
JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 8 22 FEBRUARY 2004
Army ants algorithm for rare event sampling of delocalized
nonadiabatic transitions by trajectory surface hopping
and the estimation of sampling errors by the bootstrap method

Shikha Nangia,a) Ahren W. Jasper, Thomas F. Miller III, and Donald G. Truhlarb)

Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis,
Minnesota 55455-0431

~Received 21 October 2003; accepted 21 November 2003!

The most widely used algorithm for Monte Carlo sampling of electronic transitions in trajectory
surface hopping~TSH! calculations is the so-called anteater algorithm, which is inefficient for
sampling low-probability nonadiabatic events. We present a new sampling scheme~called the army
ants algorithm! for carrying out TSH calculations that is applicable to systems with any strength of
coupling. The army ants algorithm is a form of rare event sampling whose efficiency is controlled
by an input parameter. By choosing a suitable value of the input parameter the army ants algorithm
can be reduced to the anteater algorithm~which is efficient for strongly coupled cases!, and by
optimizing the parameter the army ants algorithm may be efficiently applied to systems with
low-probability events. To demonstrate the efficiency of the army ants algorithm, we performed
atom–diatom scattering calculations on a model system involving weakly coupled electronic states.
Fully converged quantum mechanical calculations were performed, and the probabilities for
nonadiabatic reaction and nonreactive deexcitation~quenching! were found to be on the order of
1028. For such low-probability events the anteater sampling scheme requires a large number of
trajectories (;1010) to obtain good statistics and converged semiclassical results. In contrast by
using the new army ants algorithm converged results were obtained by running 105 trajectories.
Furthermore, the results were found to be in excellent agreement with the quantum mechanical
results. Sampling errors were estimated using the bootstrap method, which is validated for use with
the army ants algorithm. ©2004 American Institute of Physics.@DOI: 10.1063/1.1641019#
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I. INTRODUCTION

The most accurate way to describe a chemical sys
theoretically is to treat the entire system quantum mech
cally. Currently, however, exact quantum mechanical cal
lations on chemical systems have been restricted to s
chemical systems~involving two to six atoms for electroni
cally adiabatic processes and two or three atoms for e
tronically nonadiabatic processes! because of the computa
tional cost involved. On the other hand, classical mecha
may be used to model much larger systems but this is in
equate for systems where quantum effects play an impor
role. ‘‘Semiclassical’’ dynamical methods attempt to find
effective compromise between an entirely quantum mech
cal treatment and completely classical treatment. In
present paper we are concerned with semiclassical trajec
methods, in which quantum mechanics is used to treat
electronic degrees of freedom, and the nuclear degree
freedom are modeled as an ensemble of classical trajecto
This kind of semiclassical method has been widely used
electronically nonadiabatic collisions and photochemical
actions, and several reviews are available.1–13

Trajectory surface hopping~TSH! methods14–54 are one
group of semiclassical trajectory methods which incorpor
electronic transitions into the overall dynamics by allowi

a!Electronic mail: nangia@t1.chem.umn.edu
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the classical trajectories in the ensemble to make sud
hops ~also called switches! between the coupled potentia
energy surfaces. Specifically, each trajectory in the ensem
is propagated independently, and at small time interv
along each trajectory, a hopping probability is comput
Tully proposed a fewest-switches prescription for the ho
ping probability such that the nuclear and electronic degr
of freedom evolve self-consistently.22 In the widely used ant-
eater implementation of TSH, trajectories hop between st
according to the hopping probability.

In general, the strength of the coupling between the
tential energy surfaces governs the probability of nonad
batic events and also the number of trajectories require
the ensemble to obtain converged results using the ante
implementation of TSH. For example, if the probability of
nonadiabatic event is on the order of 1021 or 1022, then
three to five thousand trajectories are required to obtain g
statistics, whereas in cases where the potential energy
faces are very weakly coupled, and nonadiabatic events
rare, e.g., on the order of 1028, the anteater algorithm re
quires on the order of 108 trajectories to sample even a sing
nonadiabatic event, and sampling with good statistics is
practical. In fact, adequate sampling is already impract
for nonadiabatic probabilities on the order of 1025. There-
fore, it has not been possible to model polyatomic syste
with weakly coupled surfaces using the available TSH al
rithms. In this paper, we present a new algorithm~called the
6 © 2004 American Institute of Physics
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3587J. Chem. Phys., Vol. 120, No. 8, 22 February 2004 Army ants algorithm
army ants algorithm! that is designed to efficiently handl
weakly coupled systems. This new algorithm may be con
ered a form of rare event sampling for the nonadiabatic p
cesses. Although rare event sampling has been widely s
ied, and many algorithms are available,55–63 essentially all
previous work has been based on transition state conc
where the sampling occurs at a reasonably well-localized
namical bottleneck, whereas the present algorithm can t
rare and delocalized nonadiabatic events that may occu
any point along a trajectory.

One motivation for our recent studies of TSH metho
has been to test them against accurate quan
dynamics.25,27,32–34,36,41–44,46,53Because it has been impract
cal to study dynamics for systems with very small semicl
sical transition probabilities, these tests have been carried
for systems with nonadiabatic probabilities of 331024 and
larger. The army ants algorithm allows us to extend th
tests down to much lower probabilities; for example, in t
present paper we present well-converged calculations f
system with a nonadiabatic transition probability
131028. We will test not only the Tully’s fewest switches22

~TFS! surface hopping method, but also a variant of the T
method called the fewest-switches with time uncertai
~FSTU! surface hopping method46 that was previously
shown46,53 to be more accurate than the TFS method
nonadiabatic probabilities in the range 131022 to 3
31024. In particular we test the original version of the TF
method~TFS with reflection at frustrated hops, called TF
2) and three versions of the FSTU method (FSTU2,
FSTU1, and FSTU¹V!. All of these methods can be applie
with either the anteater scheme~which was first denoted
‘‘anteater’’ by Tully22! or the new army ants samplin
scheme.

In addition, we validate the bootstrap method for es
mating Monte Carlo sampling errors. Although formulas f
sampling errors can be derived for many of the quanti
and algorithms employed in trajectory calculations,3 there
are many other cases where error formulas are hard to de
The army ants algorithm provides an example of suc
problem. The bootstrap method64–66provides a general solu
tion to the problem of estimating sampling errors, and in
present article we validate it and use it successfully for t
purpose.

We summarize the existing sampling algorithms in S
II, and present the details of the army ants algorithm in S
III. The model system used for the calculations is describ
in Sec. IV. Section V contains the formulas for analysis
final product states. The bootstrap method of error analys
presented in Sec. VI. Section VII provides details of all c
culations performed and the results obtained. A discuss
is provided in Sec. VIII and conclusions are presented
Sec. IX.

II. SAMPLING ALGORITHMS FOR TSH

In the TSH method, an ensemble of trajectories is u
to model the nuclear dynamics, and each trajectory evo
classically under the influence of a single potential ene
surface. The single surface propagation is interrupted
small time intervals by decision points at which electron
Downloaded 22 Mar 2004 to 160.94.96.172. Redistribution subject to AIP
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transitions may occur. At each decision point~which we la-
bel by their timestn) the electronic transition probability
Pa→b(tn) is computed, wherea is the occupied potentia
energy surface andb is the target potential energy surfac
The TFS method definesPa→b(tn) based on the local ne
flux of probability density such that the self-consistency
electronic and nuclear motions is maintained.22,23,30 ~Actu-
ally, when ‘‘frustrated hops’’ are encountered, this se
consistency is also frustrated. We defer consideration of
aspect to Sec. III.! Tully15,22 proposed two schemes for sam
pling Pa→b(tn) along the classical trajectory, which he calle
the ants and the anteater algorithms.

Before we discuss the ants and the anteater algorithm
is useful to introduce the concept of extended traject
space. For electronically adiabatic processes, trajectories
specified by a sequence of points in phase space. One
sample trajectory space by sampling initial conditions of
trajectories, i.e., by sampling phase space. Surface hop
trajectories in contrast, are specified not only by their init
phase points and initial surface but also by the times
phase points at which the hops occur. The space of all
face hopping trajectories will be called extended traject
space, and the ants algorithm, anteater algorithm, and
algorithm are all methods for sampling extended traject
space.

II.A. Ants algorithm

In the ants algorithm15 each trajectory in the ensemb
begins the simulation on a particular potential energy surf
and is integrated to the first decision pointt1 , at which it
splits into two branches. One branch continues to follow
initial potential energy surface and is called the nonhopp
branch, whereas the other branch hops to follow the unoc
pied potential surface and is called the hopping branch. E
of these resulting branches is assigned a weight accordin
the transition probabilityPa→b(t1) such that the total weigh
of both branches adds up to one, i.e.,

whop5Pa→b~ tn!,
~1!

wnon512Pa→b~ tn!,

wherewhop is the weight assigned to the hopping branch, a
wnon is the weight assigned to the nonhopping branch. T
branches are then propagated independently, and eac
them proceeds to additional decision points. The final wei
of each branch is the product of all weights assigned at ev
decision point in that branch’s history. As a result, t
weights assigned to each branch get smaller and smalle
the number of branches gets larger and larger. The repe
branching process results into a swarm of trajectories tha
analogous to a swarm of ants—hence the name, ants me
The advantage of this method is that it allows a trajectory
follow nonadiabatic events independent of the weights of
magnitudes of their probabilities. However, this is also t
major disadvantage of the ants method. An ants simula
with Ndec decision points would result in 2Ndec branches for
each initial trajectory.~Note that several initial trajectorie
are required to sample the initial conditions of the syste!
When the ants method was first proposed, the primitive
jectory surface hopping algorithms then in use restricted s
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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face transitions to predefined seams, thus keepingNdecsmall.
However the modern algorithms based on fewest-switc
considerations allow hopping decisions after every time s

II.B. Anteater algorithm

The anteater method is the most widely used samp
algorithm for TSH simulations. In the anteater algorithm, t
branching event is replaced by a stochastic event. Spe
cally, the nonadiabatic transition probabilityPa→b(tn) at
each decision pointtn is compared to a random numberl
between 0 and 1. IfPa→b(tn) is greater thanl, the hopping
branch is followed and is assigned weight 1. The nonhopp
branch is not followed and is assigned a weight of 0, i.e.

whop51,
~2!

wnon50.

If Pa→b(tn) is less thanl, the nonhopping branch is fol
lowed, and the trajectory remains on the initial potential s
face with weights

whop50,
~3!

wnon51.

This scheme gets the name anteater from the analogy th
anteater is most likely to follow the path where the probab
ity of finding ants is greatest.

Each anteater trajectory finishes with a weight of un
on one of the two potential energy surfaces and final res
are obtained by averaging over many anteater trajecto
The anteater implementation of TSH is widely used and
entirely satisfactory for systems where the coupling betw
the potential energy surfaces is large enough that the p
ability of nonadiabatic events is on the order of 1021– 1023.

II.C. Generalization to more than two electronic states

In cases with more than two coupled potential ene
surfaces, the ants and the anteater algorithms are slig
more complicated. Consider a system withS coupled poten-
tial energy surfaces, where surface 1 is occupied initia
At the first decision point, the transition probabilitie
from surface 1 to each of the other target surfaces
P1→2 ,P1→3 ,...,P1→g ,...,P1→S . For the case of multiple
potential energy surfaces the variablewhop is the sumPi→ j

over all iÞ j , wherei is the current surface.
In the anteater algorithm, the transition probabilities a

compared to a random numberl ~between 0 and 1! to deter-
mine the surface on which to continue the trajectory. A h
to surface 2 occurs ifl,P1→2 , a hop to surface 3 if
P1→2,l,P1→21P1→3 , and so on. If no hop occurs, th
trajectory remains on surface 1. In any event the traject
then moves on to the next decision point.

In the ants algorithm, branching is allowed at every d
cision point from potential energy surface 1 to all the oth
unoccupied potential energy surfaces. The weight of a h
ping branchwhop

1→g from surface 1 to surfaceg, shown ex-
plicitly by the superscript 1→g, is determined by the tran
sition probability for that surface, i.e.,whop

1→g5P1→g . The
total weight of all of the hopping branches and the nonh
Downloaded 22 Mar 2004 to 160.94.96.172. Redistribution subject to AIP
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ping branch is one, i.e., the weight of the nonhopping bra
is wnon

1→1512(P1→21P1→31,...,P1→g1,...,P1→S). Each
of the hopping branches and nonhopping branch propa
independently, branching further at decision points. Thus
total number of branches would beSNdec for each initial
trajectory.

III. ARMY ANTS ALGORITHM

Consider a weakly coupled system with a nonadiaba
reaction probability of;1028. Since it requires on the orde
of 100 reactive trajectories to obtain reasonable final-s
statistics for a given final electronic state, the anteater a
rithm would require a minimum of 1010 trajectories to obtain
reasonably converged results. In the ants algorithm, ev
trajectory would sample the low-probability events, but t
large number of resultant branches makes the ants me
computationally expensive to implement, as described
lier. We propose a new algorithm, called the army ants al
rithm, that is capable of performing calculations for syste
with weakly coupled electronic states.

In essence, the army ants method incorporates the
chastic elements of the anteater method~i.e., nonadiabatic
events do not occur at every time step but instead oc
randomly according to some sampling probability! as well as
the branching elements of the ants method~i.e., trajectories
are propagated with fractional weights!. By allowing
branches to propagate with fractional weights, the ants a
rithm is able to sample the critical regions of extended t
jectory space, including those associated with lo
probability events that the anteater algorithm ‘‘misses’’ wh
the number of trajectories is too small. In fact the army a
algorithm reduces in certain limits to the ants or antea
algorithms, as described later in this section.

The army ants algorithm is defined in terms of a para
eterh such that 0<h<1. The value ofh is compared to the
nonadiabatic probabilityPa→b at each decision pointtn . The
greater of the two values is calledgn :

gn5maxHh
Pa→b~ tn!. ~4!

In order to determine whether branching is allowed at t
decision point a random numberl between 0 and 1 is drawn
and compared togn with the following consequences:

l.gn : no branching,
~5!

l,gn : branching.

In a nonbranching case, the trajectory moves on to the n
decision point while remaining on the current surface. If,
the other hand, branching occurs, then the branch wei
whop for the hopping branch andwnon for the nonhopping
branch are calculated as follows:

whop5
Pa→b~ tn!

gn
,

~6!

wnon512
Pa→b~ tn!

gn
.
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3589J. Chem. Phys., Vol. 120, No. 8, 22 February 2004 Army ants algorithm
Another random number is drawn and the hopping branc
propagated if the random number is greater than 0.5, ot
wise the nonhopping branch is followed, i.e., one follo
each branch 50% of the time, even though they have dif
ent weights. We can summarize a successful branching e
as follows:

Step 1. Initiate a trajectory from the ensemble on
appropriate potential energy surface, and at each deci
point tn computePa→b(tn).

Step 2. Obtaingn5max@h,Pa→b(tn)#.
Step 3. Generate a random numberl1 between 0 and 1
Step 4. Comparegn andl. Branch ifl1,gn and calcu-

late whop andwnon.
Step 5. Generate another random numberl2 between 0

and 1.
Step 6. Choose the hopping branch ifl2.0.5, and

choose the nonhopping branch otherwise.

It should be noted that the army ants algorithm redu
to the anteater algorithm forh50, since the maximum o
@0,Pa→b(tn)# at every decision point yieldsgn5Pa→b(tn)
which on substitution in Eq.~6! results in branch weights fo
the anteater algorithm as in Eqs.~2! and ~3!. On the other
hand the army ants algorithm can be reduced to the
algorithm by choosingh51. In this case, the value ofgn is
equal to 1~sincegn5max@1,Pa→b(tn)#) at every time step,
and substitution in Eq.~6! then results in ants algorithm
weights as in Eq.~1!. The parameterh therefore plays a role
in the efficiency of the calculation, and in facth may be
optimized for this purpose. Depending upon the magnitu
of coupling, the amount of branching character can be re
lated by choosing the most appropriate value ofh. This at-
tribute makes the algorithm universally applicable to a
kind of system, irrespective of the strength of coupling b
tween the electronic states.

It is important to notice that all three trajectory surfa
hopping sampling algorithms@ants (h51), anteater (h
50), and army ants~nonintegerh!# achieve the same resul
in the limit of infinite sampling, i.e., the choice ofh does not
affect the results for a large sample.

The army ants algorithm can be implemented in t
different ways, depending on howh is chosen. We label the
first implementation as ‘‘fixed-h mode’’ and the second
method as ‘‘k mode,’’ the reasons for which are given in th
following:

~1! In fixed-h mode,h at every step is set equal toh0 ,
which is an input parameter in this mode. This paramete
the target value of the fraction of decision points at which
branch occurs. For example, in the system considered in
paper, a typical trajectory encounters aboutNdec5900 deci-
sion points. If one’s target is for every trajectory to branch
six time steps and not branch at the remaining steps,
should seth0 equal to 6/900 or about 731023. Depending
upon the amount of branching desired, any value can
chosen forh0 , provided only that it is a number between
and 1.

~2! In k mode, the distribution of branching points
independent of the time step taken by the integrator. T
input parameter in this implementation is a constantk that
Downloaded 22 Mar 2004 to 160.94.96.172. Redistribution subject to AIP
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has units of inverse time~and can be considered analogous
a first-order rate constant!. The inputk value is then multi-
plied by the instantaneous time stepDtn at each decision
point n, to obtain a unitless time-dependent variable giv
by

h5kDtn . ~7!

By allowing h to vary in this way at each decision point, w
can regulate the branching because an integrator with v
able step size can take small steps on the potential en
surface where the potential is steep, but a smaller valueh
in this region will prevent excessive branching events. C
versely,k mode allows for more branching in the areas
the potential energy surface where the potential is flat and
integrator takes large steps.

The input parameterk can have any value, but a goo
value fork can be obtained from

k5
hopt

Dtavg
, ~8!

wherehopt is an optimal value forh, andDtavg is the average
time step of the integrator. For the present paper, this
proach was used to obtain thek parameter for thek mode
army ants calculations.

It should be noted that decision points occur all along
classical trajectory, even when the system is far from
region of maximum coupling. When this is the case,whop

may be several orders of magnitude smaller than proba
ties of interest. In the army ants algorithm, the hoppi
branch is followed 50% of the time independent of the ma
nitudes of weights, but the branch may have a very sm
weight such that it will not contribute significantly to th
final results. We therefore introduce a cutoff parameterwcut

such that ifwhop,wcut at tn , the hopping decision is ignore
at tn . For all calculations in the present article we setwcut

equal to 1310220.
Since the new algorithm is more evolved and more e

cient than the previous ones, we named it the army a
algorithm in recognition of a highly organized species of a
called army ants inhabiting the equatorial forest of pla
Earth. In particular, a collection of army ants, taken as
whole, functions as a well-integrated social entity with t
extraordinary ability of forging into unknown territory, an
we can hope that our collection of trajectories is equa
adept at sampling an unknown extended-trajectory-space
discovering its most significant features.

The extension of army ants algorithm to more than t
surfaces is straightforward. For example, for three surfa
one would follow each surface one-third of the time~at ran-
dom! at each branching point. Actually, one will stay unb
ased even if one changes the fraction of the time that e
surface is followed. If one were especially interested in
detailed product distribution on surface 2, one could follo
surface 2 at 70% of the branches~chosen at random! and
surfaces 1 and 3 at 15% each. In the present paper we
two surfaces, and we follow each surface at 50% of
branches.

We have discussed three sampling schemes~ants, ant-
eater, and army ants! for TSH. We next discuss several var
ants of the TSH approach that differ in their treatment
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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frustrated hops. Any of the sampling schemes can be c
bined with any of these variants, and in the present article
will illustrate the new army ants algorithm with four of th
variants, namely TFS2, FSTU2, FSTU1, and FSTU¹V.

In trajectory surface hopping calculations, trajector
make sudden hops from an occupied surface to a targe
tential energy surface, and the potential energy of the sys
changes discontinuously when the system hops. To cons
the total energy of the system, the kinetic energy of the s
tem on the new surface is adjusted by changing the nuc
momentum along the hopping vector.~In the present paper
the hopping vector is always a unit vector parallel to t
nonadiabatic coupling vectord, a choice that has been pre
viously been justified by theoretical arguments19,24 and by
testing33 against accurate quantum mechanical calculatio!
At certain points along a trajectory, a hopping attempt from
lower-energy to a higher-energy electronic state may oc
such that the kinetic energy associated with the compon
of nuclear momentum along the hopping vectorh is less than
the potential energy gap between the occupied and the ta
electronic states. Such hops are classically forbidden, and
called ‘‘frustrated hops.’’ Frustrated hops are common
semiclassical trajectory calculations, and various presc
tions have been proposed to treat frustrated hops. Ea
treatments include ignoring the frustrated hop, denoted
‘‘ 1,’’ or reflecting the nuclear momentum alongh, denoted
by ‘‘ 2.’’ When implemented with the TFS method, the
choices are labeled TFS1 and TFS2. The TFS2 scheme is
the original version of TFS,22,67 and TFS1 was introduced
later,26 although a combination of1 and 2 was used even
earlier in a general surface hopping scheme.18 In our group,
we compared the performance of these varia
systematically44 and then introduced a new method of tre
ing the frustrated hops, called the fewest-switches time
certainty ~FSTU! method.46 The FSTU method is like TFS
except that where frustrated hops are encountered the sy
may hop nonlocally. In the FSTU method, some hops rem
frustrated, and these can be ignored~1! or cause reflection
~2!, yielding FSTU1 and FSTU2. Another FSTU prescrip-
tion proposed recently is the FSTU¹V53 scheme that uses th
gradient information of the target potential surface to de
mine how momentum will be treated at frustrated hops.

We performed calculations on a realistic model syst
called the YRH system using the above-noted variants of
TSH approach along with the anteater and army ants s
pling algorithms. Details of the YRH system are provided
the following section.

IV. THE YRH MODEL SYSTEM

The YRH model system44 is a three-body system tha
has been developed in our group to study weakly coup
systems. The model reaction is an electronically nonadiab
scattering process between an excited atom Y* and a
ground-electronic state diatomic molecule RH in a spec
quantum state (n, j ), wheren the vibrational quantum num
ber, andj is the rotational quantum number. In addition
electronically adiabatic, nonreactive scattering, the collis
can result in two possible outcomes as shown in the follo
ing equations:
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Y* 1RH~n, j !→ HR1YH~n8, j 8!, reaction
Y1RH~n9, j 9!, quenching, ~9!

where Y, R, and H are model atoms, the asterisk deno
electronic excitation, and the primes and double primes
note the quantum numbers of the diatomic molecules ass
ated with the reactive and quenched molecular arrangeme
respectively.

The probability of the scattering process resulting in
action is calledPR , whereas the probability of a quenchin
process is represented asPQ . The sum of these probabilitie
is the total nonadiabatic probabilityPN for a system to
emerge in the ground electronic state in a scattering ev
i.e.,

PN5PR1PQ . ~10!

The details of the model YRH system have been
ported in earlier work44 in which a family of four YRH po-
tential energy matrices~PEMs! was introduced. Briefly, the
masses of Y, R, and H are taken as 10, 6, and 1.00783 a
respectively. The model Y atom is electronically excited w
energy equal to 0.36 eV, and the equilibrium bond energ
for the RH and YH molecules are 3.9 and 4.3 eV, resp
tively. The zero point energies of RH and YH are 0.18 a
0.19 eV, respectively. The coupled potential energy surfa
are defined in the diabatic representation to have qua
tively similar shapes to those for the Br* 1H2 system.32 The
energy gap between the two potential energy surfacesU11

andU22 remains almost constant at 0.36 eV as Y approac
RH, and the diabatic couplingU12 is localized in the inter-
action region. Adiabatic potential energy surfaces were
tained by diagonalizing the diabatic potential energy mat
as described elsewhere.2,11,44

Because the diabatic coupling is nonzero only in the
gion where all atoms are interacting, the diabatic and ad
batic representations are the same in the asymptotic reg
If the classical minimum energy of the R1YH products is
defined as zero, we then obtain the values in Table I for
various vibronic thresholds. It is also of interest to give t
energies of a few rotationally excited states:

Y* 1RH~n50, j 51!, 0.945 eV,

R1YH~n851, j 8512!, 0.813 eV,

Y1RH~n851, j 953!, 0.954 eV,

Y1RH~n851, j 955!, 0.987 eV.

Each member of the family differs from the others on
in the magnitude of the diabatic coupling surface, and e
may be labeled by the maximum value of its diabatic co
pling U12

max. For the present work, we have extended t

TABLE I. Vibronic thresholds~eV! for the YRH test systems.

n Y* 1RH(n, j 50) Y1RH(n, j 50) R1YH(n, j 50)

0 0.942 0.582 0.185
1 1.292 0.932 0.543
2 1.624 1.264 0.886
3 1.940 1.580 1.211
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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YRH family of four surfaces (U12
max50.2, 0.10, 0.03, or 0.01

eV! to include a very weakly coupled system with the ma
mum diabatic couplingU12

max50.0001 eV. We will focus spe
cifically for the present work on the set of coupled poten
energy surfaces withU12

max50.0001 eV in order to demon
strate the efficiency of the army ants algorithm, although
also report some preliminary calculations withU12

max

50.2 eV.

V. FINAL STATE ANALYSIS

The final product analysis for army ants trajectories
quires an ensemble of trajectories, for which informati
about the final arrangement and the final weight is known
each trajectory. Each trajectory in the ensemble, denote
index i , finishes the simulation with some weightWi that is
the product of the weights assigned to it at every decis
point along the propagation of the trajectory. By using t
histogram method,3,27 each electronically nonadiabatic tra
jectory is also assigned valuesm ri for three of the applicable
final quantum numberm r , where m25n8, m35 j 8, m4

5n9, m55 j 9, and m1 is the final electronic-arrangemen
quantum numbera, which is assigned as 1 for Y* 1RH, 2
for R1YH, and 3 for Y1RH. Note thatm1i , m2i , andm3i

are assigned ifa52, andm1i , m4i , andm5i are assigned if
a53.

If the total number of trajectories isNtraj , then the prob-
ability of a given electronic arrangement is

Pa5
( i

NtrajWidm1ia

Wtot
, ~11!

where

Wtot5(
i

Ntraj

Wi . ~12!

We also labelP2 as PR (R denotes reaction! and P3 as PQ

(Q denotes quenching!. The total probability of an electroni
cally nonadiabatic outcome isPN and is defined in Eq.~10!.
The final quantum states of the diatomic products are ca
lated according to the following equations using the ene
nonconserving histogram method, as discussed elsewhe27

The first moments of the final vibrational and rotation
quantum numbersm r are given by

^m r&5
( i

Ntrajm ri Widm1iar

WtotPar

, ~13!

wherea25a352 anda45a553. Note thatPa is the mean
over all the trajectories, and̂m r& is the mean over the rel
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evant subset of trajectories. To estimate the sampling er
in all the above observable quantities, we use a new met
described in the following section.

VI. BOOTSTRAP RESAMPLING:
METHOD OF ERROR ANALYSIS

The bootstrap method64–66 of error analysis is a resam
pling technique that can be used to estimate the samp
distribution of any well-defined function of sampled data.
general, resampling techniques are widely used statis
tools that are favored by virtue of their robustness and s
plicity. In cases where there is no information about the u
derlying distribution of the sample and no analytical form
las are available, this method proves to be very useful.

In the army ants method, branching is a stochastic p
cess, but due to the fractional weight carried by the trajec
ries the usual Monte Carlo error formulas3 cannot be applied.
Error analysis was therefore carried out by the bootstrap
sampling method.

The bootstrap method was first introduced by Efron a
was named with the notion of pulling oneself out of the m
by one’s own bootstraps.64 In particular, in cases where th
knowledge of the distribution is lacking, the sample its
may be taken as the best guide to the sampling distribut
The bootstrap method is applicable to our problem beca
our sample is unbiased and also is uncorrelated. In the b
strap method, the initial sample is resampled by creat
large number of bootstrap samples. The bootstrap estima
procedure consists of the following steps:

~1! Take the original data set withN data points:
(x1 ,x2 ,...,xi ,...,xN) and call it B0 . Calculate the statistic o
interest, which in this example is the meanx̄.

~2! Draw a sample ofN data points at random ‘‘with
replacement’’ from the initial set B0 and name the new se
bootstrap sample 1 (B1). All data points for B1 are selected
from B0 at random, using a random number generator,
such a way that once a data point has been drawn its valu
recorded in B1 , and it is replaced back in B0 to assure that in
the next draw all the data points again have equal probab
of being drawn. It is therefore likely that some data points
the new set will occur more than once. Calculate the stati
of interest (x̄) for B1 just as it was done for B0 . Call thisx̄1 .

~3! Repeat, the second stepM times, whereM is a large
number, to produce B2 ,...,Bm ,...,BM . Calculate the statistic
of interest (x̄) for each of them. Label thesex̄m .

~4! Calculate the average value of the statistic of inter
over all the bootstrap cycles by
f
TABLE II. Results for anteater and army ants (h050) calculations using the FSTU¹V method, for the Y* 1RH (n50,j 50) system with a total energy o
1.10 eV and withU12

max50.2 eV using 100 000 trajectories.

Method h0 PR ^n8& ^ j 8& PQ ^n9& ^ j 9&

Anteatera ¯ (1.3860.03)31022 1.1160.02 12.860.13 (4.3960.07)31022 0.9860.01 6.3160.07
Army antsb 0.0 (1.4160.03)31022 1.1260.02 12.860.13 (4.4260.06)31022 0.9760.01 6.3060.07

aAnteater calculations using the original, unmodified method and the Monte Carlo error formula of Ref. 3.
bAnteater calculations were done using the army ants algorithm withh50. The errors were estimated using 10 000 bootstrap cycles.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 22 Ma
TABLE III. Bootstrap analysis resultsa for army ants calculations.b

Ntraj PR ^n8& ^ j 8& PQ ^n9& ^ j 9&

100 000 (1.3660.034)31028 1.3360.019 12.560.115 (3.2860.046)31028 1.1360.010 4.8360.071
200 000 (1.3460.023)31028 1.3060.014 12.760.09 (3.3160.031)31028 1.1460.007 4.8360.059
300 000 (1.3560.020)31028 1.3160.011 12.760.067 (3.3360.025)31028 1.1360.006 4.8460.041
400 000 (1.3660.019)31028 1.3160.008 12.660.051 (3.3060.021)31028 1.1360.006 4.8760.037

aError estimates were calculated using 10 000 bootstrap cycles.
bArmy ants calculations were performed in the fixed-h mode withh05131022 using the FSTU¹V method for
Y* 1RH (n50,j 50), for the total energy 1.10 eV withU12

max50.0001.
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mbootstrap5
(m51

M x̄m

M
. ~14!

~5! Calculate the standard deviation of the calcula
value of the statistic using

sbootstrap5A(m
M~ x̄m2mbootstrap!

2

M21
. ~15!

The bootstrap method is very general. We expect,
example, that the bootstrap method will be very useful
calculations employing smooth sampling methods,3 because
standard error formulas are not applicable to smooth s
pling results. In both histogram and smooth sampling cal
lations the final observables are weighted means, but
bootstrap analysis does not require this, and it can be use
estimate the sampling distribution of any well-defined fun
tion of the sample data.

VII. CALCULATIONS AND RESULTS

The semiclassical calculations were done using vers
7.0 of the nonadiabatic trajectory surface hopping co
NAT.68 Our first objective was to confirm that both antea
and army ants results converge to the same semiclas
result. Also, we wanted to compare the army ants boots
error estimates with the anteater error estimates that w
obtained using the analytical3 formula. Therefore, we applied
both the anteater and army ants sampling schemes to
YRH system with relatively strong couplingU12

max50.2 eV
for which anteater results have already been reported.53 Cal-
culations were performed using the FSTU¹V method for the
original, unmodified, anteater algorithm and for the n
army ants algorithm in the anteater limit in the fixedh
r 2004 to 160.94.96.172. Redistribution subject to AIP
d

r
r

-
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n
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implementation withh050; in both cases we propagate
100 000 trajectories, and we used the adiabatic represe
tion. The results obtained by both of the methods are sho
in Table II. The nonadiabatic probabilities,PR andPQ , with
their respective vibrational and rotational moments, sh
very good agreement between the methods. The error an
sis for the observable quantities in the army ants case
done by the bootstrap technique using 10 000 boots
cycles.~A study of convergence with respect to the numb
of bootstrap cycles is given in Appendix A.! The bootstrap
error estimates of army ants run, shown in Table II, ma
well with the anteater analytical error estimates. This co
firms that in the limit ofh050, the bootstrap method can b
successfully applied to obtain the same error estimates
from the analytical formula.

To check the bootstrap method for the army ants cal
lations for values ofh0 other than 0, we performed calcula
tions on larger sets of army ants trajectories for the optim
h0 value of 131022. The aim of this calculation was to
validate that the bootstrap method is applicable for the ar
ants algorithm. The error estimates are presented in Table
and it can be seen that in most cases the bootstrap e
estimates for the observable quantities decrease app
mately by the inverse of the square root of the number
trajectories used for the calculations, which is the Mon
Carlo result that is expected on general principles. This
ther validates the use of the bootstrap method for analyz
the results of army ants calculations.

To test the merit of the new algorithm we applied t
army ants algorithm to a system for which anteater calcu
tions are not computationally affordable. In particular, t
army ants algorithm was used for Y* 1RH (n50,j 50) with
TABLE IV. Results for Y* 1RH (n50,j 50) system for the total energy 1.10 eV withU12
max50.0001 eV in the fixed-h mode of army ants algorithm, for

100 000 trajectories.a

Method h0 PR ^n8& ^ j 8& PQ ^n9& ^ j 9&
Timeb

~h!

Quantum ¯ 1.2131028 0.90 11.6 3.3531028 0.93 3.28 ¯

Anteaterc 0.0 0d
¯ ¯ 0d

¯ ¯ 9.4
TFS2 1.031022 (1.3560.04)31028 1.3060.02 13.460.11 (3.5960.05)31028 1.1960.02 5.0360.07 10.2
FSTU2 1.031022 (1.3960.03)31028 1.2360.02 12.360.09 (3.3960.05)31028 1.0760.01 5.1760.09 9.9
FSTU1 1.031022 (1.3860.03)31028 1.2460.02 12.260.10 (3.3860.05)31028 1.0760.01 5.1760.09 10.0
FSTU¹V 1.031022 (1.3360.03)31028 1.3360.02 12.560.11 (3.2860.05)31028 1.1360.02 4.8360.07 10.0

aError estimates were calculated using 10 000 bootstrap cycles.
bOn four processors.
cAnteater calculations for 100 000 trajectories fail to show any statistics.
dLess than 1025
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE V. Results for calculations using FSTU¹V method for Y* 1RH (n50,j 50), for the scattering energy 1.10 eV withU12
max50.0001, using 100 000

trajectories for both modes of army ants algorithm.a

Mode
Input

parameter PR ^n8& ^ j 8& PQ ^n9& ^ j 9&
Timeb

~h!

Fixed-h 1.031022 (1.3360.03)31028 1.3360.02 12.560.11 (3.2860.05)31028 1.1360.02 4.8360.07 10.0
kc 7.9531012 (1.3460.03)31028 1.3460.02 12.360.11 (3.3460.05)31028 1.1560.01 4.6560.07 10.2

aError estimates were calculated using 10 000 bootstrap cycles.
bOn four processors.
cIn units of s21.
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a scattering energy of 1.1 eV and withU12
max50.0001 eV.

Table IV shows the results obtained and the computer t
taken for the calculations using TFS2, FSTU2, FSTU1,
and FSTU¹V method in the fixed-h mode of army ants and
a value ofh0 value of 131022. The criterion used for the
choice of h0 is discussed in Appendix B. The army an
results are very converged well for 100 000 trajectories.
contrast, the anteater calculations failed to provide any e
tronically nonadiabatic final states in 100 000 trajectori
The error estimates on the observable quantities, i.e.,PR ,
PQ , ^n8&, ^ j 8&, ^n9&, and ^ j 9& were calculated using th
bootstrap resampling technique described in Sec. VI. For
purpose of comparison the quantum mechanical scatte
results at scattering energy 1.10 eV are also shown
Table IV.

In order to demonstrate the alternativek mode imple-
mentation of the army ants algorithm, we performed
FSTU¹V calculations with same initial conditions as tho
for the fixed-h mode in Table V. We used a variable-step-s
Bulrisch–Stoer33,69 integrator, and the value of the input p
rameter wask57.9531012 s21, which was obtained using
Eq. ~8! with the optimum value ofhopt5131022 and an
average integrator time step,tavg51.26 fs ~obtained by tak-
ing an average over a small set of trajectories!. The results
for both fixed-h mode andk mode calculations are summa
rized in Table V. Both methods require about the same co
puter time and converge to the same results, therefore
firming that the two implementations can be us
interchangeably.

Since quantum mechanical scattering results someti
oscillate as a function of scattering energy,44 we carried out
quantum mechanical calculations at seven energies. Ap
Downloaded 22 Mar 2004 to 160.94.96.172. Redistribution subject to AIP
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dix C shows that the results vary systematically with ene
without significant oscillations so for testing the semiclas
cal methods we need not be concerned with oscillatio
Therefore, we compared the semiclassical army ants a
rithm results and quantum mechanical scattering calculat
at three different scattering energies centered at 1.10 eV
particular, for both methods, the results were obtained
Y* 1RH (n50,j 50) with U12

max50.0001 eV at three value
of the total energy, namely 1.07, 1.10, and 1.13 eV. The ar
ants calculations were performed using the FSTU¹V method
in the fixed-h mode withh0 equal to 131022. All quantum
mechanical calculations were obtained by the outgoing w
variational principle70–72 using version 18.8 of theVP com-
puter code.73 The calculations involve 18 934 basis functio
~13 884 square-integrable functions and 5050 non-squ
integrable functions! in 334 channels~73 channels corre-
sponding to Y* 1RH, 107 corresponding to Y1RH, and
154 corresponding to R1YH); other details of the calcula
tions have been reported earlier.44 The accurate quantum ca
culations are well converged to at least the number of s
nificant figures shown in the tables, as demonstrated by t
stability to increasing the number of basis functions a
channels in each arrangement and increasing the numb
quadrature points. The comparison of quantal and semic
sical results is presented in Table VI.

VIII. DISCUSSION

The results obtained by the army ants calculations in
cate a very significant improvement in efficiency as co
pared to the existing surface hopping algorithms. It w
found that 100 000 army ants trajectories running in para
TABLE VI. Results for quantum mechanical scattering and semiclassical army ants calculations for Y* 1RH (n50,j 50) with U12
max50.0001 eV. The results

are compared at the three energies and also averaged over three values of scattering energy.

Method Energy~eV! PR ^n8& ^ j 8& PQ ^n9& ^ j 9&

Quantum
1.07 8.6431029 1.01 11.4 2.8731028 0.97 2.24
1.10 1.2131028 0.90 11.6 3.3531028 0.93 3.28
1.13 1.3331028 0.78 12.4 3.2831028 0.90 3.60

Average 1.1331028 0.89 11.8 3.1631028 0.93 3.04

Army antsa

1.07 (1.1660.03)31028 1.4160.02 12.060.12 (3.6460.05)31028 1.1660.01 4.4860.06
1.10 (1.3360.03)31028 1.3360.02 12.560.11 (3.2860.05)31028 1.1360.02 4.8360.07
1.13 (1.2960.03)31028 1.4060.02 12.560.12 (3.0460.05)31028 1.1560.01 4.8460.08

Average (1.2660.03)31028 1.3860.02 12.360.12 (3.3260.05)31028 1.1560.01 4.7260.07

aCalculations were performed in the fixed-h mode of the army ants algorithm withh05131022 using the FSTU¹V method for 100 000 trajectories.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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on four 375 MHz Power 3 WinterHawk1 processors of IBM
SP supercomputer take about 10 h to complete. There
three slave processors running trajectories and one m
processor in control which is not load balanced; therefore
computer time is between 30 and 40 processor hours. Fo
purpose of demonstration we hypothetically assume pro
gating trajectories by the existing anteater and ants meth
and compare the time required for each of them to giv
converged result for the YRH system withU12

max

50.0001 eV. In the ants method a single initial trajecto
taking toNdec number of decision points equal to 900 resu
in 2900'10271 branches. In order to average over the init
conditions we will need a minimum of 500 trajectories whi
leads to an extraordinarily large number of resulta
branches, 500310271'5310273, each of which~on an aver-
age! would be integrated for half as long as an army ants
anteater trajectory. The time taken to complete this a
simulation is shown in Table VII. Consider now running an
eater trajectories for the system with the nonadiabatic pr
ability of the order of magnitude;1028. This also requires
a large number of trajectories because a single nonadia
event will be experienced in approximately 108 trajectories
and in order to get good statistics we would need a total o
least a hundred nonadiabatic events which leads to;1010

trajectories. ~Recall that we want enough reactive a
quenched trajectories to converge the quantum number
ments, i.e., averages of the classical analogs of the fina
brational and rotational quantum numbers.! The calculated
time required for this hypothetical simulation is also repor
in Table VII.

The huge computational requirements of the ante
(;106 h) and ants (;3310269 h) methods were an insupe

TABLE VII. Time required for calculations on Y* 1RH (n50,j 50), for
the scattering energy 1.10 eV withU12

max50.0001 eV using either the fixed-h
mode or thek mode implementation of army ants algorithm, and estima
time requirement to obtain similar converged results with the anteater
the ants methods.

Method

Number of trajectories
Time required

~h!Initial Final

Army antsa 105 105 ;10
Anteaterb 1010 1010 ;106

Antsc 500 5310273 ;3310269

aTime required to run in parallel on four 375 MHz Power 3 WinterHaw
1 processors on the IBM SP supercomputer.

bEstimated time required to finish the anteater calculations using the s
number of processors as in the army ants calculations.

cEstimated time required to finish the initial ants trajectories and all
resulting branches, using the same number and type of processors as
army ants calculations.
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able impediment to carrying out semiclassical trajectory s
face hopping calculations on weakly coupled systems.
contrast, the new and flexible army ants algorithm can
adapted to systems with any kind of coupling, ranging fro
weak to strong.

The availability of well converged surface hopping ca
culations for a system with such a small probability of ele
tronically nonadiabatic events allows us to test the semic
sical simulations in a new dynamical regime where they h
never before been able to be tested. Table VIII shows
mean unsigned relative errors. The average absolute err
the nonadiabatic reaction probability is only 15%, and tha
the nonreactive quenching probability is only 8%. The av
age errors in the moments range from 7% to 58%. Con
ering the highly quantal character of these weakly allow
processes, the semiclassical methods are surprisingly a
rate.

IX. CONCLUSIONS

The army ants algorithm is an efficient method for co
puting the probabilities of nonadiabatic events in wea
coupled systems. Since all trajectory surface hopping a
rithms, i.e., anteater, ants, and army ants, give the same
verged results in the limit of infinite sampling, one ma
choose the algorithm that is most efficient. The present st
shows that the army ants algorithm is useful and accurate
systems that are intractable by the two other sampling a
rithms that have been proposed.

The army ants algorithm successfully captures the m
desirable aspects of both the ants and anteater algorith
The new army ants algorithm retains the ants feature of
signing fractional weights to the daughter trajectories, an
also incorporates the stochastic nature of the anteater a
rithm. The method is designed in such a way that it can
applied to systems irrespective of the strength of the c
pling between the potential energy surfaces, thus providin
general algorithm for performing trajectory surface hoppi
calculations.

The present article also provides the first application
the bootstrap method for error estimation in molecular t
jectory calculations. The method is quite successful, an
should be useful for error estimation in general, not just
army ants calculations.

Finally, the new algorithm allows us to test the trajecto
surface hopping method for much weaker transition pr
abilities than has ever before been possible. For a trans
probability of the order 1028, the mean unsigned relativ
error in the six observables that were calculated is only 26

d
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e

e
the
ng
TABLE VIII. Mean unsigned relative errors~in %! for reaction probability, reactive moments, quenchi
probability, and quenching moments.

Cases PR ^n8& ^ j 8& PQ ^n9& ^ j 9&

All 6a 15 48 7 8 21 58

aResults are averaged over the four cases in Table IV and the three cases in Table VI~for a total of six cases
since FSTU¹V at 1.10 eV occurs in both tables!.
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TABLE IX. Convergence test with respect to number of bootstrap cycles. The army ants calculations were carried out in the fixed-h mode withh051.0
31022, using the FSTU¹V method, for Y* 1RH (n50,j 50), with scattering energy 1.10 eV andU12

max50.0001.a

Number of
bootstrap cycles PR ^n8& ^ j 8& PQ ^n9& ^ j 9&

Timeb

~min!

5 000 (1.3360.032)31028 1.3360.02 12.560.11 (3.2860.048)31028 1.1360.02 4.8360.08 5.3
10 000 (1.3360.034)31028 1.3360.02 12.560.11 (3.2860.046)31028 1.1360.02 4.8360.07 9.8
20 000 (1.3360.034)31028 1.3360.02 12.560.11 (3.2860.046)31028 1.1360.02 4.8360.07 21.2

a100 000 trajectories used for the bootstrap analysis.
bComputer time for the bootstrap analysis on a single processor.
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APPENDIX A: CONVERGENCE WITH RESPECT
TO NUMBER OF BOOTSTRAP CYCLES

The bootstrap method of error analysis resamples
original data set by randomly selecting data points from
original sample, with replacement, to generate a large n
ber of bootstrap cycles, as explained in Sec. VI. To determ
the number of bootstrap cycles required for the error anal
of the army ants runs, convergence studies of the error
mates with respect to the number of bootstrap cycles w
performed. Bootstrap analyses were carried out for vari
numbers of cycles using the results obtained by the FSTU¹V
method with the army ants algorithm in the fixed-h mode
with h0 equal to 131022 for Y* 1RH (n50,j 50) with
U12

max50.0001 eV at scattering energy 1.10 eV. Table
shows the values of the bootstrap averages and error
mates for 5000, 10 000, and 20 000 bootstrap cycles and
computer time taken by each of the runs. Notice that
computer times for analyses are less that 1% of the comp
time required to run the trajectories, which is between 30
40 processor hours for 105 trajectories. It was found tha
10 000 bootstrap cycles yield good convergence, and th
fore 10 000 bootstrap cycles are used for the bootstrap an
ses in this paper.
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APPENDIX B: CHOICE OF INPUT PARAMETER
FOR BRANCHING

In the fixed-h mode of the army ants algorithm, th
value of the input parameterh0 controls the number of
branching events that occur along each trajectory. T
amount of branching that is desired can depend upon
strength of the coupling between the potential energy s
faces. As mentioned in Sec. III, the value ofh0 can be any
number such that 0<h0<1, but the efficiency of the calcu
lation can depend strongly onh0 . An efficient value ofh0 is
one that requires the least number of trajectoriesNtraj to ob-
tain results for the observable quantitiesPa and^m r& that are
converged to same small errorsD« r . To determine the mos
efficient value ofh0 for the weakly coupled model system
studied here@specifically for Y* 1RH (n50,j 50) at scat-
tering energy 1.10 eV withU12

max50.0001 eV], calculations
were performed for a range ofh0 values using the FSTU¹V
method, as shown in Table X. The results for the probab
ties, i.e., PR , PQ , and for the moments, i.e.,̂n8&, ^ j 8&,
^n9&, and^ j 9&, along with the error estimates, are shown
Table X. Error analyses were carried out using the boots
method with 10 000 bootstrap cycles for eachh0 value.

With h05131024, good convergence was obtaine
with 500 000 trajectories, which is a fairly large number d
to the fact that at small values ofh0 the number of branching
events encountered by each trajectory is small. Sinceh0

5131024 provided the largest sampled space, we used
values in row 1 along with the Monte Carlo error formula
d

g

TABLE X. Effect of the parameterh0 in the fixed-h mode army ants algorithm calculations, for Y* 1RH (n50,j 50), with scattering energy 1.10 eV an
U12

max50.0001, using the FSTU¹V method.a

h0 Ntraj
b PR ^n8& ^ j 8& PQ ^n9& ^ j 9& Ntraj

P c Ntraj
M d

131024 500 000 (1.1660.101)31028 1.2460.05 13.160.33 (3.5160.121)31028 1.0460.02 5.4760.18 500 000 500 000
531024 300 000 (1.2360.091)31028 1.3060.05 13.260.29 (3.2360.110)31028 1.0560.02 5.1260.16 247 116 300 000
131023 200 000 (1.2160.092)31028 1.3360.05 12.860.27 (2.8360.111)31028 1.1060.02 5.2860.21 167 029 272 222
531023 100 000 (1.2560.045)31028 1.3060.03 13.060.16 (3.1260.057)31028 1.1360.01 5.1060.10 22 429 30 864
831023 100 000 (1.2860.034)31028 1.3260.02 12.560.12 (3.1860.048)31028 1.1560.01 4.6760.08 15 554 30 250
131022 100 000 (1.3360.034)31028 1.3360.02 12.560.11 (3.2860.046)31028 1.1360.01 4.8360.07 14 280 25 000
231022 150 000 (1.3660.022)31028 1.3260.01 12.460.07 (3.3160.032)31028 1.1760.01 4.3060.05 10 261 37 500
531022 400 000 (1.1960.021)31028 1.2460.01 11.960.08 (3.0860.033)31028 1.1660.01 4.5060.06 29 475 100 000
131021 500 000 (1.2960.032)31028 1.3160.06 12.160.11 (3.2160.033)31028 1.1360.02 4.7760.07 50 821 500 000

aError estimates were calculated using 10 000 bootstrap cycles.
bNumber of trajectories used for this row of results.
cMaximum of the two values of the number of trajectories required to convergePR andPQ to the same levels as row 1, as estimated by using Eq.~B1!.
dMaximum number of trajectories required for convergence of all moment quantities (^n8&,^ j 8&,^n9&, and^ j 9&) to the levels of row 1, as estimated by usin
Eq. ~B1!.
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TABLE XI. Results for quantum mechanical calculations as a function of scattering energy for the
condition Y* 1RH (n50,j 50) with U12

max50.0001 eV.

Energy~eV! PR ^n8& ^ j 8& PQ ^n9& ^ j 9&

1.07 8.6431029 1.01 11.4 2.8731028 0.97 2.24
1.08 8.6331029 0.80 12.5 3.0031028 0.95 2.52
1.09 9.7731029 0.85 12.1 3.2531028 0.93 3.00
1.10 1.2131028 0.90 11.6 3.3531028 0.93 3.28
1.11 1.3231028 0.83 11.9 3.3231028 0.91 3.54
1.12 1.3231028 0.77 12.3 3.2931028 0.90 3.61
1.13 1.3331028 0.78 12.4 3.2831028 0.90 3.60

Average 1.1231028 0.85 12.0 3.1931028 0.93 3.11
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ANtraj

~B1!

to estimate the number of trajectories needed to obtain th
least as small as in row 1 forPR andPQ , and the larger of
the two values is listed asNtraj

P in Table X. Similarly, the
maximum value of the estimated number of trajector
needed for good convergence of~at least as good as row 1!
^n8&, ^ j 8&, ^n9&, and^ j 9& is listed asNtraj

M in Table X. From
Table X, it can be concluded that the least number of tra
tories required to obtain the same relative errors as obta
in the run with 500 000 trajectories andh05131024 is ob-
tained usingh05231022 for the probabilities and using
h05131022 for the moments. Since usingh05131022

performs best on average for both probabilities and m
ments, it was concluded that this is the most efficienth0

value, that is,hopt5131022. With h0 equal to 131022,
only 25 000 trajectories are required to obtain good conv
gence.

APPENDIX C: QUANTUM MECHANICAL
SCATTERING CALCULATIONS

Quantum mechanical scattering calculations for Y*
1RH (n50,j 50) with U12

max50.0001 eV were performed a
seven different values of the total energy centered at 1.10
as shown in Table XI. The average values for the observa
quantities over the entire set of scattering energies are
shown in Table XI.
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