupling is neglected, and in principle
it provides a basis for exact treatments. The diabatic picture, in contrast, inevitably neglects some
coupling (because a ‘‘ strict ’’ diabatic basis does not exist) and is not unique, although it too
sometimes provides a good zero-order picture when coupling is neglected. For large systems
(organic photochemistry, photocatalysis, etc.) the rigor of the adiabatic representation is not so
important, and in fact even for systems with 4–10 atoms, a rigorous treatment is usually not the
goal. Therefore it may be very attractive to use a diabatic representation in which the coupling
caused by the electronic Hamiltonian dominates the coupling due to nuclear kinetic energy so that
the latter may be neglected for practical calculations.

The diabatic representation has an important advantage that increases in attractiveness as sys-
tems get large, namely that the coupling is a scalar. For three coupled surfaces, there are three
scalars, one coupling surface 1 to surface 2, another coupling 2 to 3, and the third coupling of 1 to
3. In contrast specifying the nonadiabatic coupling requires three 3N� 6 dimensional vectors,
where N is the number of atoms. Furthermore the diabatic surfaces and couplings are smooth,
whereas the adiabatic surfaces have conical intersections and avoided crossings, and the non-
adiabatic coupling is often rapidly varying and has singularities, and it requires special attention to
consistent treatment of the origin49–52 and long-range effects.50,53,54

For these reasons there has been interest in developing practical methods for working with
diabatic representations, and considerable progress was made in this direction. We particularly
single out for discussion a new approach called the fourfold way.43,55,56 The fourfold way
allows for the direct calculation of diabatic states and their couplings using the conventional
variational and perturbational methods of quantum chemistry. This is particularly important
because diabatic representations used for dynamics calculations should not be based on an
arbitrary selection of configurations. Rather the variational principle should be used to optimize
the space spanned by the strongly coupled electronic state vectors, then the electronic config-
uration space should be transformed to one that in some sense minimizes the nuclear
momentum coupling, at least in regions where the nonadiabatic coupling is large. The fourfold
way is designed to accomplish this process in a general way, but the method still requires care
that is commensurate with the care required to treat ground-state problems by multi-config-
uration self-consistent-field methods, which can be chancy. This is not surprising because
electronically nonadiabatic photochemistry intrinsically involves open-shell systems, and such
systems do not lend themselves to black box approaches. The fourfold way has been developed
for configurational wave functions based on complete active space multi-reference Møller–Plesset
second order perturbation theory4 (CAS-MRMP2) and complete-active-space multi-configura-
tion quasi-degenerate perturbation theory5 (CAS-MC-QDPT). The extension to the MC-QDPT
version is particularly important because this is a perturb-then-diagonalize approach in which
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an effective Hamiltonian is formed by perturbation theory and then diagonalized. This allows
the method to be valid for nearly degenerate states and even for truly degenerate states.
(Isolated pathologies are possible6 but should not prevent useful applications of the method for
dynamics.)
A key element in the fourfold way is that the diabatic systems are defined by a unitary trans-

formation of ab initio adiabatic states, where the transformation36,43 is based on configurational
uniformity. (Such a transformation has also been used fruitfully by other workers, based on other
criteria.37,42) In order for this to produce useful diabatic states, it is necessary to first re-express the
configuration state functions (CSFs) in terms of diabatic molecular orbitals (DMOs), and these are
produced by the fourfold way. The essential step in using the fourfold way to obtain DMOs is
maximizing a three-parameter functional that involves the sum of the squares of the orbital
occupation numbers for all of the states, a state-averaged natural orbital term,38 and a transition
density term. (The DMOs do not depend on tangentially related constructs such as one-electron
properties.29) This threefold density criterion is often sufficient, but not in strong interaction
regions for excitation from an open shell. In such regions we require the fourth element, which
involves maximizing the overlap of one orbital with a reference molecular orbital. The fourfold way
is effective at producing diabatic orbitals even in cases where a maximum overlap criterion35

applied to all orbitals fails. The resulting diabatic orbitals are globally defined and unique (path-
independent) if the dominant configurations and weak coupling regions can be defined unam-
biguously. The method is general enough to allow for dominant CSF groups to have completely
different members in different arrangements, and all ambiguities involving orbital and molecular
orientation are solved by specific prescriptions or the introduction of resolution molecular orbitals.
Diabatic representations, with all their advantages for gas-phase processes, are also useful for

condensed-phase photochemistry.44

Although these developments make the generation of diabatic representations more automatic,
in some cases there may be practical advantages in working directly in the adiabatic representation
because it altogether avoids the nonunique transformation to a diabatic representation. Ideally
though, the choice between a diabatic and adiabatic representation should be based not on the
convenience of generating the potential energy surfaces and their couplings, but rather on which
one is more suitable for dynamics. Although accurate quantum dynamics are independent of
representation, approximate methods usually depend on representation, and they will tend to be
more accurate if one uses the representation with the smallest coupling between the surfaces; this is
problem dependent and the best choice may also be method dependent. Thus two important
questions emerge: (1) how can we determine, for a given system and a given approximate dynamics
method, which representation will yield the most accurate results; (2) can we develop improved
methods that are less dependent on representation than previously existing semiclassical methods?
Both questions are addressed in Section 5.

4 Quantum mechanical dynamics

Once an analytic representation for the potential energy surfaces and their couplings is obtained (in
either the adiabatic or diabatic representation), one may proceed to modeling or calculating the
non-BO dynamics. Quantum mechanical calculations are especially challenging for non-BO sys-
tems both because there are open channels on more than one potential energy surface and also
because, for typical energy gaps, the kinetic energy is high on at least one surface.
For chemical systems with three or four atoms and two electronic states, the dynamics may be

calculated using accurate quantum mechanical techniques. The method that we use to calculate
accurate transition probabilities is time-independent quantum mechanical scattering theory. In
these calculations we assume that a particular two-state diabatic representation of the potential
energy surface is exact, and we neglect electronic angular momentum. After those two assumptions,
the rest of the treatment is exact, that is, numerically converged to two or three significant figures.
The calculations employ the outgoing wave variational principle57–61 (OWVP). The OWVP
method, as we employ it, is particularly efficient because it divides the scattering problem into two
smaller problems. The Schrödinger equation is solved by expanding the outgoing scattering waves
in terms of internal-state channel functions for each asymptotic chemical arrangement. (A channel
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is defined by a set of quantum numbers, including the arrangement number, that characterizes the
state of the completely dissociated reactant or product fragments.) The full Hamiltonian for each
chemical arrangement is partitioned into a distortion Hamiltonian that contains some of the
channel-channel coupling and causes rotationally-orbitally inelastic scattering and a coupling
potential that contains the remainder of the channel-channel coupling. The solutions to the former
are called distorted waves. The deviation of the accurate wave function from the distorted-waves is
expanded in a basis set consisting of L2 functions and half-integrated distorted-wave Green’s
functions (HIGFs), and the deviation of the full scattering matrix from the part contributed by the
distorted-waves is obtained by making it stationary with respect to variations of the coefficients of
the L2 basis functions and the HIGFs. The L2 functions are sums of products of Gaussians,
spherical harmonics, and diatomic eigenfunctions. The HIGFs are dynamically optimized by
solving the distorted-wave problems on a finite difference grid as nonhomogenous coupled ordinary
differential equations with two-point boundary conditions and with the quadrature grid for the
matrix elements of the OWVP being a subgrid; this is more stable than forming the Green’s
functions from irregular solutions, and it avoids working with discontinuities or interpolation.
Using this two-step scheme, the full scattering matrix is written as the sum of two terms, where the
first term is the distorted-wave Born approximation for the scattering matrix obtained using the
distorted-wave functions, and the second term is the contribution from the coupling potential.

The steps in the accurate calculations are therefore: (1) decouple the problem into small blocks in
single chemical arrangements; (2) solve these multi-channel nonreactive problems to obtain par-
tially coupled HIGFs; (3) calculate intra-arrangement and inter-arrangement matrix elements of
the L2 basis functions and HIGFs; (4) solve a dense matrix problem for the coefficients of the L2

basis functions and HIGFs.
Several computational refinements are used to make the calculations efficient: (1) The grids used

in the initial finite difference step are unevenly spaced so the subgrids used for later quadratures
have efficient Gauss–Legendre node spacings. (2) High-order finite difference schemes are used. (3)
The intra-arrangement integrals are re-calculated as needed to keep storage manageable (a so called
‘‘direct ’’ algorithm). (4) The problem, including boundary conditions, is formulated in a molecule-
fixed frame, which allows one to limit the basis set to small values of the body-frame angular
momentum projections. (5) The problem is formulated with real boundary conditions and hence
real arithmetic until the last step, where complex scattering matrix boundary conditions are used to
avoid spurious singularities in the variational principle. (6) In calculating matrix elements, we
prescreen both integrals and quadrature points to eliminate unnecessary work.

The OWVP method has been used to obtain fully-converged quantum mechanical scattering
results for a variety of electronically nonadiabatic chemical systems. The initial such application
was the nonreactive quenching process Na(3p)þH2!Na(3s)þH2 for zero62–65 and unit65 total
angular momentum using a two-state representation of the NaH2 system. Accurate quantum
mechanical calculations were also carried out66 for the spin–orbit-coupled collisions
HþHBr!H2þBr(2P1/2) and H2þBr(2P3/2). The competition between electronically nonadiabatic
reaction and electronic-to-vibrational energy transfer was investigated for the Br(2P1/

2)þH2!HBrþH reaction.67 Calculations for a series of three-body model systems exhibiting
avoided crossings in the vicinity of the reaction barrier showed strong nonadiabatic effects on
reaction probabilities due to funnel resonances.68 OWVP calculations have been performed more
recently on a variety of model systems, including three qualitatively different types of chemical
systems: (1) systems with conical intersections,69–73 (2) systems with diabatic surfaces that cross and
adiabatic surfaces that do not intersect,74 and (3) systems with wide regions of weak coupling where
neither the diabatic nor the adiabatic surfaces cross.75,76 This set of calculations includes reac-
tive69,72,74–76 and nonreactive71,72 scattering collisions as well as unimolecular excited-state decay
processes.70,73

The availability of accurate quantum mechanical results for realistic full-dimensional non-BO
systems allows for the systematic study of the accuracy of more approximate methods, and we have
identified a subset of the calculations discussed above to serve as benchmark test cases. The systems
are defined in the diabatic representation, and the set of diabatic surfaces (eqn. (4)) and their
couplings (eqn. (5)) is referred to as a potential energy matrix or PEM. We include three Landau–
Zener–Teller-type77–79 PEMs (collectively referred to as the MXH family74 of PEMs), which fea-
ture narrowly avoided crossings where the diabatic surfaces cross but the adiabatic surfaces do not.
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The three MXH PEMs differ from one another in the strength and width of their coupling, and all
three MXH PEMs describe the reaction

M� þHX ! MþHX
HþMX0

�
ð10Þ

where the excited model metal atom M* collides with the diatom HX. The system may quench
nonreactively to form MþHX or reactively to form HþMX. The masses of the M, X, and H
atoms are 6.04695, 2.01565, and 1.00783 amu, respectively. The diabatic and adiabatic energies for
one of the MXH systems along the collinear ground-state reaction path are plotted in Fig. 1(a).
OWVP calculations with 20659 basis functions were carried out74 for all three MXH PEMs at total
energies from 1.07 to 1.13 eV.
The second family of PEMs included in the set of benchmark cases is the YRH family,75 which

contains two Rosen–Zener–Demkov-type PEMs,80–82 featuring wide regions of weakly coupled
and nearly parallel surfaces where neither the diabatic surfaces nor the adiabatic surfaces cross.

Fig. 1 Adiabatic (solid lines) and diabatic (dashed lines) energies along the collinear ground-state reaction
path for (a) one of the MXH systems and (b) one of the YRH systems. The total energies used in the quantum
mechanical and semiclassical calculations are shown as dotted lines. The energies of the initial rovibrational
states of the diatom used in the set of benchmark test cases are labeled (v, j), where v and j are the vibrational
and rotational quantum numbers, respectively. Note: 1 a0 ¼ 0.529 Å.
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The two YRH PEMs differ from one another in the strength of their coupling and describe the
reaction

Y� þRH ! YþRH
RþYH0

�
ð11Þ

where the excited model metal atom Y* collides with the diatom RH. The masses of the Y, R, and
H atoms are 10, 6, and 1.00783 amu, respectively. The diabatic and adiabatic energies for one of
the YRH systems along the collinear ground-state reaction path is shown in Fig. 1(b). OWVP
calculations with 25269 basis functions were carried out75 for both YRH PEMs at total energies
from 0.99 to 1.13 eV. The various PEMs are distinguished by the strtength of coupling of the
diabats, as measured by a parameter Umax

12 .
Quantum mechanical results often display an oscillatory structure as a function of energy,

whereas the approximate methods that we wish to test (which are based on classical theories) do
not. In order to eliminate the effect of these oscillations when testing the approximate methods, we
average the quantum mechanical results over several energies located around the nominal scat-
tering energy. For the MXH systems, the quantum mechanical result at 1.10 eV was obtained by
averaging results from 1.07 to 1.13 eV. Quantum mechanical results for the YRH systems were
obtained at two energies: the 1.10 eV result was obtained by averaging results from 1.07 to 1.13 eV,
and the 1.02 eV result was obtained by averaging results from 0.99 to 1.05 eV. The OWVP method
gives the entire state-resolved scattering matrix, and in order to define a manageable test set, we
include a subset of these transitions. Specifically, we consider the scattering dynamics of three
initial rovibrational states for the diatom in the MXH systems, two initial rovibrational states for
the diatom in the YRH systems at 1.1 eV total energy, and one initial rovibrational state for the
diatom in the YRH systems at 1.02 eV total energy. The full set of benchmark quantum results
includes 9 MXH cases, 3 YRH cases, and a total of 12 test cases with five different PEMs. The
MXH and YRH systems have been used to systematically test several approximate methods, as
discussed in the next section.

5 Semiclassical trajectory methods

For systems larger than a few atoms, an accurate quantum mechanical dynamical treatment is not
computationally affordable. One must therefore rely on approximate ‘‘ semiclassical ’’ methods
where the full dynamics of the system is approximated or simplified in some way using classical
ideas.83 Although many semiclassical methods have been proposed and reviewed,21,48,84–87 few
have been systematically tested against accurate quantum mechanical calculations for realistic,
fully-dimensional chemical systems, due to the difficulty in obtaining quantum mechanical results.
As discussed in Section 4, we have developed a broad test set of atom–diatom scattering calcu-
lations, and we focus our attention in this section on methods that have been validated using these
test cases to determine their accuracy and applicability.

The semiclassical methods considered here may be classified as trajectory ensemble methods,
where a swarm of classical trajectories is used to simulate the nuclear motion of the system. A
quantum mechanical nuclear wave packet has some inherent width in configuration and
momentum space, whereas classical trajectories are delta functions in phase space. (Equivalently, a
quantal particle’s coordinates and momenta have some inherent uncertainty or spread, whereas in
a classical system these quantities are fully determined.) An ensemble of trajectories is therefore
required to approximate the quantal situation, where the distribution of the trajectories in the
ensemble mimics the width of the accurate quantal wave packet.87

Trajectory ensemble methods may be further categorized into those in which the entire ensemble
of trajectories is treated simultaneously and trajectories are allowed to influence each other’s
motions (coupled trajectory methods), and those in which each trajectory in the ensemble is treated
independently (independent trajectory methods). Several coupled-trajectory methods have been
developed.88–99 Some involve ‘‘dressing ’’ a classical trajectory with a shape functions such as a
Gaussian, and using the overlap of these shape functions to determine the overall dynamics of the
system, and others involve using trajectory-derived ensemble-averaged quantities in the equations
of motion.
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We note that some of the coupled-trajectory methods are very similar to Gaussian wave packet
methods in which the centers of the Gaussians follow classical trajectories. These methods are
based on early work by Heller.100,101 One method that has been systematically tested is the minimal
version102 of the full multiple spawning method103,104 (FMS-M). In this method, a number of
Gaussian-shaped packets are propagated along classical trajectories, and the trajectories occa-
sionally spawn new wave packets, which propagate on other electronic surfaces. Electronic state
density is allowed to flow back and forth between the packets, thus simulating the non-BO event.
This method strikes a nice balance between including quantum mechanical effects and maintaining
computational efficiency, but because one cannot afford to spawn a complete basis set of wave
packets moving in all directions, and because one usually makes approximations that force
the wave packet centers to follow classical-like paths, the method does not eliminate some of the
arbitrariness (see below) that is most troubling in more classical approaches. Furthermore the
propagation of a wave packet is more expensive than the propagation of a trajectory, and, as with
all wave packet methods, one must be careful to fully sample phase space, a drawback which
significantly raises the cost of wave packet methods for large systems.
Another class of wave packet methods is based on the time-dependent multi-configuration time-

dependent Hartree method.105,106 These methods are viewed as approximate quantal methods
rather than semiclassical methods and will not be discussed here. Coupled-trajectory methods and
multiple spawning methods may be used to study the importance of coherent motions, but their
computational cost is higher than independent trajectory methods for full-dimensional systems. We
will focus our attention on independent-trajectory methods.
A non-BO process modeled using classical trajectories may be described as follows: as the

ensemble of nuclear trajectories evolves in time, the nuclear motion causes a change in the overall
electronic state of the system (via the nonadiabatic vector momentum (and possibly kinetic energy)
couplings or diabatic scalar potential coupling terms) which in turn results in a new effective
potential energy felt by the trajectories, affecting the nuclear motion. This nuclear-electronic
interaction is the source of nonadiabatic electronic state changes, and to properly treat these non-
BO effects a self-consistent treatment of the nuclear-electronic coupling is necessary (i.e., the
electronic and nuclear degrees of freedom must be made to evolve simultaneously). Several
methods for modeling this self-consistency within the independent-trajectory approximation have
been proposed, and we discuss them next.
The electronic motion along each classical trajectory is obtained by propagating the solution to

the electronic Schrödinger equation with the appropriate initial conditions. The solution may be
represented in the form of an electronic density matrix q, where the diagonal element rii is the
electronic state probability for state i, and rij for i 6¼ j are the electronic state coherences.21,107 If the
entire system is described in quantum mechanical language, then q is the reduced density matrix
obtained by tracing the density matrix of the entire system (electrons and nuclei) over the nuclear
degrees of freedom. The Schrödinger equation for the wave function reduces (neglecting T

ð2Þ
ij ) to the

following equation for the reduced density matrix:85

i�h _rrkj ¼
X
l

rljFlj � rklFkl

� �
ð12Þ

where

Fij � Vij � i�hR_ � dij ð13Þ

Each trajectory in the ensemble evolves classically according to Hamilton’s equations of motion
under the influence of a semiclassical effective potential energy function VSC , which must be
carefully chosen such that the self-consistency discussed above is maintained. The classical treat-
ment of the nuclear motion is not always a good approximation and may introduce significant
errors when, for example, the nuclei are light or the observables of interest are sensitive to the
quantization of vibrational energy levels or the phases of the nuclear wave functions, as near
thresholds and resonances, respectively. However, this approximation is often very useful, even for
problems involving hydrogen.
One may anticipate that a successful semiclassical effective potential energy function VSC will

be some function of the potential surfaces, their couplings, and q. As discussed above, one can
express the electronic potential energies and their couplings in either the adiabatic or diabatic

Faraday Discuss., 2004, 127, 1–22 9



representations, and these two representations are equivalent if no approximations are made.
Several of the semiclassical methods that will be discussed next involve approximations that do not
preserve representation independence, and one must choose which representation to use for a given
simulation. When this is the case, we will discuss a method for choosing the preferred repre-
sentation. However, for some non-BO problems it may not be possible to assign a single preferred
electronic representation. For example, a system may have two or more distinct dynamical regions
which differ in their preferred representation. Therefore, it is desirable to develop semiclassical
methods that are accurate in both the diabatic and adiabatic electronic representations.

Several semiclassical algorithms have been proposed with differing prescriptions for VSC , and the
approaches may be divided into two general categories: (1) time-dependent self-consistent-potential
methods, and (2) trajectory surface hopping methods. Each category will be discussed briefly.

Semiclassical time-dependent self-consistent-field (TDSCF) theory provides a general framework
for incorporating quantum mechanical effects into molecular dynamics simulations. The semi-
classical TDSCF method is also known as the semiclassical Ehrenfest (SE) method, the partially
classical Ehrenfest model,108 the time-dependent Hartree method, the time-dependent self-con-
sistent field method,9,108,109 the self-consistent eikonal treatment,110 the hemiquantal method,111

and mean-field theory. In this article we are especially concerned with the use of this method to
treat the problem of vibronic effects, that is, the coupling of electronic and nuclear motions when
the Born–Oppenheimer approximation breaks down. We group all methods of this type into a
general category that we call self-consistent potential methods. The Ehrenfest method converts this
problem to classical molecular dynamics on a time-dependent average potential energy surface that
is most appropriate for strong interaction regions but leaves the system in an unphysical final state
that corresponds to a quantum superposition of pure states. It is well known that an open quantum
system, that is a quantum system interacting with an environment (a ‘‘bath’’), tends to a statistical
mixture112 of final states, not a pure state corresponding to a quantal superposition of final states.
The quantum mechanical description of this phenomenon is that the off-diagonal elements (which
are called coherences) of the reduced density matrix tend to zero. The zeroing of the off-diagonal
elements of the density matrix goes by many names including decoherence, transverse or spin–
lattice relation, and reduction of the wave packet. This general phenomenon has specific relevance
to the present problem because the electronic degrees of freedom may be considered to be an open
quantum system in the presence of the bath of nuclear degrees of freedom. Thus the nuclear degrees
of freedom decohere the electronic density matrix, and this occurs continuously at a finite rate, not
suddenly at a surface hop or a detector. When the coherences (i.e., the off-diagonal elements of q)
decay, the system becomes a statistical mixture, not a pure state. The system should then evolve like
a mixture of systems on the different potential surfaces, and the self-consistent potential for the
ensemble of trajectories is then an average of the various potential surfaces. This is where the
Ehrenfest method fails because it evolves each trajectory on an average potential (which is different
for each trajectory) rather than averaging the evolutions on the individual surfaces. We need to
introduce an algorithmic decay of mixing by which the electronic density matrices generating the
potential energy surfaces for the individual trajectories each lose their mixed character and become
a pure state; this decay of mixing must be stochastic or probabilistic such that the fraction of
trajectories propagating on each pure surface is equal, on average, to the probability of observing
each pure state in the statistical mixture corresponding to the reduced density matrix. Furthermore
not only must the nuclear motion be consistent with the electronic density matrix, but also the
electronic density matrix is a function of the nuclear trajectory; that is, the theory must be self-
consistent. This is the physical picture behind the coherent switching decay of mixing113 (CSDM)
algorithm and the earlier self-consistent decay of mixing114 (SCDM) algorithm. These algorithms
introduce continuous decoherence toward a pure state, called the decoherent state, and this pure
state is stochastically switched from one to another state in a self-consistent114 or coherent113 way
along the trajectory. In both algorithms the effective potential for nuclear motion is obtained from
the self-consistent electronic density matrix, and in the SCDM this self-consistent density matrix
also governs the switching of the decoherent state. However, we have found that for some problems
the evolution of the electronic density matrix that governs the switching should be more coherent
than the evolution of the electronic density matrix that governs the effective potential for nuclear
motion, and making this switching coherent for each complete passage of a region of strong
interaction of the electronic states makes the CSDM algorithm113 more accurate than the earlier114
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less coherent algorithm. The switching is not completely coherent throughout the trajectory but
rather coherent during each complete passage of the system through a region of strong interaction
of the electronic states. At a point of minimum interaction of the electronic states, between strong
coupling regions, the electronic density matrix (~qq) that governs the switching is re-set to the one (q)
that governs nuclear motion.
But toward which pure states should the systems decohere, e.g., toward the adiabatic pure states

or the diabatic ones? What is the privileged electronic basis in which the density matrix becomes
diagonal? The analog of this question in quantal measurement theory is: what is being mea-
sured?115 This is clearly determined by the measuring system, which from the point of view of the
quantum system, is the environment. In our problem, the environment is the nuclear degrees of
freedom. In quantal measurement theory, the privileged basis selected by the environment is called
the pointer basis,115 and it is determined by the interaction Hamiltonian connecting the two
subsystems. In the special case where the environment changes slowly on the natural time scale of
the quantal system, the pointer basis becomes the adiabatic basis of the quantal system,116 i.e., it is
determined by the quantal system’s internal Hamiltonian, not by the system-environment coupling.
Thus for systems where the Born–Oppenheimer approximation is a good zero-order description,
the adiabatic basis should be the decoherent basis. However, we are interested in systems with
strong interactions between the states, i.e., Born–Oppenheimer breakdown, and in such cases it is
not easy to determine the pointer basis, although our physical intuition tells us that when the
diabatic representation is a good zero-order approximation, the diabatic basis should be the
decoherent basis. One problem though is that the pointer basis may be different at different geo-
metries. A key to resolving the dilemma of how to choose the decoherent basis is provided by
recalling that the exact quantum mechanical solution is independent of the basis in which the
problem is solved. Therefore we seek a method that gives similar results in the two extreme bases,
adiabatic and diabatic. Then the choice of decoherent basis will not be so much of a problem
because one will get an accurate answer even if one locally makes the wrong choice.
The starting point for mean-field methods is the quantum Ehrenfest theorem117,118 which states

that the expectation values of the position and momentum operators evolve according to classical
equations of motion with an effective potential energy function given by the expectation value of
the potential energy operator. We define the semiclassical Ehrenfest (SE) independent-trajectory
method by taking VSC to be the expectation value of the electronic Hamiltonian:9,48,119

VSC ¼
X
i;j

rijVij : ð14Þ

The SE method has the desirable feature that it is formally independent of electronic repre-
sentation.119 Unfortunately, the SE method has many more disadvantages that result from
the mean-field assumption.86 At any instant along an SE trajectory it is physically meaningful
for the nuclear motion of a system to be influenced by some average of the potential energies of all
of the electronic states. However, it is not physically meaningful for the nuclear motion corres-
ponding to each electronic state to be described by a single trajectory. If the potential energies of
the various electronic states are similar in topography and energy, then the nuclear motions in each
state will be such that an average SE trajectory may provide a reasonable approximation. For
many chemical systems, however, this is not the case, and it is not possible for a mean-field tra-
jectory to accurately approximate the motion in these different electronic states. An important
consequence of this arises in the case of low-probability events. An SE trajectory will be dominated
by the character of the high-probability motions, and low-probability motions may not be properly
explored. Furthermore, it is not clear how to interpret the final state of an SE trajectory. In general,
an SE trajectory will finish the simulation in a coherent superposition of electronic states, whereas
physically one expects isolated products to be in pure electronic states (if there is no electronic state
coupling in the product region of phase space). The internal energy distribution of products in a
superposition of electronic states is not reliable because it does not correspond directly to the
internal energy distribution of any single physically meaningful product.
The SCDM114 and CSDM113 methods, introduced above, are modified SE methods that force

the system into a pure electronic state as the system passes through and leaves the strong coupling
region. Both methods add decay terms to off-diagonal matrix elements of the electronic density
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matrix q such that the system decoheres (demixes) to a pure electronic state K in regions of
vanishing coupling. These decoherence terms generate a force, called the decoherent force, on the
nuclear coordinates, and the direction of the force determines which system degrees of freedom
gain or lose energy due to the decoherent force. Since the CSDMmethod appears to be accurate for
a wider class of cases, we will focus on CSDM. In the CSDMmethod, the decoherent force is in the
direction of a unit vector ŝ; for large d, ŝ is parallel or antiparallel to d, as motivated by semi-
classical arguments120,121 and tests against accurate quantal results;70 and for small d, ŝ is parallel
or antiparallel to the vibrational momentum Pvib . The first order rate constant governing deco-
herence of the coherence of states i and K is 1/tiK , where tiK is a decoherence time (or demixing
time) given in terms of a pure dephasing time tPDiK by

tiK ¼ tPDiK ð1þ SÞ ð15Þ

where

tPDiK ¼ �h

Vii � Vkkj j ð16Þ

and

tDF
iK ¼ m�h

2 Pvib � ŝsð Þ2
: ð17Þ

The pure dephasing time is inversely related to the electronic energy gap, and to enforce the limiting
behavior required by the decoherent force, it is scaled by a factor that depends on the vibrational
kinetic energy associated with motion in the decoherent direction and a parameter E0 . Note that tiK
may be calculated from the local properties of the system.

It is important to emphasize that eqn. (15) is the time constant for algorithmic decay of mixing,
not for physical decoherence. The use of S > 0 allows for the difference. We have found that the
balance of coherence and decoherence in the algorithm is critical and one can make up, to a certain
extent, for too much decoherence by increasing tiK .

113 For many cases the results are not very
sensitive to E0 in the range around E0 ¼ 0.1 hartree and so we use that value here. In light of these
considerations it is interesting to briefly consider the physical origins of decoherence.

A useful semiclassical analysis of decoherence has been provided by Feite and Heller.122 They
identified three contributions to decoherence in general, but in the case of electronically non-
adiabatic molecular processes, one needs to consider only two: bath overlap decay and pure
dephasing due to averaging over a distribution of phases associated with different semiclassical
trajectories. Eqn. (15) includes the pure dephasing contribution but not the bath overlap decay
contribution. In the present case the bath consists of the nuclear degrees of freedom, and the
nuclear overlap decay has been emphasized by Prezhdo and Rossky,13 who describe it as the
nonradiative analog to Franck–Condon overlap factors123 in radiative processes. To include these
effects in the ideal case of first order decay of decoherence we would replace tPD by tD where

1

tD
¼ 1

tPD
þ 1

tNO
ð18Þ

where 1/tNO is the decay rate due to nuclear overlap decay. The expression for tNO derived by
Prezhdo and Rossky13 contains the difference in forces on the two surfaces. However, even if the
forces are the same, there is dephasing due to the different velocities on the two surfaces. The
derivation of their expression sets the two momenta equal at a critical point and therefore omits
this term. In recent work, Turi and Rossky124 included this effect and found that it contributes to a
lesser but not insignificant extent. One should explore the use of eqn. (18), but in general the sum of
rate constants in eqn. (18) will be dominated by the faster process, and we find that the pure
dephasing is very fast.

A CSDM trajectory behaves like an SE trajectory in strong coupling regions and collapses to a
pure state asymptotically. The method retains the desirable features of the SE method in that the
coherences between electronic states are included and the motion is independent of representation
when the electronic states are strongly coupled. Additionally, the CSDM method is able to treat
low-probability events and gives realistic product states.
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As discussed above, a semiclassical trajectory calculation involves computing an ensemble of
trajectories and averaging the results. In order to highlight the differences between the SE and
CSDMmethods, however, we consider a single representative trajectory for each method, as shown
in Fig. 2. These trajectories were taken from a scattering calculation using an MXH PEM. In Fig.
2, the population P2 (¼ r22) of the excited electronic state is shown, along with the three inter-
nuclear bond distances, as functions of time. The SE trajectory (Fig. 2(a)) finishes the simulation in
a coherent superposition of electronic states with P2� 0.7. This leads to an unphysical internal
energy for the product fragment corresponding to neither the M*þHX nor the MþHXmolecular
arrangements, as discussed above. Furthermore, the excited state in the HþMX asymptote is very
high in energy, and even a small about of mixing in of the excited state turns the trajectory away
from the HþMX asymptote (this dynamical feature may be seen in Fig. 2(a) at �0.23 ps).
A CSDM trajectory for the same set of initial conditions is shown in Fig. 2(b). The behavior of

the CSDM trajectory is very similar to the SE trajectory for the first half of the trajectory. With the
CSDM method, however, the system starts to exit the HþMX asymptote with P2� 0.0 and is
therefore able to proceed to form HþMX products. For this test case, the accurate quantum

Fig. 2 Representative trajectories for the MþXH system in the adiabatic representation for the (a) SE and (b)
CSDM methods. The potential energy matrix is the SB one,74 the total energy is 1.10 eV, and the initial
vibrational-rotational state is v ¼ j ¼ 0. The excited state population P2 and internuclear bond distances RAB

are shown as functions of time.
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mechanical probability of reaction is 0.15, which agrees much better with the CSDM method (0.16)
than with the SE method (0.03).

Another approach to independent-trajectory dynamics is the trajectory surface-hopping
approach,21,48 where the semiclassical potential VSC is taken to be the potential energy surface that
corresponds to the currently occupied state, i.e.,

VSC ¼ Vii: ð19Þ

The single-surface propagation is interrupted by instantaneous surface transitions (called surface
hops) to some other state according to a time-dependent hopping probability that is integrated
along the classical trajectory. The hopping probability may be defined in various ways, and we will
discuss two of the prescriptions below. Note that the diagonal elements Vii can be qualitatively
different in the adiabatic and diabatic representations, and therefore surface hopping methods are
often very sensitive to the choice of electronic representation.

The surface hopping method that has the most elegant derivation is the molecular dynamics with
quantum transitions method of Tully;21,107 we call this Tully’s fewest-switches (TFS) method.
Trajectories are propagated locally under the influence of a single-state potential energy function,
and this propagation is interrupted at small time intervals with hopping decisions. A hopping
decision consists of computing a probability for hopping from the currently occupied state to some
other state such that hopping only occurs when there is a net flow (in an ensemble-averaged sense)
of electronic state probability density out of the currently occupied state; this gives the fewest hops
consistent with maintaining self-consistency. At each hopping decision, the hopping probability is
computed and compared with a random number to determine if a surface hop occurs. The non-BO
event is represented as a swarm of TFS trajectories, each hopping between the various electronic
states at slightly different locations. In this way, the flow of probability density (which may occur
over an extended region in phase space) is accurately modeled.

The surface hopping method, because it involves discrete electronic transitions, provides a
particularly convenient way to decide whether the adiabatic or diabatic representation provides a
better zero-order picture for a given system. We have previously described a criterion (called the
Calaveras County (CC) criterion73,86) for determining in the absence of quantum mechanical data
which representation is likely to be more accurate. Specifically, the CC representation is defined as
the representation in which the number of attempted surface hops is minimized, as estimated from
a small set of TFS calculations, i.e., the CC representation is the representation in which the system
is the least dynamically coupled.

A significant problem that must be dealt with when using the TFS formulation (and many other
surface hopping schemes) is the existence of classically forbidden electronic transitions.75 The TFS
algorithm may predict a nonzero hopping probability to a higher-energy electronic state in regions
where the nuclear momentum is insufficient to allow for an energy adjustment that will conserve
total energy. For example, due to tunneling, quantum mechanical particles have some probability
density in regions of phase space that are classically forbidden. These tails of the nuclear wave
function decrease exponentially, so we do not expect significant populations in ‘‘highly ’’ classically
forbidden regions, but these tails may be important for regions that are only ‘‘ slightly ’’ classically
forbidden, i.e., regions that are somewhat close to classically accessible regions. An accurate
treatment of classically forbidden transitions associated with these tails may be important for some
problems.

In the original implementation of the TFS algorithm, the method was applied to simple one-
dimensional problems where frustrated hopping was not important. When frustrated hops were
encountered, however, either the attempted hop was ignored,107 or the nuclear momentum was
reflected along the nonadiabatic coupling vector, that is, classically forbidden (or ‘‘ frustrated ’’)
hops were treated by reversing the nuclear momentum in the direction of the nonadiabatic coupling
vector dij and continuing the trajectory without a surface switch.125,126 This latter prescription,
which elsewhere75 we have called the ‘‘� ’’ prescription, is motivated by interpreting the frustrated
hopping event as the trajectory being reflected by a change from one surface to another along a
hopping seam normal to the nonadiabatic transition vector (i.e., in the direction of dij). Müller and
Stock, however, advocated127 that frustrated hops should be ignored, and we call this the ‘‘þ ’’
prescription.
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The þ and � prescriptions have been tested numerically,75,128 and it was shown that the
� prescription is systematically more accurate for computing branching probabilities, whereas the
þ prescription gives more accurate internal energy distributions. It is therefore natural to attempt to
combine the þ and � approaches, and the cV prescription129 is one such attempt. Specifically, if
at a frustrated hop the force associated with the potential energy of the target electronic state in the
direction of dij has the same sign as the nuclear momentum along dij , then the þ prescription is
used. Otherwise, the � prescription is used. In either case, no surface hop occurs. Using the cV
prescription, the trajectory instantaneously ‘‘ feels ’’ the force associated with the target electronic
state and is ‘‘accelerated ’’ (which is equivalent to ignoring the surface hop due to the enforcement
of energy conservation) or reflected accordingly. It has been shown numerically, that the cV
prescription is, on average, more accurate than the þ and � prescriptions,127 although all three
methods have similar overall absolute errors for the test cases.
Using the þ, �, and cV and prescriptions, the trajectory does not change electronic states at a

frustrated hop, which violates the self-consistency argument originally107 used to justify the TFS
hopping probability, and numerical studies75,128 have shown that using these prescriptions leads to
inaccurate electronic-state trajectory distributions. The fewest-switches with time-uncertainty
(FSTU) method128 has been developed to correct this deficiency. The FSTU method is identical to
the TFS method except when a frustrated hop is encountered. If an FSTU trajectory experiences a
frustrated hop at time t0 , the system is allowed to hop at time th along the trajectory, where th is
determined by selecting the closest time to t0 (either forward or backward in time) such that: (1) a
hop at that time is classically allowed, and (2) the difference between t0 and th is small enough that

jt0 � thjDE � �h=2; ð20Þ

where DE is the amount of energy that the system would have to ‘‘borrow’’ to hop at time t0 . This
treatment is clearly inspired by the time–energy uncertainty relations, and these nonlocal hops can
be thought of as approximating those parts of the quantal system that borrow energy and tunnel
into classically forbidden regions. If a suitable th cannot be found that meets the above criteria,
then the frustrated hopping attempt is treated according to the cV prescription.
In Fig. 3, representative trajectories are shown for the TFS and FSTU methods for the same

model system as in Fig. 2. The initially occupied surface is surface 2. The TFS trajectory (Fig. 3(a))
experiences a surface hop to the ground electronic state at �0.225 ps and only 5 fs later another
hop is called for by the fewest-switches algorithm (denoted by a diamond in Fig. 3(a)). The dis-
tribution of energy among the modes is such that the hopping attempt is not classically allowed,
and the nuclear momentum is reflected along the nonadiabatic coupling vector. The trajectory
remains on the low-energy surface and eventually dissociates to form MþHX products.
The FSTU trajectory (Fig. 3(b)) follows the same dynamics as the TFS trajectory up to the

frustrated hop. In the FSTU trajectory, the frustrated hop is allowed to hop nonlocally. The FSTU
trajectory later hops to the ground state a second time at �0.25 ps and finally dissociates to form
HþMX products. Note that the ‘‘nonlocality ’’ of the hop is only 0.5 fs, and the RHX , RHM , and
RMX bond distances change by only 0.02, 0.14, and 0.02 a0 , respectively. One may expect these
small effects to wash out when averaged over all of the trajectories in the ensemble. We have found,
however, that the FSTU method is systematically more accurate than the TFS method.129 Finally,
we note that for the 9 realistic, fully-dimensional MXH test cases discussed in Section 4, anywhere
from 20% to 95% of trajectories in each test case (with an average of 54%) experience at least one
frustrated hopping attempt in the TFS-calculations. Clearly, the treatment of frustrated hops plays
an important role in trajectory surface hopping calculations.
For both the TFS and FSTU methods, trajectories experience a discontinuous change in their

electronic and nuclear energies when they experience surface hops. These discontinuities may be
especially problematic for systems with large energy gaps (which therefore require large energy
adjustments at surface hops) or for systems with dense manifolds of electronic states (which may
require a large number of small-magnitude surface hops, thus accumulating errors associated with
surface hops). The elimination of surface hops (and therefore also of frustrated surface hops) is one
motivation for the development of the CSDM method discussed above.
In trajectory surface hopping, a hopping probability is computed at each time step along the

classical trajectory. This probability may be sampled in three different ways. In the most widely
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used sampling scheme (called the ‘‘anteater ’’ scheme130), a random number is drawn, and the
trajectory hops stochastically according to the hopping probability. The anteater scheme has been
successfully applied to a wide variety of systems, but for systems with weakly coupled electronic
states, low-probability events may not be efficiently sampled. In the ‘‘ants ’’ sampling scheme,130

each trajectory is split into several branches, one of which then propagates on each electronic state.
The branches are weighted according to their hopping probabilities. The ants scheme explores
nonadiabatic events independent their probabilities, but the large number of resulting branches
makes the algorithm computationally prohibitive for most applications. The ‘‘army ants ’’ sam-
pling scheme131 has been developed to take advantage of the positive aspects of both the ants and
anteater schemes, i.e., it incorporates the stochastic elements of the anteater approach with the
weighting scheme of the ants approach. The army ants methods may be efficiently applied to
systems with weakly coupled electronic states, and it has been demonstrated131 to be several orders
of magnitude more efficient than the ants and anteater schemes for a model system with weakly
coupled electronic states. Furthermore it has allowed, for the first time, a demonstration that
trajectory surface hopping can agree well with accurate quantum dynamics for weakly coupled
systems.131

Fig. 3 Representative trajectories in the adiabatic representation for the (a) TFS and (b) FSTU methods. The
excited state population P2 and internuclear bond distances RAB are shown as functions of time. Downward and
upward hops are indicated by solid and dashed vertical lines, respectively. The location of a frustrated hop is
shown as a diamond in panel (a).
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Now that we have presented the details of four representative semiclassical methods (the first-
generation SE and TFS methods and the improved CSDM and FSTU methods), it is instructive to
discuss how each method treats coherence effects, which have been discussed in several key arti-
cles.13,113,114,132–135 We have restricted our attention to methods that are based on the independent
trajectory approximation, in which each trajectory in the ensemble has its own electronic state
density matrix q that evolves in time according to the unmodified or a modified time-dependent
Schrödinger equation. The unmodified Schrödinger equation is solved fully coherently along the
trajectory in the SE, TFS, and FSTU methods. Decoherence arises, however, when the electronic
state density matrices are averaged over all of the trajectories in the ensemble and the averaging
washes out the phases of the off-diagonal elements rij , although this average is not used in the
algorithms. In the SE method, the electronic state density matrices of different trajectories differ
due to their different initial coordinates and momenta. In the surface hopping approaches (TFS
and FSTU), trajectories may differ for two reasons: differing initial coordinates and differing
hopping locations. In this sense, surface hopping methods contain ‘‘additional ’’ decoherence. It
should be emphasized, however, that this additional decoherence does not affect the dynamics of
any single trajectory. The CSDM method contains ensemble averaged decoherence due to the
distribution of initial conditions and decoherent state switching locations. The CSDM method also
contains an explicit treatment of decoherence (i.e., the effective Schrödinger equation that generates
q is modified to explicitly include decoherence, as discussed above), and is the most accurate of the
methods discussed here.
The CSDM method may be compared with the methods of Rossky and co-workers,13,124,133,135

which also include an explicit treatment of decoherence within the independent-trajectory
approach. In these methods, the classical degrees of freedom are treated as a bath, which gives rise
to electronic decoherence. A decay time associated with the nuclear motions is derived, and to the
extent that we can compare their application to ours (we studied different systems), it is longer than
the decay time given by eqn. (16) of the CSDM method. The best formulation for incorporating
decoherence into mean-field semiclassical theories remains a area of research that requires
further study.
Some authors have modified the surface hopping approach to include a more explicit treatment

of coherence. Thachuk et al.134 have demonstrated that fully coherent trajectories can lead to
significant errors, and in particular that more accurate methods can be obtained by explicitly
destroying decoherence between regions of strong coupling. Parlant and Gislason have deve-
loped132 a surface hopping method (which we will call the exact complete passage or ECP method)
in which each strong interaction region is treated fully coherently. Surface hops are allowed at local
maxima in the coupling, and the hopping probability is determined by integrating the electronic
probabilities over the complete passage through each interaction region. Coherence is fully
destroyed between strong coupling regions.
Five of the methods discussed above (the SE, CSDM, TFS, FSTU, and ECP methods) are

compared in Table 1 to accurate quantum mechanical calculations using the set of 12 test cases
described in Section 4. In all of the test cases, an electronically excited atom is scattered off of a
diatom, and errors are computed for four probabilities: the probability of nonreactive de-excitation
or quenching (PQ), the probability of reactive de-excitation (PR), the total probability of de-exci-
tation (PN), and the fraction of de-excited trajectories that react (FR), and for four ‘‘moments ’’,
which are the averages (first moments) of the vibrational and rotational quantum numbers of the
reactive and nonreactive de-excited diatomic fragments. In Table 1, we present errors averaged
over all 12 test cases; more detailed results can be found elsewhere.74,75,86,113,114 Table 1 shows
results for the Calaveras County (CC) choice as well as for the adiabatic (A) and diabatic (D)
representations.
Results from the trajectory surface hopping methods (TFS, FSTU, and ECP) show strong

representation dependence, with average errors for the diabatic representation that are 2–4 times
larger than errors for the adiabatic representation. The TFS and FSTU methods differ only in their
treatment of frustrated hops, and incorporating nonlocal hopping to alleviate some frustrated
surface hops (as in the FSTU method) improves the overall representation independence from a
factor of three to a factor of two. As discussed above, the SE self-consistent potential method is
formally independent of representation. The decay of mixing in the CSDM method, which is based
on the SE approach, builds in some representation dependence, but the errors in the two
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representations differ only by a factor of 1.1. This improved representation independence is, in fact,
one of the motivations for the development of the CSDM method.

Table 1 shows that on average, the CC representation successfully selects the most accurate
representation. We note that the CC representation is the diabatic representation for only three of
the 12 test cases, and so the CC and adiabatic results are similar. In developing the CC criterion, it
was tested against several other proposed criteria using a broader range of test cases, and it was
shown to be the most predictive of the several criteria tested.73

Next, we discuss the relative accuracies of the five methods in Table 1 using the CC results. The
ECP and TFS methods both perform reasonably well with average errors of 49% and 39%,
respectively. The explicit treatment of coherence in the ECP method does not improve the surface
hopping approach for the test cases considered here. However, it is possible that a careful treatment
of coherence may improve the surface-hopping method, and this remains an area of research. (One
reason why the CSDM method outperforms the ECP method is that coherence is not fully
destroyed between strong interaction regions, but rather ~rrij is set equal to rij . This seems more
natural in a self-consistent potential method than in a surface hopping one.) Overall, the FSTU
method, which involves only a slight modification of the TFS method, is the most accurate surface
hopping method, with an average error of 34%. Along with the improved representation inde-
pendence of the FSTU method, as discussed above, this makes the FSTU method the clearly
preferred surface hopping method.

The SE method, although independent of representation, shows large errors and predicts
qualitatively incorrect dynamics. For some of the test cases, the SE method predicts no reactive
trajectories, and therefore cannot be used to compute the vibrational and rotational moments
associated with the reactive products. The CSDM method improves the accuracy of the self-
consistent potential approach and is the best method overall with an average error of only 24% and
excellent representation independence. For example, Table 2 shows (for the same methods as Table
1) the probability of reaction and the probability of quenching for Y*þRH (v ¼ 0, j) ! YHþR
(PR) or RH (PQ) with initial vibrational quantum number v equal to zero, initial rotational states j,
and two coupling strengths Umax

12 .

6 Summary

We have presented an overview of recent progress on computational non-BO dynamics. These
advances include a practical algorithm for computing diabatic energies and couplings called the

Table 1 Mean unsigned relative errors (%) averaged over 12 atom–diatom scattering
test cases

Method Representation Probabilities Moments Averagea

TFSb A 50 29 39
D 211 33 122
CC 48 29 39

FSTUc A 43 29 36
D 107 36 71
CC 40 29 34

ECP A 73 21 47
D 379 23 201
CC 78 19 49

SE all 69 d e

CSDMf A 23 25 24
D 28 24 26
CC 24 24 24

a Average of the Probabilities and Moments columns. b TFS- c FSTUgradV d For
YRH cases, the SE method predicts no reactive trajectories over which to average the
vibrational and rotational moments. Therefore we cannot compute this entry. If,
nevertheless, we average over those cases where we can compute a moment, the mean
unsigned relative error is 56%. e See previous footnote. The average of 69 and 56% is
62%. f E0 ¼ 0.1 hartree.
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fourfold way, which may be readily applied to complicated systems. We have discussed the use of
the outgoing wave variational principle for computing the accurate quantum dynamics of small
reactive scattering systems. The method has been used to develop a set of quantum mechanical
results that were used to test approximate methods. Several approximate methods, including
methods representative of both the mean-field and surface hopping approaches, have been dis-
cussed, and the coherent switching decay of mixing (CSDM) algorithm has been shown to be the
most accurate. The CSDM method is the result of several systematic improvements to the self-
consistent potential approach. The overall error for this method is �25%, which is about the same
as or only slightly larger than the errors72 associated with single-surface classical trajectory
methods. The CSDM method does not feature quantized vibrations and does not include any
treatment of single-surface tunneling, and therefore it is pleasing that using the best available
semiclassical methods, the overall errors are dominated by single-surface errors and not the error
associated with the nonadiabatic event. The CSDM method has about the same computational
cost and only slightly more computational complexity than trajectory surface hopping, and
therefore it should be applicable to large and complex systems. It may be used to study the qua-
litative and semiquantitative features of non-BO systems, just as quasiclassical trajectory methods
have been used to elucidate reaction mechanisms and other dynamical features for single-surface
reactions.
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