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We report quantum mechanical calculations on a one-dimensional model of a chemical reaction with an
electronically excited exciplex funnel over the saddle point to study the competition between direct reÑection
from the upper diabat and metastable trapping (resonances). Particular emphasis is placed on the e†ect of the
funnel on transition probabilities and delay times as a function of energy and as a function of the magnitude of
the energy gap at the saddle point. Quantum dynamics calculations of energy-dependent transition
probabilities for a series of energy gaps reveal a regime where the main e†ect is diabatic reÑectivity in direct,
short-lived collisions and another regime where the main e†ect is a series of collisional resonances.

I Introduction
Our fundamental understanding of electronically non-
adiabatic reactions, i.e., those occurring on coupled potential
energy surfaces, is less fully developed than the theory of elec-
tronically adiabatic reactions occurring on a single surface.
Electronically nonadiabatic reactions are often studied by
photochemistry (electronically excited reactants) or chemilu-
minescence (electronically excited products). The study of such
reactions by simulations involving converged quantum
dynamics has become feasible in recent years.1h4 An inter-
esting phenomenon about which such calculations can
provide new insight is the e†ect of a funnel5,6 in a low-energy
excited surface on the reaction probability of a ground-
electronic-state reaction4 or inelastic collision.7 A particularly
interesting case is where the minimum of the excited surface
occurs at a geometry similar to the ground-state saddle point,
a situation that might occur when the ground-state saddle
point can be modeled as an avoided crossing of two diabatic
valence bond conÐgurations.4,8,9 For example, the saddle
point of A ] BC] AB] C results from the interaction of the
conÐgurations and/A /B /C(ab[ ba)a /A /B/C a(ab[ ba),
where is an atomic orbital on center X. The resulting/Xenergy gap between the adiabatic potential energy surfaces
may be small if the rearrangement is disallowed by orbital
symmetry10 or orbital phase11 considerations. If there is a
small gap, a system approaching the saddle point on the lower
surface may make a transition to the upper surface and reÑect,
resulting in a lower transmission coefficient. This has been
postulated to occur in both electron transfer reactions12 and
WoodwardÈHo†mann forbidden rearrangements13 (the latter
is a speciÐc case where both surfaces are excited, but the idea
is the same). For weak adiabatic coupling, a system, once
excited, may actually be trapped in the funnel, forming a
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metastable system that can be called an exciplex funnel
resonance7 if it decays before a third-body collision or an exci-
plex funnel intermediate if it lives long enough to su†er colli-
sions. So far there is no experimental evidence for funnel
exciplexes associated with saddle point transit, but exciplex
funnel resonances have been observed spectroscopically as
predissociating states.14

Dating back to the Ðrst decade of quantum mechanics,
there have been many studies of quantum mechanical nuclear
motion in two coupled electronic states, especially by employ-
ing analytic and semiclassical methods for the analysis of scat-
tering by coupled one-dimensional potential curves.15 We
draw the readerÏs attention to several studies of reduced-
dimensionality systems that are especially relevant to the
problem of a funnel over a saddle point. Baer and Child16
studied resonances in one-dimensional model systems with an
excited-state minimum over a ground-state barrier. Shin and
Light17 studied transmission probabilities in one-dimensional
barrier problems in which an excited state has a minimum
over the saddle point, and they also extended their study to a
collinear three-body model with the lower surface similar to

and again an excited-state minimum over the saddleH] H2point. Qi and Bowman18 extended the study of the one-
dimensional model system of Shin and Light to higher ener-
gies and observed funnel resonances for several values of the
parameters. They found that making the region of strong elec-
tronic coupling narrower (in the reaction coordinate) or
making the gap (in energy) smaller led to broader resonances.
Zhu and Nakamura derived semiclassical formulas for the
scattering matrix of two-state linear curve-crossing
problems19 as well as general two-state20 and general multi-
state21 curve-crossing problems. An especially interesting case
they treated is the two-state case of a one-dimensional excited
adiabatic potential having a minimum lying over the
maximum of a lower adiabatic potential energy curve ; they
call this the nonadiabatic tunneling case.19h22

The work reported in the present paper was motivated by
the observation of exciplex funnel resonances in three-
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dimensional three-body model systems with the lower surface
similar to and an excited-state surface having aCl] H2minimum over the saddle point.4 This may be called the
avoided-crossing saddle-point case, or it may be called the
nonadiabatic tunneling case, in analogy to the one-
dimensional case treated by Zhu and Nakamura.19h22 In
order to better understand the quantum mechanical conse-
quences of a funnel situated vertically over a saddle point, in
this paper we will consider a sequence of one-dimensional
model systems consisting of a lower adiabatic potential curve
with a barrier, an upper adiabatic potential curve with a
minimum representing the exciplex (excited-state funnel over
the ground-state saddle point), and various magnitudes of the
minimum adiabatic gap. We will systematically vary the
parameters such that the gap over the saddle point takesEgapon values in the range from 10 to 400 cm~1 (1.2È50 meV). We
will then calculate accurate transmission probabilities, delay
time matrix elements and lifetime matrix elements as functions
of the total energy E of the collision. We will also calculate the
complex energies of the poles of the scattering S matrix rep-
resenting funnel resonances7 as well as their partial widths.
The e†ect of barrier resonances23,24 will also be considered.

Section II presents the fundamental theory for scattering by
coupled potential energy curves. Section III presents the com-
putational methods used for calculating transmission prob-
abilities, delay times and lifetime matrix elements as well as
for locating S matrix poles. Section IV presents the model
potential curves. Section V presents a discussion of the results
of scattering calculations and resonance pole determinations
for a range of energy gaps. Section VI contains concluding
remarks.

II Theory
We consider the case of a particle moving in one dimension x
governed by a 2] 2 potential matrix. Our calculations are
carried out in a diabatic representation in which the potential
energy matrix is given by

V \
AV11(x) V12(x)

V21(x) V22(x)

B
(1)

where and are called the diabatic potentials, andV11 V22 V12is called the diabatic coupling and is equal to by hermiti-V21city. The two-state problem has four channels labelled as
follows : (1) state 1 at x \ ]O, (2) state 1 at x \ [O, (3) state
2 at x \ ]O, and (4) state 2 at x \ [O. The Schro� dinger
equation for this problem is

d2Y
dx2

]
2k
+2

(EI[V)Y(x)\ 0 (2)

where k is the reduced mass, E is the scattering energy, I is the
identity matrix, and Y is the column vector solution

Y \
AY1
Y2

B
(3)

Let

e1\ V11(x \ ]O) (4a)

e2\ V11(x \ [O) (4b)

e3\ V22(x \ ]O) (4c)

and

e4\ V22(x \ [O) (4d)

We consider the curve-crossing case where ande1 ¹ E¹ e3In this case the boundary conditions aree4 ¹ E¹ e2 .

Y1(x) D

x?~=

1

Jk2
[A~~exp([ k2x) ] A~`

exp(k2x)] (5a)

Y1(x) D

x?`=

1

Jk1
[A

`~exp([ik1 x) ] A
``

exp(ik1x)] (5b)

Y2(x) D

x?~=

1

Jk4
[B~~exp([ik4x) ] B~`

exp(ik4x)] (5c)

Y2(x) D

x`=

1

Jk3
[B

`~exp([k3 x) ] B
``

exp(k3 x)] (5d)

where the Ðrst subscript of each coefficient refers to the
boundary (x ] ^O), the second subscript refers to a positive
or negative exponent in the exponential, and the asymptotic
wavenumbers are given by

k
n
\ J2k(E[ e

n
)/+ (6a)

for open channels 1 and 4, and

k
n
\ J2k(e

n
[ E)/+ (6b)

for closed channels 2 and 3. In addition to the physical, real
values of E, we will consider the analytic continuation to
complex E. We will consider the case where ande4 \ 0 e4\

Then physical scattering energies have E[ 0, and reso-e1.nances lie in the fourth quadrant of the complex energy plane.
When E is real, is taken as the positive root ; when E is ink

nthe fourth quadrant, then and are in the fourth quadrantk1 k4and and are in the Ðrst quadrant.k2 k3Since only two of the channels are open, we focus on the
2 ] 2 unitary scattering matrix S, which relates the coeffi-
cients of the outgoing waves to the coefficients of the incoming
waves :

AA
``

B~~

B
\
AS11
S41

S14
S44

BAA
`~

B~`

B
(7)

Note that in the S matrix, the subscripts on the matrix ele-
ments do not indicate the row and column locations but
rather are indices for channel designations. The transition
probability for the transition from channel n to channel m is
given by25

P
nm

\ o S
mn

o2 (8)

The Schro� dinger eqn. (2) can be solved at complex, as well
as real, energies E. Quantum mechanical resonances corre-
spond to poles in the S matrix at complex energies26

E1 \ ER [ iC/2 (9)

where is the real part of the resonance energy and C is theERresonance width (real and positive by deÐnition). For each
resonance energy, all matrix elements have poles atS

mn
E\ E1 .

We search for poles in S by directly solving eqn. (2) at
complex energies, as was done previously.24,27

To characterize a resonance, we use the lifetime matrix Q
and the delay-time matrix Dt, whose elements are given by28

Q
nm

\ i+ ;
l

S
nl
(dS

ml
* /dE) (10)

and

*t
nm

\ Im
A
+(S

mn
)~1

dS
mn

dE
B

(11)

The eigenvalues of the lifetime matrix can be associatedq
nnwith the exponental decay times of (long-lived) metastable

states when the values of are large.28 The channel-to-q
nn
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channel delay time represents the time di†erence between*t
nma pulse being injected into channel n and a pulse appearing in

channel m, relative to the same time di†erence in the absence
of a potential. At real energies E in the proximity of theER ,
scattered particle will experience a delay time, which is large if
the resonance width C is small.

In the vicinity of an isolated resonance, the scattering
matrix element can be written26,29S

mn

S
mn

(E)\ S
mn
0 (E)[ i

c
m

c
n

E[ ER ] iC/2
(12)

where is the nonresonant background contribution toS
mn
0 (E)

the scattering matrix element, and is the partial widthc
namplitude for channel n. In the case of an isolated, narrow

resonance (INR) for which and are independent ofc
n
, c

m
, S

mn
0

energy and is a negligible contributor to one canS
mn
0 S

mn
,

show that the delay time has a maximum at at whichE\ ER ,

*t
nm

C\ 2+ (13)

In addition, for a single-channel mechanical system having an
INR centered at the 1] 1 collision matrix Q is given by28ER ,

Q(ER)C\ 4+ (14)

The ““partial widthÏÏ for either entering the metastableC
nresonance from channel n or leaving the resonance to go into

channel n is given by For an INR, it has been showno c
n
o2.

that26,29

;
n

C
n
\ C (15)

and practical experience shows that this equality is a sensitive
test of whether a resonance may be treated as an INR.30

III Computational methods
We seek the solution Y to eqn. (2) subject to the boundary
conditions [eqn. (5a)È(5d)]. We consider problems where the
diabatic potentials decay to their asymptotic values exponen-
tially fast, and the diabatic coupling decays to zero exponen-
tially. In such cases it is reasonable to assume that eqn. (5b)
and (5d) hold to within an acceptable numerical accuracy for

and that eqn. (5a) and (5c) hold to within acceptablex ºx2 ,
numerical accuracy for where and are positivex ¹[x1, x1 x2numbers. All numerical results must be converged with respect
to increasing andx1 x2 .

We consider the case in which channel 1 is the incident
channel ; therefore, We also require thatB~`

\ 0. Y1([x1)and be well-behaved ; therefore, TheY2(x2) A~~\ B
``

\ 0.
boundary conditions therefore become

Y D

x?~=a
1

Jk2
[A~`

exp(k2 x)]

1

Jk4
[B~~exp([ik4 x)]b (16a)

Y D

x?`= a
1

Jk1
[A

`~exp([ik1x)] A
``

exp(ik1x)]

1

Jk3
[B

`~exp([k3x)] b (16b)

Since the ratio of the coefficents and is as yetA~`
B~~undetermined, we do not know a priori the solution vector Y

at Therefore, we can not directly propagate Y fromx \ [x1.to Instead, we consider two linearly independent[x1 x2 .

solutions, and which satisfy the boundary conditionsY
a

Y
b
,

Y
a

D

x?~=

1 1

Jk2
exp(k2 x)

0

2
(17a)

Y
b

D

x?~=

1 0

1

Jk4
[exp([ik4 x)]

2
(17b)

The desired solution is

Y \ A~`
Y

a
] B~~Y

b
(18)

which has the correct x ] [ O asymptotic behavior of eqn.
(16a). The linearly independent solutions and areY

a
Y

bnumerically propagated from to with stepsizex \[x1 x \x2*x using a numerical integrator.
To ensure that the two numerical solutions remain linearly

independent, we invoke the GramÈSchmidt orthonormaliza-
tion procedure31 on the 4 ] 2 matrix

Z(x, x ] *x) \
AY

a
(x ] *x)

Y
a
(x)

Y
b
(x ] *x)

Y
b
(x)

B
(19)

in which the Ðrst column vector of Z is normalized, and the
second column vector is made orthogonal to the Ðrst normal-
ized column vector and then is itself normalized.

The x ] ] O asymptotic forms of the two solutions can be
written in general as

Y
a

D

x?`=

a
1

Jk1
[a

`~(1)exp([ik1x) ] a
``

(1)exp(ik1x)]

1

Jk3
[b

`~(1)exp([k3 x) ] b
``

(1)exp(k3x)]b (20a)

Y
b

D

x?`=

a
1

Jk1
[a

`~(2)exp([ik1x) ] a
``

(2)exp(ik1x)]

1

Jk3
[b

`~(2)exp([k3x) ] b
``

(2)exp(k3 x)]b (20b)

where (1) and (2) on the coefficients correspond to the Ðrst and
second linearly independent solutions, respectively. By using
the values of and at both andY

a
Y

b
x \ x2 x \x2[ *x

obtained via numerical integration, we can obtain the eight
coefficients shown in eqn. (20a)È(20b). The desired linear com-
bination, eqn. (18), has the x ] ] O asymptotic form

1

Jk1
[(A~`

a
`~(1)] B~~a

`~(2))e~ik1x

Y Da ] (A~`
a
``

(1)] B~~a
``

(2))eik1x]b (21)

1

Jk3
[(A~`

b
`~(1)] B~~b

`~(2))e~k3x

] (A~`
b
``

(1)] B~~b
``

(2))ek3x]

which implies that [see eqn. (16b)]

A
`~\ A~`

a
`~(1)] B~~a

`~(2) (22a)

A
``

\ A~`
a
``

(1)] B~~a
``

(2) (22b)

B
`~\ A~`

b
`~(1)] B~~b

`~(2) (22c)

0 \ A~`
b
``

(1)] B~~b
``

(2) (22d)
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From eqn. (22d), we compute the ratio, R, deÐned as

R\
B~~
A~`

\ [
b
``

(1)

b
``

(2)
(23)

From R we can determine the matrix elements for scat-S
m1tering from incident channel 1. In particular, the scattering

matrix elements are given by

S11\
A

``
A

`~
\

A~`
a
``

(1)] B~~a
``

(2)

A~`
a
`~(1)] B~~a

`~(2)

\
a
``

(1)] Ra
``

(2)

a
`~(1)] Ra

`~(2)
(24a)

S41\
B~~
A

`~
\

B~~
A~`

a
`~(1)] B~~a

`~(2)

\
R

a
`~(1)] Ra

`~(2)
(24b)

Scattering matrix elements are obtained using the matrix
Numerov integrator32 which propagates both linearly inde-
pendent solutions and simultaneously ; we typically useY

a
Y

band *x \ 5.0] 10~4 The values ofx1 \ x2 \ 12 a0 a0 . x1and required for convergence are reduced to 12 by usingx2 a0the local wavenumbers, andJ2k[E[V (x)] J2k[V (x)[E],
rather than the asymptotic wavenumbers [eqn. (6a)È(6b)] in
the boundary conditions.

The GramÈSchmidt procedure is performed at every inte-
gration point ; i.e. for all matrices Z, including Z([x1,but excluding By maintaining[x1 ] *x) Z(x2 [ *x, x2).linear independence of the two propagated solution vectors,
we are able to obtain matrix elements converged to betterS11than 0.1%. However, because of the GramÈSchmidt pro-
cedure, we can no longer directly compare the magnitudes of
the solution vectors at x \ ]O to those at x \ [O, and
therefore, attempts to get converged values of via eqn.S41(24b) were not successful. Therefore, another procedure is
used, as described below.

Before we discuss the procedure for determining weS41,discuss the calculation of (since, as we will see, it is neededS44for computing To compute we use exactly the sameS41). S44 ,
algorithm as described in this section for computing butS11instead of the diabatic potential matrix V of eqn. (1), we use
the modiÐed potential matrix given byVmod

Vmod(x)\
AV22([x) V12([x)

V12([x) V11([x)

B
(25)

When the Schro� dinger eqn. (2) is solved with the potential
the quantity computed by eqn. (24a) will beVmod , S44 .

Although the matrix elements and are not, in general,S11 S44equal, the symmetry of the scattering matrix requires that
which was conÐrmed numerically using the com-P11\ P44 ,

puted values of andS11 S44 .
By using the fact that S is symmetric and unitary, it can be

shown that, to within a multiplicative factor of ^1,

S41\ FG] iF (26)

where

F\ ^ J(1[ P11)/(1 ] G2) (27a)

G\ [
AIm(S11)] Im(S44)
Re(S11)] Re(S44)

B
(27b)

Therefore, is known to within a real phase factor. TheS41phase ambiguity is resolved in the following manner. First, the
scattering matrix element and its phase were computedS41using the positive root in eqn. (27a). Then we empirically
determined a triad of energies for which the phase ofE1,2,3changed from slightly less than n at and to slightlyS41 E1 E2greater than zero at Over the entire energy range studied,E3 .

this situation occurred three times for each potential matrix V.
Each time this occurred, we Ðxed the phase of by multi-S41plying the matrix element by [1 for all energies TheEº E3 .
second modiÐcation needed occurred in the vicinity of the
resonance energy Since, as we will discuss below, goesER . P14through a zero at there must be a simultaneous signE\ ER ,
change in both the real and imaginary components of S41(E)
as we traverse the resonance energy. Having already found ERfrom analyses of the poles of and we know preciselyS11 S44 ,
where the simultaneous sign changes in the real and imagin-
ary parts of are required. By taking we nowS41 S14\ S41,have the complete S matrix.

The computational program for numerically determining
was tested with the model potentials from ref. 18. TheS11(E)

reaction probabilities and resonance energies computed via
this program are in agreement with the results of that refer-
ence.

All the dynamical quantities of interest are computed from
the S matrix. Scattering calculations are performed at 54 001
energies equally spaced from 0.006 (0.16 eV) to 0.06 (1.6Eh EheV), the energy interval being *E\ 10~6 (0.027 meV).Eh(Note that hartree.) Transition probabilities areEh\ 1 P

nmcomputed at real energies E using eqn. (8). The small magni-
tude of *E is necessary to ensure the accuracy of Ðnite di†er-
ence calculations of the derivatives of the scattering matrix
elements needed in eqn. (10) and (11) for the matrices Q and
*t. Delay times are determined at real energies as pre-*t

nmviously described.24 In particular, scattering matrix elements
are Ðt at three consecutive energy values to the form

S
mn

(E) \ (c1 ] c2 E] c3 E2)

]exp[i(c4 ] c5 E] c6E2)] (28)

where are real Ðtting parameters. Then the delay time at thec
kcentral energy of the triad is obtained by

*t
nm

(E) \ +(c5] 2c6E) (29)

For the lifetime matrix elements, in order to numerically
obtain a hermitian matrix Q and real eigenvalues weq

nn
,

moved beyond a three-point Ðt of scattering matrix elements
to a Ðve-point Ðt, yielding more accurate numerical deriv-
atives of S. The derivative of the scattering matrix element at
the central energy of the pentad is given by

dS
ml
*

dE
(E) \

S
ml
* (E[2*E)[8S

ml
* (E[ *E)

]8S
ml
* (E]*E)[S

ml
* (E]2*E)

12*E
(30)

The eigenvalues are easily obtained from the well-knownq
nnanalytical formula for the eigenvalues of a 2] 2 matrix. Since

the eigenvalues of Q should be real, as a measure of the degree
of hermiticity of the numerical lifetime matrix, we computed
from the ratio of its imaginary to real part,q

nn
(E)

For the energy range from 0.01 (0.27 eV) toIm(q
nn

)/Re(q
nn

). Eh0.06 (1.6 eV), in which two funnel resonances are found andEhin which all local maxima in appear, the maximumqnn(E)
value of this ratio is 3 ] 10~6.

Poles of the scattering matrix corresponding to resonances
are located by numerically searching for zeroes in and1/S11at complex scattering energies. This procedure has been1/S44previously described.24 In brief, we use a modiÐed form of the
International Mathematical and Statistical Library subroutine
ZANLY, which utilizes MullerÏs method33 to quadratically
interpolate among three energy values to get the next estimate
of the root. The root-Ðnding algorithm is stopped when the
relative di†erence between two approximate successive roots
is within a parameter ERRREL, which we typically set to
10~10. The values of C and are converged with respect toERnumerical integration parameters to at least eight signiÐcant
Ðgures.
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To conÐrm that indeed we have found Ðrst order poles of
the scattering matrix and to determine partial widths of the
resonances, we compute for many complex energies(E[E1 )S

mnin the vicinity of For an isolated resonance, at complexE1 .
energies very close to (such that the background contribu-E1
tion is negligible), we see from eqn. (12) thatS

mn
0

(E[E1 )S
mn

(E)\ [ic
m

c
n

(31)

Therefore, for Ðrst order poles and E close to the resonance
energy, the above product should be approximately constant
and should be equal to the residue at the pole. For all the
funnel resonances identiÐed in the present study, we were able
to Ðnd square paths in the complex energy plane around forE1
which the calculated value of the product is constant to at
least four signiÐcant Ðgures. From the residues for S11 [S44],the partial width amplitudes and partial widthsc1 [c4] C1of each resonance are determined.[C4]

IV Potentials
We study the two-state chemical reaction whose ground state
is similar to and for which accurate three-Cl] H2dimensional quantum mechanical calculations on coupled dia-
batic potential energy surfaces have recently been performed.4
In the three-dimensional studies, the lower adiabatic surface
was very similar to the G3 potential energy surface ;9 the
excited adiabatic surface had a broad minimum (a funnel) in
the saddle point region of the lower surface. The scattering
calculations utilized diabatic surfaces and, in particular, Ðve
sets of coupled diabats were used, such that the gap (i.e., the
minimum separation) of the corresponding adiabats ranged
from 10 to 400 cm~1. The Ðve surface sets were designated
IÈV, and we will use the same designations here.

In our study, we use one-dimensional potential functions to
model the three-dimensional diabatic surfaces along the col-
linear minimum enegy path (MEP). The variable x represents
the reaction coordinate with x \ 0 at the saddle point of the
ground-state adiabat. Fig. 1(a), (b) and (c) show, respectively,
the two adiabats, the two diabats, and the diabatic coupling
along the MEP for case V of ref. 4 in which the adiabatic
energy gap was 400 cm~1. We describe below the one-
dimensional functional forms we use to represent the poten-
tials in Fig. 1 (as well as those for cases IÈIV).

The potential energy function for the ground-state ClH2adiabatic curve is taken to be an unsymmetric Eckart function
of the form

V 1ad(x)\
V1eb1(x~x1)

(1 ] eb1(x~x1))2
]

V2 eb1(x~x1)

(1] eb1(x~x1))
(32)

and the values of the numerical parameters, given in Table 1,
are chosen so that the asymptotes match those of the ClH2G3 surface and the potential has a maximum value of

(0.34244067 eV or 2761.9693 cm~1)V 1ad, max\ 0.012584458 Ehat x \ 0 in agreement with the value along the MEP of the
G3 surface. The potential is shown in Fig. 2. Note that the

Table 1 Values (in atomic units) of parameters in potential energy
functionsa

For V 1ad :
V1\ 4.0167971782296] 10~2
b1\ 5.5
x1\ [4.364721325998] 10~2
V2\ 4.79833373] 10~3

For V 2ad :
Vasym\ 3.61196179] 10~1

V3\ 9.8998917754] 10~1
b2\ 4.9818195151
x2\ 5.0012635420] 10~2
V4\ 1.122019] 10~2
V5\ 7.9781762366] 10~1
b3\ 2.3471780470
x3\ [7.6042693477] 10~1

For V12 :
b4\ 1.0487590725
x4\ 8.1790045179] 10~1

a 1 eV \ 219474.63 cm~1Eh \ 27.2113961

x ] [O asymptote of sets the zero of energy for the scat-V 1adtering calculations.
The potential energy function for the excited-state ClH2adiabatic curve is of the form

V 2ad(x) \ Vasym[
V3 eb2(x~x2)

(1 ] eb2(x~x2))2
[

V4 eb2(x~x2)
(1 ] eb2(x~x2))

[
V 5 eb3(x~x3)

(1 ] eb3(x~x3))2
[ Vlower (33)

with the values of the numerical parameters also given in
Table 1. When this potential function, also shownVlower\ 0,
in Fig. 2, is representative of the upper adiabat for case V of
ref. 4 and it has asymptotes of at x \ [O andVasym Vasymat x \ ]O. The potential of eqn. (33) has a minimum[V 4at x \ 0 which, depending on the value of can rangeVlower ,from 10 to 400 cm~1 greater than the maximum ofV 1ad, max,
the ground-state adiabat. The values of and the corre-Vlowersponding gaps between the saddle point maximum in andV 1adthe funnel minimum in are given in Table 2. As seen, weV 2adhave successfully provided one-dimensional potential func-
tions that model the three-dimensional potential energy sur-
faces of ref. 4 along the MEP. The case labels in Table 2

Table 2 Case labels, values and adiabatic gapsVlower
Case Vlower/Eh Egap/cm~1

I 1.777] 10~3 10.99
II 1.367] 10~3 100.97
III 9.11267 ] 10~4 200.99
IV 4.5563] 10~4 300.99
V 0 400.99

Fig. 1 Energies of the potential surfaces along the minimum energy path for case V of ref. 4. (a) Ground- and excited-state adiabaticClH2potentials ; (b) diabatic potentials ; (c) diabatic coupling.
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Fig. 2 One-dimensional adiabatic potentials and for case VV 1ad V 2ad(in which the gap is 400 cm~1).

Fig. 3 One-dimensional diabatic coupling used for all cases inV12the present study.

Fig. 4 One-dimensional diabatic potentials (solid curve) andV11 V22(dotted curve) for case V.

Fig. 5 Same as Fig. 2 but for case I (in which the gap is 10 cm~1).

Fig. 6 Same as Fig. 4 but for case I.

follow those used in that earlier reference.
For the diabatic coupling, we use the functional form17,18

V12(x) \ [Jf (1 [ f )(V 2ad[ V 1ad) (34)

where

f (x) \ 12[1[ tanh(b4(x [ x4))] (35)

with the numerical parameters given in Table 1. The coupling
is shown in Fig. 3. The corresponding diabatic potential
energy functions are then given by

V11(x) \ (1 [ f )V 1ad ] f V 2ad (36a)

V22(x) \ f V 1ad ] (1 [ f )V 2ad (36b)

Fig. 4 shows the two diabatic curves for case V.
For all Ðve cases (IÈV), the same diabatic coupling andV12ground-state adiabat are employed in the scattering calcu-V 1adlations ; and vary from case to case depending on theV11 V22value of chosen for The adiabatic and diabaticVlower V 2ad(x).

potential curves for case I are depicted in Fig. 5 and 6, respec-
tively.

We note here in passing that attempts to Ðrst Ðnd simple
functional forms for the diabatic potential curves of ref.ClH24 were unsuccessful in that they did not yield adiabatic poten-
tials that are smooth. Therefore, we Ðt the adiabats as above
and then using the Ðt for the diabatic coupling, we imme-
diately obtained the diabats via eqn. (36a)È(36b).

V Results and discussion
The Schro� dinger eqn. (2) is solved in the diabatic basis using a
reduced mass of 3474.057 corresponding to Scat-me 35ClH2 .
tering calculations are performed at real energies in the range
from 0.16 to 1.6 eV. The three-dimensional calculations of ref.
4 considered energies from 0.4 to 1.0 eV and characterized one
funnel resonance. By extending the range of energies, we will
locate two funnel resonances in the one-dimensional calcu-
lations.

Transition probabilities are shown in Fig. 7(a)P11\ P44and (b) for cases I and V, respectively. (It is not necessary to
show Delay times are shown inP14\ P41\ 1 [ P11.) *tnmFig. 8 and 9 for these two cases as well. Eigenvalues of theq

nnQ matrix as well as the trace of Q are shown in Fig. 10 and 11
for these same cases. Results for cases IIÈIV are similar and,
therefore, are not plotted.

All of the delay time curves show three peaks ; in Table 3,
we give the values of the local maxima in and the corre-*t

nmsponding energies. Similarly, all of the plots of the trace of the
Q matrices have three peaks. In Table 4, we give the values of
the local maxima in Tr(Q) and the energies, called atEmax,which these maxima occur ; we also give the individual values
of the eigenvalues at these energies.
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Fig. 7 Transition probability as a function of scattering energyP11for (a) case I and (b) case V.

For each of the Ðve cases IÈV, we have found and charac-
terized two resonances by performing scattering calculations
at complex energies. We will denote the resonance with the
lower (higher) value of as funnel resonance 1(2). In Table 5,ERwe present the resonance parameters and C, as well as theERpartial widths and The value of is given withC1 C4 . ER

Table 3 Local maxima in the delay times at energies*t
nm

Emaxnm

Emax11 / *t11/ Emax14 / *t14/ Emax44 / *t44/Case eV fs eV fs eV fs

I 0.33467 9.087 0.33239 9.033 0.32991 8.990
0.71280 513.07 0.71280 514.01 0.71280 514.95
1.4186 388.66 1.4186 388.41 1.4186 388.15

II 0.33465 9.087 0.33233 9.032 0.32988 8.990
0.72399 520.80 0.72399 521.68 0.72399 522.55
1.4298 395.17 1.4298 394.92 1.4298 394.66

III 0.33465 9.085 0.33236 9.032 0.32991 8.990
0.73639 529.84 0.73639 530.65 0.73639 531.47
1.4422 402.58 1.4422 402.32 1.4422 402.06

IV 0.33467 9.085 0.33233 9.031 0.32991 8.990
0.74883 539.35 0.74883 540.11 0.74883 540.86
1.4546 410.17 1.4546 409.92 1.4546 409.66

V 0.33467 9.084 0.33236 9.031 0.32994 8.990
0.76124 549.24 0.76124 549.94 0.76124 550.64
1.4670 417.97 1.4670 417.71 1.4670 417.52

Table 4 Local maxima in the trace of Q at energies and eigen-E'values at Emax
E'/ Trace Q/ q11/ q22/Case eV fs fs fs

I 0.33239 18.066 14.972 3.094
0.71280 1028.18 1026.77 1.402
1.4186 776.88 776.48 0.399

II 0.33233 18.065 14.972 3.093
0.72399 1043.51 1042.16 1.355
1.4298 789.90 789.51 0.393

III 0.33236 18.064 14.972 3.092
0.73639 1061.48 1060.17 1.306
1.4422 804.71 804.32 0.388

IV 0.33233 18.063 14.972 3.091
0.74883 1080.39 1079.13 1.260
1.4546 819.91 819.53 0.382

V 0.33236 18.061 14.972 3.090
0.76124 1100.07 1098.86 1.217
1.4670 835.51 835.13 0.377

Fig. 8 Delay time matrix elements as a function of energy for case I ; (a) (b) (c)*t
nm

*t11 ; *t14 ; *t44 .

Fig. 9 Same as Fig. 8 but for case V.

Phys. Chem. Chem. Phys., 1999, 1, 1237È1247 1243



Fig. 10 Eigenvalues and trace of the lifetime matrix Q as a function of energy for case I ; (a) eigenvalue (b) eigenvalue (c) trace of Q.q11 ; q22 ;

respect to the maximum in the ground-state adiabatic curve ;
recall that this maximum has the same value in all Ðve cases.
Funnel resonance 1 is narrower by about 25% than funnel
resonance 2 ; this is consistent with the former lying deeper
within the well of the excited-state adiabatic curve. For a
given funnel resonance, as we proceed from case I through to
case V, the value of increases ; furthermore, the magnitudeERof this increase is remarkably close to the change in the value
of and the adiabatic gap from case to case. In addition,Vlowerfor a given funnel resonance, the width slightly decreases as
we move from case I to case V; the larger the adiabatic gap,
the narrower (and longer-lived) is the metastable state, consis-
tent with earlier results.18 The observation that the width of a
given funnel resonance does not change very much as we
proceed from case I to case V can be understood in terms of
the golden rule. Since the coupling in the diabatic representa-
tion is relatively strong (compare the magnitude of the dia-
batic coupling to the values of the potential energiesV12 V11and the coupling in the adiabatic representation is rela-V22),tively weak. Since the latter coupling is weak, the decay of the
funnel resonance should be described approximately by the
golden rule,34 in which case the width is proportional to the
square of the adiabatic coupling matrix element. In the sim-
plest possible application of this rule, we approximate the
nuclear-motion matrix element by the value of the (diabatic)
electronic coupling near the center of the funnel. Since the dia-
batic coupling is the same in all cases I to V, we expect the
resonance width to show little variation.

Table 5 also presents, for each funnel resonance, the ratio of
the sum of the partial widths to the total width. This ratio in
all cases is very close to unity ; the funnel resonances can
indeed be considered ideal narrow resonances [see eqn. (15)].

As seen in Fig. 7, the transition probability smoothlyP11decreases from 1 to 0 as the energy approaches and surpasses
In fact, this initial decrease is, to within plotting accu-V 1ad, max.

racy, indistinguishable for the two cases shown (and for all
Ðve cases). In Fig. 12, we compare the results of scattering o†
the uncoupled ground-state adiabat at low energies toV 1adthose for case I. It is clear that the coupling has resulted in a

very slight raising of the e†ective barrier.35 After the initial
decrease of for the coupled potential problems, there areP11then two sharp peaks due to the two funnel resonances ; the
energies at which reaches unity are in close agreementP11with the values of The feature due to funnel resonance 2 isER .
slightly broader than that due to funnel resonance 1, consis-
tent with the larger width for the former. (The complete reÑec-
tion observed at resonance in the two-state curve-crossing
system has been discussed in relation to the topic of molecular
switching.36)

The transition probability very nicely illustrates theP11competition between direct reÑection from the diabatic curve
and metastable trapping (due to resonances). At low scat-V11tering energies, below the particle is reÑected o† theV 1ad, max,

diabat and As the scattering energy approaches andP11B 1.
surpasses the energy of the ground-state adiabatic barrier, the
coupling between the diabats lets signiÐcant Ñux pass into
channel 4 of the diabat and approaches unity.V22 P14However, at the energies of the funnel resonances, dropsP14sharply to zero before returning to 1.

All of the delay time plots show two extremely sharp peaks
due to the two funnel resonances. There is close agreement, as

Table 5 Energies and partial widths of the funnel resonances

ER[ V 1ad, max/ C/ C1/ C4/Case cm~1 cm~1 cm~1 cm~1 ;
i
C
i
/C

Funnel resonance 1
I 2987.097 20.707 10.36 10.40 1.003
II 3077.288 20.400 10.21 10.24 1.002
III 3177.527 20.053 10.03 10.07 1.002
IV 3277.733 19.700 9.858 9.886 1.002
V 3377.925 19.344 9.680 9.705 1.002

Funnel resonance 2
I 8680.018 27.361 13.70 13.69 1.001
II 8770.074 26.910 13.48 13.46 1.001
III 8870.168 26.414 13.23 13.21 1.001
IV 8970.236 25.924 12.98 12.97 1.001
V 9070.297 25.439 12.74 12.72 1.001

Fig. 11 Same as Fig. 10 but for case V.
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Fig. 12 Transition probability at low scattering energies. TheP11solid line is for scattering by the uncoupled adiabatic potential V 1ad,and the dotted line is for scattering by the coupled potentials of case I.
The insert shows more clearly that the e†ective barrier in the coupled
case is slightly higher in energy.

seen in Table 6, between the energy of the maximum in *t
nmand the value of of the resonance associated with the delayERtime feature. For each case, the energies of the local maxima

in and coincide (see Table 3). The Ðrst peak of*t11, *t14 *t44the two has a larger maximum, due to funnel resonance 1
being narrower. Table 6 also gives the product (in units of +)
of the local maximum in the delay time and the width of the
associated resonance. The results in Table 6 are consistent

Table 6 Product (in atomic units) of the resonance width C and the
local maximum in the delay time at energy associated with theEmaxresonance energy ER
Case ER/eV E'/eV *t11C *t14C *t44 C

Funnel resonance 1
I 0.712 794 0.712 80 2.001 2.005 2.009
II 0.723 976 0.723 99 2.001 2.005 2.008
III 0.736 403 0.736 39 2.001 2.004 2.007
IV 0.748 828 0.748 83 2.001 2.004 2.007
V 0.761 250 0.761 24 2.001 2.004 2.006

Funnel resonance 2
I 1.418 63 1.418 6 2.003 2.002 2.000
II 1.429 79 1.429 8 2.003 2.002 2.000
III 1.442 20 1.44 22 2.003 2.002 2.000
IV 1.454 61 1.454 6 2.003 2.002 2.000
V 1.467 02 1.467 0 2.003 2.002 2.001

Table 7 Ratio of the local maximum in the trace of Q and the local
maximum in the delay time *t

nm

Case Energy/eV Trace (Q)/*t11 Trace (Q)/*t14 Trace (Q)/*t44

I 0.332 39 a 2.000 a
0.712 80 2.004 2.000 1.997
1.418 6 1.999 2.000 2.001

II 0.332 33 2.000
0.723 996 2.004 2.000 1.997
1.429 8 1.999 2.000 2.001

III 0.332 36 2.000
0.736 39 2.003 2.000 1.997
1.442 2 1.999 2.000 2.001

IV 0.332 33 2.000
0.748 83 2.003 2.000 1.998
1.454 6 1.999 2.000 2.001

V 0.332 36 2.000
0.761 24 2.003 2.000 1.998
1.467 0 1.999 2.000 2.001

a Blank entries signify that the maxima in Trace(Q) and did not occur at*t
nn

the same energy.

with our description of the funnel resonances as isolated
narrow resonances [see eqn. (13)].

All of the delay times also show a peak of about 9 fs at an
energy of 0.33 eV. For this feature, however, the energies of
the peaks in the three delay times do not coincide as seen*t

nmfrom Table 3. However, for a given the values of*t
nm

, Emaxnm
and the delay time maximum change insigniÐcantly from case
to case. This is consistent with this delay time feature being
associated with the maximum in the ground-state adiabatic
curve of energy Previous one-dimensional quantumV 1ad, max.
mechanical scattering calculations on uncoupled potential
energy curves have shown that passage over a potential
barrier is associated with a broad barrier resonance.24 Thus,
we conclude that this broad, weak maximum in the delay time
at low scattering energies is due to a barrier resonance associ-
ated with the maximum in Attempts to locate a pole inV 1ad.the scattering matrix for scattering by the coupled diabats at
complex energies (with a real part of 0.33 eV) were not suc-
cessful ; the present numerical algorithm is presumably unable
to Ðnd resonances so far o† the real energy axis, and further
investigation is needed. However, we did locate the barrier
resonance for scattering o† the uncoupled ground-state adia-
batic curve ; the complex resonance energy (in eV) is
0.32742055[ i0.08746875 in excellent agreement with the
analytical result for an unsymmetric Eckart barrier derived by
Ryaboy and Moiseyev.37

As for the lifetime matrix, the plots of the Ðrst eigenvalue
and the trace of Q show features very similar to thoseq11discussed above for the delay time matrix elements. In particu-

lar, both display prominent peaks at energies and a broad,ERweak maximum at lower energies. At the funnel resonance
energies (see Table 4), is the predominant contributor toq11the trace ; the contribution of to the sum at is less thanq22 ER0.14%. For each case, funnel resonance 1 has a larger value of
the trace of Q than funnel resonance 2, and for both reso-
nances the trace of Q increases from case I to case V. The
second eigenvalue displays a broad, small maximum atq22low scattering energies and a steep drop-o† to negative values
at even lower energies. For each case, the trace of Q shows a
maximum of 18.1 fs at virtually the same energy ; for this
feature, makes a signiÐcant contribution to the sum.q22We see from eqn. (13) and (14) that for an isolated narrow
resonance in a single channel scattering problem, the ratio of
Q to *t at an energy is two. In Table 7, we have presentedERthe ratio of the trace of Q to the local maximum in For*t

nm
.

each of the two funnel resonances, which we have noted above
are isolated narrow resonances, the maxima in the trace, in
the Ðrst eigenvalue, and in the delay times coincide in energy,
and the ratio of the trace to the delay time is very nearly 2.
We should also note that since the second eigenvalue makes a
negligible contribution at the funnel resonance energies ER ,
the ratio of the Ðrst eigenvalue to will also be veryq11 *t

nmnearly 2. This is consistent with the comment that the eigen-
values, when large, are related to the decay times of metasta-
ble states.28 As for the feature in the trace at low scattering
energies, only the maximum in occurs at the same*t14energy. And, although this feature should be attributed to a
broad barrier resonance, even here the ratio of the trace to the
delay time is 2, showing that this value of the ratio does not
require an extremely narrow resonance.

VI Concluding remarks
We have demonstrated the e†ect of funnel resonances on tran-
sition probabilities and on elements of the delay time and
lifetime matrices Dt and Q in one-dimensional scattering
calculations involving coupled potential energy curves. The
funnel resonances produce dramatic changes in the dynamics
over a relatively-narrow energy range centered at the reso-
nance energy ER .
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The funnel resonances are closely related to the bound
states supported by the uncoupled upper adiabatic potential
curve. We have computed the bound eigenstates supported by
the excited-state adiabat. (These eigenenergies, with respect to
the bottom of the well of are invariant to the gap betweenV 2ad,the two adiabatic potential curves.) The (rotationless) v\ 0
and v\ 1 energies are in very close agreement with the (real
parts of the) resonance energies of the funnel resonances found
in the coupled potential scattering calculations. In particular,
the Ðrst and second vibrational states are lower than the Ðrst
and second resonance energy values of case V by 6.930 andER14.465 cm~1, respectively. The v\ 0 to v\ 1 splitting is thus
within 0.13% of the separation (along the real energy axis) of
the two funnel resonance states. The close agreement between
the resonance energies and the vibrational eigenstates isERconsistent with the Ðndings of Qi and Bowman,18 who
analyzed the small di†erences in their model systems between
the energies calculated from the upper adiabat and the reso-
nance positions in terms of the diagonal, nonadiabatic kinetic
energy operator. In their earlier work, Baer and Child16 found
oscillatory behavior in the transmission probabilities that was
correlated with the position of the eigenvalues in the upper
adiabatic curve. Zhu and Nakamura19h20 also found oscil-
latory behavior in the transmission probabilities for the non-
adiabatic tunneling case ; the dramatic features in the
transmission probabilities were the narrowest for the strong
diabatic coupling regime. (In the present study involving a
strong diabatic coupling, we also observe very sharp features
in the transmission probabilities.) And, perhaps most signiÐ-
cantly, oscillatory behavior has also been seen in three-
dimensional reactive scattering.4

The funnel resonances characterized in our work can be
described as isolated narrow resonances by virtue of (i) the
sum of their partial widths being the total width and (ii) the
product of the maximum in the delay time and the total width
of the associated resonance equalling two. The funnel reso-
nances are clearly responsible for long-lived scattering colli-
sions as evidenced by the large maxima in the sharp delay
time features. On the other hand, there are broad, small
maxima in the delay times at low scattering energies near the
potential maximum of the ground-state adiabat. These short-
lived collisions are associated with broad, barrier resonances
as studied previously in collinear24 and three-dimensional
scattering. Consistent with the same ground-state adiabat
being used in all cases IÈV, these delay times features are very
similar in magnitude and are found at virtually the same
energy for a given *tnm .

It is interesting to compare some of our one-dimensional
results to the three-dimensional quantal calculations of ref. 4.
In the full multidimensional study, the funnel resonance
occurred at approximately the same energy relative to the
minimum of the excited adiabatic surface. From Tables 2 and
5 which give, respectively, the adiabatic gap and the value of

referenced to the ground-state adiabatic maximum, we seeERthat the same is true in our reduced-dimensionality study. Sec-
ondly, the widths of the Ðrst funnel resonance characterized in
ref. 4 were close in magnitude to each other ; similarly, from
Table 5, we see the widths of funnel resonance 1 in all Ðve
cases show little variation, as is also true for the widths of
funnel resonance 2. Finally, compared to the dynamical calcu-
lations carried out on only the ground adiabatic surface, the
cumulative reaction probability for the coupled three-
dimensional potential surfaces rose from 0 to 1 at a slightly
higher energy. Likewise, in our one-dimensional study atP41,low scattering energies, increases from 0 to 1 at a slightly
higher energy for the coupled case compared to the uncoupled
ground-state adiabat. This behavior was also observed in pre-
vious one-dimensional studies.17,18 Although the comparison
between the one- and three-dimensional calculations clearly
has limitations, e.g., complete reÑections occur at resonance

energies in our 1-dimensional cases whereas the multidimen-
sional study of ref. 4 reveals partial reÑections at resonance, it
is encouraging that the results and conclusions of the full-
dimensional studies can be understood in part from our
simpler reduced-dimensionality models.

By studying the occurrence of resonances associated with
an exciplex funnel situated over a ground-state saddle point,
we have provided insight into the conditions responsible for
direct reÑection of ground-state systems due to diabatic cross-
ing of the saddle point and those responsible for trapping in
the exciplex, both of which lower the transmission coefficient
for reaction on the ground-state surface.
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