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Accurate quantum dynamics calculations are described for a series of three-body model systems exhibiting closely avoided
crossings of potential energy surfaces in the vicinity of the reaction barrier. In particular, the surfaces show avoided crossings of
bond-switching diabatic states in the vicinity of a saddle point. The dynamics calculations are carried out by linear algebraic
variational methods with diabatic electronic basis functions. The coupling of electronically non-adiabatic e†ects to barrier cross-
ings leads to qualitatively new kinds of quantum e†ects on the chemical reactivity. We Ðnd strong non-adiabatic e†ects on
reaction probabilities due to funnel resonances with weaker e†ects (typically 2È20%) o† resonance.

LondonÏs adiabatic hypothesis1 that ordinary chemical reac-
tions take place in a single electronic state and hence can be
viewed as governed by a potential energy surface is so
ingrained in everyday thinking about reactions of species in
their ground electronic states that we usually ignore the fact
that potential energy surfaces and force Ðelds (which are the
gradient Ðelds of the potential energy surfaces) are only
approximate concepts. The justiÐcation of the adiabatic
hypothesis in terms of the BornÈOppenheimer separation of
electronic and nuclear motions2 is well known. However, for
reactions of electronically excited species, e.g., photochemical
reactions, the branching ratios to various products often
depend on the probability of hopping to the ground state
surface, and considerable progress has been made by recog-
nizing that such hops are most likely to occur in the regions
where the upper and lower surfaces approach closely ; such
regions are called avoided crossings, avoided intersections or
funnels.3h7 (In some cases the surfaces actually intersect in a
region of lower dimensionality,3h8 but in such cases elec-
tronically non-adiabatic collisions are expected to be strong
not only at intersections but also in the much wider region of
narrowly avoided intersection that surrounds the intersection.
Hence, whether or not surfaces intersect, non-adiabatic
dynamics are dominated by regions of avoided intersection.)

Salem9 classiÐed avoided and conical intersections into six
types, labelled AÈE and B@. A type B@ avoided intersection
occurs if a system switches between alternative bonding pat-
terns corresponding to di†erent valence bond descriptions,
e.g., A Æ] BÈC] AÈB] C Æ or AÈB] CÈD ] AÈC] BÈD.
The loss of electron exchange energy on switching bonds has
long been recognized as the source of the energy barrier in
atom transfer reactions,10 and a two-state valence bond treat-
ment not only provides a semiquantitative prediction of the
barrier height11 but also predicts the qualitative fact that the
energy gap between the upper and lower adiabatic surfaces is
smallest at the location of the barrier in the lower surface,12
i.e., the transition-state ridge on the lower surface is associated
with a trough in the separation between the surfaces13
(although these geometric features need not coincide
perfectly14).

A small gap between the ground and excited states can lead
to interesting quantum e†ects associated with coupling of elec-
tronic and nuclear motion ; such e†ects are critical for explain-
ing electrical resistivity15 and outer-sphere electron transfer.16
What about ordinary chemical reactions, with their somewhat
larger gaps? Butler and co-workers17 have pointed out that

one might observe interesting e†ects of small gaps in
WoodwardÈHo†mann forbidden9,18 reactions, which are a
classic case of bond switching reactions with high barriers
and/or weakly interacting diabatic states. (Diabatic electronic
states19,20 are a general name for any states whose physical
character changes slowly with geometry, such as single
valence bond structures or single-conÐguration molecular
orbital states, prior to diagonalizing the conÐguration inter-
action Hamiltonian.) In speciÐc cases, the lowest energy path
on the ground-state surface might well be a shoulder21,22 of a
symmetry-allowed conical intersection, but the gap at the
saddle point on the shoulder might be as small as a “remnant Ï
of the nearby conical intersection. Butler and co-workers17
interpreted their photochemical branching ratios in terms of
signiÐcant non-reactive non-adiabatic reÑection23 at regions
of avoided crossing such that the height of the barrier on the
lower surface is not as important as the probability of crossing
it adiabatically. In addition to the system studied by Butler
and co-workers, another example of a system with this kind of
avoided crossing at a transition state has been provided by
Palmer et al.24

In addition to introducing a term coupling the adiabatic
surfaces, a second consequence of the strong interaction of
electronic states at a barrier is the contribution of a nuclear-
motion term to the lower surface itself, that lowers the barrier.
For systems with typical gaps at the barrier this term is small ;
for example, for gaps of 5È9 eV, the barrier lowering has been
calculated25 to be only 0.3È9 meV (1 meV\ 10~3 eV \ 8.1
cm~1). The term will be larger for smaller gaps.

The quantum mechanical dynamical consequences of
avoided crossings have been very extensively studied for one-
dimensional models, e.g., the well known works of Landau,26a
Zener,26b and Stu� ckelberg26c and recent extensions.27h29
Multidimensional simulations have been restricted to trajec-
tory surface hopping models,30 which are inappropriate for
studying many quantum e†ects31 such as intermediate-state
quantization32 and tunnelling.33 Very recently it has become
possible to calculate accurate quantum dynamics for three-
body reactive collisions involving multiple potential energy
surfaces,34h38 and in the present paper we apply accurate
quantum dynamics techniques to study chemical reactions
with narrow gaps at their transition states. This study pro-
vides a Ðrst attempt to use accurate multidimensional
quantum dynamics calculations to explore quantum e†ects
associated with the coupling of electronically non-adiabatic
dynamics to barrier crossing.
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The model
Our model is an atomÈdiatom reaction, A ] B2 ] AB] B,
where there is a small energy gap between the ground and Ðrst
excited electronic states in the region of the barrier on the
lower surface. We chose to study the heavyÈlight combination
by setting the masses of A and B equal to those of 37Cl and
1H, respectively.

The potential energy surfaces are based on semi-empirical
valence bond functional forms,10h12,39,40 which should have
realistic generic shapes, but they do not represent a speciÐc
system. In particular, we created a series of Ðve sets of two
coupled potential energy surfaces deÐned in the diabatic rep-
resentation. Each surface set is deÐned by the lower diabatic
surface, called the upper diabatic surface, and theirH11d , H22d ,
coupling, Diagonalizing the Hd matrix yields the twoH12d .
adiabatic surfaces, and The Hd matrices are chosenV1 V2 .
such that the implied lower adiabatic surface, is almostV1 ,
exactly the same for all Ðve cases, and it is very nearly the
same as the G3 surface,22 which is the most accurateClH2available potential energy surface for this ensures inClH2 ;
the Ðrst place that the lower adiabatic surface has a realistic
shape, but also, more importantly for interpreting the results,
it ensures that the lower adiabatic surface is the same in all
Ðve test cases. Thus we will be able to interpret the results as
showing the e†ect of reducing the gap for a Ðxed ground-state
surface. The classical endoergicity of the ground-state adia-
batic surface is 0.131 eV for all Ðve cases.

The coupling matrix element vanishes whenever A isH12dinÐnitely far from B and also when either B-type atom is inÐ-
nitely far from the remaining AB diatomic. Thus the adiabatic
and diabatic surfaces become identical in these asymptotic
regions. In what follows the zero of energy for diagonal ele-
ments of the Hd and V potential matrices and for the total
energy E in the dynamics calculations is deÐned such that

when A is inÐnitely far from with at itsH11d \ V1 \ 0 B2 , B2equilibrium internuclear distance, re, BB\ 0.741 Ó.
The Hd matrix elements are chosen to have physical shapes

corresponding to a conical intersection of the B@ type dis-
cussed above. The conical intersection occurs in geometryC2vat the same values of the internuclear distances and same
energy for all Ðve surface sets, namely rAB \ 3.281 a0 , rBB\

and eV (note that2.249 a0 , H11d \H22d \ V1\ V2\ 2.794
at the conical intersection). This is much higher inH12d \ 0

energy than the saddle point to reaction, which is V 1E\ 0.342
eV, and than the total collision energies E considered in this
paper, which are between 0.4 and 1.0 eV. Thus the important
non-adiabatic interactions are not those at the conical inter-
section but rather the avoided intersections at lower energy.
The Hd matrices are further chosen such that the smallest gap
*E [the gap is deÐned as the minimum value of the separation
of the adiabatic surfaces, i.e., occurs very*E4 min(V2[ V1)]close to the saddle point. The Ðve surface sets (IÈV) di†er in
the value of *E, which is equal to 1.2 (I), 12 (II), 25 (III), 37
(IV), and 50 (V) meV. (In spectroscopic units these gaps range
from 10 to 400 cm~1.)

Full details of the functional forms of the Hd matrices are
given in the Appendix. The Hd matrix of eqn. (A13) of the
Appendix completely deÐnes the surface set for the scattering
calculations. Diagonalization of Hd yields the Ðnal adiabatic
surfaces and and adiabatic eigenvectors and forV1 V2 c1 c2interpretation and plotting purposes, but and are notV1 V2used explicitly for dynamical calculations :

Ac11 c21
c12 c22

BAH11d H12d
H21d H22d

BAc11 c12
c21 c22

B
\
AV1

0

0

V2

B
(1)

By design, the Ðnal is nearly the same for all surfaces and isV1very similar to the G3 potential energy surface. When H11d \
one Ðnds the seam where this occursH22d , V2 [ V1 \ 2 oH21d o ;

may be called the avoided crossing seam.

Fig. 1 and 2 show two-dimensional contour maps of the
lower and upper adiabatic surfaces for case E (the case in
which the gap is 50 meV\ 400 cm~1). Fig. 1 shows that the
lower adiabatic surface has the typical shape of a simple
barrier reaction. Fig. 2 shows that the upper adiabatic surface
has a broad minimum in the saddle point region of the lower
surface. The top panels of Fig. 3 and 4 show one-dimensional
cuts through the adiabatic surfaces for case E; the bottom
panels of Fig. 3 and 4 show the fractional contributions, ofcij2 ,
the two diabatic states to the adiabatic ones along these one-
dimensional cuts. Fig. 3 shows that the region of narrowly
avoided intersection between the two adiabatic surfaces is
about 0.2 wide. Fig. 4 shows that the lower adiabaticÓ
surface increases as the system bends, which is a visual conÐr-
mation of the fact that the saddle point on the lower surface is
indeed collinear. More signiÐcantly, Fig. 4 shows that the
separation between the two adiabatic surfaces also increases
as the system bends. The upper adiabatic energy also increases
as one leaves the saddle point in either direction along the
quasisymmetric stretch coordinate (approximately given by a
line connecting the origin to the saddle point in Fig. 1). Thus
both the minimum of the funnel and its point of closest
approach to the ground state are located essentially right over
the saddle point. This conÐrms that we have succeeded in
designing a system with a funnel over a saddle point.

Fig. 1 Contours of the lower adiabatic surface for collinear geome-
tries. Contours are plotted at 0.11, 0.34, 0.57, 0.80 (bold), 1.26, 1.72,
2.64, 4.48 and 6.78 eV.

Fig. 2 Contours of the upper adiabatic surface for collinear geome-
tries for case V (in which the gap is 400 cm~1). The contours plotted
are the same as in Fig. 1.
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Fig. 3 Energies of and diabatic contributions to the lower and upper
adiabats of the potential along the collinear minimum energy path in
case V. The abscissa labels a reaction coordinate which is negative as
A approaches BB@ ; zero at the saddle point, and positive as B moves
away from AB@.

Although Fig. 1È4 are speciÐcally for case V, plots of the
same quantities for cases IÈIV look very similar, by design.
The only di†erence is that the funnel approaches the lower
surface more closely. This is illustrated by comparing cases I
and V in Fig. 5 ; cases IIÈIV are intermediate.

Computations
All quantum dynamics calculations were carried out by linear
algebraic variational scattering methods with electronically
diabatic basis functions on Cray supercomputers. We used
both the generalized Newton variational principle41h43

Fig. 4 Energies of the diabatic contributions to the lower and upper
adiabats of case E as a function of the angle of bending away from the
saddle point. The nearest-neighbour distances are Ðxed at constant
values as the system is bent.

Fig. 5 Energies of the lower and upper adiabats of the potential
along the collinear minimum energy path for cases I and V (in which
the gaps are 10 and 400 cm~1, respectively). The abscissa is labelled as
in Fig. 3.

(GNVP) and the outgoing wave variational principle44h47
(OWVP). The GNVP calculations are formulated as OWVP
calculations in which the basis functions in the scattering
coordinate (the radial relative translational coordinate) consist
of a set of half-integrated GreenÏs functions (HIGFs) generated
from a set of evenly spaced radial Gaussian functions as
explained previously.43,47 In the OWVP calculations for the
present paper, we used these HIGFs as basis functions in open
channels, and we used the radial Gaussian functions them-
selves as the basis functions in closed channels. Full details of
the formulation for electronically inelastic reactive scattering,
including the form of basis functions in all coordinates and
the numerical procedures, are presented in full in previous
publications.48,49

There are three computational steps in the linear albegraic
variational calculations.

1. Compute the incoming coupled-channel distorted-wave
and the coupled-channel half-integrated radial distorted-wave
GreenÏs functions directly on quadrature grids by high-order
Ðnite di†erences (a 13-point formula in the main part of the
grid, reduced to an 8-point formula near the edges).

2. Carry out a six-dimensional integration over the coup-
ling part of the interaction potential, the numerical solutions
found in step 1, and (in the OWVP calculations) over the
other basis functions. Three dimensions are integrated analyti-
cally in a molecule-Ðxed coordinate system, and the other
three are integrated numerically.

3. Solve a linear system of equations for coefficients of the
basis functions, and use the resulting solution to compute the
scattering matrix (matrix of scattering amplitudes) by matrix
multiplication.

For the present calculations the distortion potential
coupled all vibrational quantum numbers l for a given rota-
tional quantum number j and arrangement a. We used the
same basis set on each diabatic surface, with vibrational func-
tions based on the lower adiabatic surface. Parameters charac-
terizing the basis sets and numerical integrations for the
present calculations are given as supplementary information.¤
The linear equation solution of step 3 was accomplished non-

¤ Available as supplementary data (SUPPL. No. 57199, 8 pp.) from
the British Library. For details contact the Editorial Office.
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iteratively by decomposition and back substitution. All calcu-
lations were converged to plotting accuracy with respect to
simultaneous variation of a sufficient sub-set of parameters to
demonstrate convergence with respect to both basis sets and
numerical integrations.

Results and Discussion
In all our calculations we studied the probability of reaction
for zero total angular momentum as a function of energy.
These probabilities represent converged quantum dynamics
for the assumed diabatic surface sets and hence for the implicit
coupled adiabatic representation as well. We also carried out
converged dynamical calculations in the adiabatic representa-
tion in which we included only the ground adiabatic surface.
Comparison of these adiabatic results to the coupled-surface
results provides a measure of the e†ect of coupling to the
funnel.

The particular version of the reaction probability on which
we shall focus attention is the zero-total-angular-momentum,
even-symmetry cumulative reaction probability (CRP) deÐned
by

N0`(E) \ ;
n

;
n{

P1n2n{0` (E) (2)

where is the reaction probability from arrangement aPana{n{JS (E)
and channel n to arrangement a@ and channel n@ at total
angular momentum J and with permutation symmetry S. As
indicated in eqn. (2), we include only J \ 0 and even permu-
tational symmetry (]), where the latter corresponds to even
rotational states of For this choice, we can take even andB2 .
odd linear combinations of the AB] B@ and AB@] B states,
and reaction occurs only into the even arrangement, which is
denoted by setting a@\ 2 on in eqn. (2). The reactantPana{n{0` ,
arrangement, is denoted a \ 1. The sums over n andA] B2 ,
n@ in eqn. (2) are over all open (i.e., energetically accessible)
channels of the a \ 1 and a@\ 2 arrangements, respectively.
Thus in simple language, N0`(E) is the sum of all state-to-
state probabilities for at zero total angularA] B2 ] AB] B
momentum considering only even rotational states of TheB2 .
CRP is an important theoretical quantity because of the
relation50

k(T )\
1

h'R(T )
;
S

;
J

(2J ] 1)
P

dE exp[[E/kB T ]NJS(E)

(3)

where k(T ) is the ordinary reaction rate constant at tem-
perature T , h is PlanckÏs constant, 'R(T ) is the partition func-
tion per unit volume for the reactants, and is BoltzmannÏskBconstant. Thus NJS(E) is the total contribution of a micro-
canonical ensemble with given values of E, J, and S to the
thermal rate constant. We will obtain a representative sample
of the dynamics by studying the JS \ 0] ensembles as a
function of E.

In its general features, our system was designed to have
gaps similar to those in the reactions studied experimentally
by Butler and co-workers.17 In the dissociation of

they studied competing pathways with barriersBrCH2COCl,
of about 0.7 and 1.1 eV and gaps of 2 and 50 meV. Our AB2model system has a classical barrier height of 0.34 eV and
gaps of 1.2È50 meV. Adding zero-point energy at the saddle
point raises the total energy there to 0.50 eV, which would be
a zero-order estimate of the expected threshold energy for a
single-surface reactive process.

The dotted curve in Fig. 6 shows our results for the adia-
batic case. Interpretation of the CRP in terms of quantized
transition states and a parabolic e†ective barrier shape along
the reaction coordinate would indicate that the CRP should
attain a value of one half at the energy of the lowest quantized

Fig. 6 CRP as a function of total energy E for the adiabatic system
and for a gap of 10 cm~1. JS \ 0].

level of the transition state.51 The adiabatic CRP in Fig. 6
attains a value of one half at a total energy slightly above 0.48
eV in reasonable agreement with the zero-order expectation in
the previous paragraph.

Fig. 6 also shows the CRP for the Ðrst coupled surface case,
case I. In order to keep as close as possible to the language
used by the experimentalists, we will label the cases in the
paper by the energy gaps in wavenumbers : I, 10 cm~1 ; II, 100
cm~1 ; III, 200 cm~1 ; IV, 300 cm~1 ; V, 400 cm~1. For case I
(10 cm~1) shown in Fig. 6, the most signiÐcant deviation of
the coupled-surface CRP from the adiabatic one occurs in a
region from ca. 0.84 to 0.87 eV. Fig. 7 and 8 shows the CRPs
for all Ðve coupled-surface cases, compared with the adiabatic
CRP, in the interesting energy region above 0.8 eV. We see
that as the gap increases, the energy at which the maximum
deviation occurs also increases. Fig. 9 brings this out more
clearly by showing the ratios of the coupled-surface CRPs to
the adiabatic one, with all Ðve cases on the same plot. Clearly
the dependence of the CRP on the energy gap is quite system-
atic. In fact this Ðgure strongly suggests that the deviations
should be interpreted as scattering resonances. Scattering
resonances are due to metastable states of the collision system,
and (depending on the interference between direct processes

Fig. 7 Same as Fig. 6 except for a more restricted energy range, and
the results are compared with the CRP for a gap of 400 cm~1. The
adiabatic CRP and the CRP for a gap of 10 cm~1 are also shown.
JS \ 0].
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Fig. 8 CRP as a function of total energy E for the adiabatic system,
and for the systems with a 100 cm~1 gap, a 200 cm~1 gap, and a 300
cm~1 gap. JS \ 0].

and the processes that pass through the metastable states)
they can lead to transition probabilities that have maxima or
minima at the resonance energy, or a peak on one side with a
dip on the other.52 All the physical systems considered here
are seen to lead to a minimum at the resonance energy. This
feature disappears if the surface coupling is turned o†; hence
we can associate it with metastable states associated with
coupling to the upper surface. We note that in purely one-
dimensional cases28 with potentials like Fig. 3 or 5, complete
reÑections can occur at resonance, but the present multidi-
mensional systems show only partial reÑections.

Before analysing the resonances, we note that, as expected
from one-dimensional models,28 the reaction (transmission)
coefficients are usually smaller than the adiabatic transmission
probabilities o† resonance as well as on resonance. We have
not analysed this quantitatively to separate the tails of the
resonances from the background e†ects. Clearly the reso-
nances are responsible for the dominant non-adiabatic e†ect.

The standard way to analyse resonances is to identify the
resonance e†ect as the di†erence between the transition prob-
ability in the presence of the resonance and that in the
absence of the resonance. Fig. 10 shows the di†erences of the
resonant CRPs from the non-resonant adiabatic ones. In each

Fig. 9 Ratio of coupled-surface CRP to adiabatic one as a function
of total energy E for various gap sizes. JS \ 0].

Fig. 10 Di†erence of coupled-surface CRP from adiabatic one as a
function of E[ *E, where E is the total energy, and *E is the gap.
JS \ 0].

case the di†erence is plotted as a function of E[ *E, where
*E is the gap. This brings all Ðve resonances into almost
quantitative overlap. Since the ground adiabatic surface is
essentially the same in all Ðve cases, this indicates that in each
case the resonance occurs at approximately the same energy
relative to the minimum of the upper adiabatic surface. We
identify this approximately constant shift between the reso-
nance energy and the bottom of the funnel as the zero-point
energy of the metastable state in the funnel. It is easily calcu-
lated from Fig. 10 and the minimum energies of the upper
adiabatic surfaces (Fig. 2È5) that this zero-point energy is ca.
510 meV or 4100 cm~1. Although the funnel is very anhar-
monic, we estimate that this zero-point energy could be
rationalized by e†ective frequencies of 1800 cm~1 for the sym-
metric stretch, 2000 cm~1 for the bend, and 4400 cm~1 for the
asymmetric stretch.

Another interesting observation from Fig. 10 is that the
widths of the various resonances are nearly the same. In par-
ticular the full width at half maximum of the resonance
feature, which is usually denoted C and simply called the
width,53 varies from 24 to 32 meV. From this we can calculate
resonance lifetime *t using53

*t \ +/C (4)

where + is PlanckÏs constant divided by 2n. This yields life-
times in the range 21È27 fs. This can be compared with the
direct transit time of the saddle-point region, which can be
computed51,54 from the widths of the “ steps Ï in Fig. 6 ; such
an analysis yields 9 and 14 fs for the Ðrst few quantized tran-
sition states of the direct reaction.55

A Ðnal observation on Fig. 10 concerns the absolute magni-
tude of the dip in the CRP due to each resonance feature. Like
the widths, this too is nearly constant across the Ðve cases,
varying from 0.49 to 0.61. These magnitudes of the dips are
not only similar to each other but also remarkably close to
0.5, a value that leads to a very simple interpretation. To
understand this interpretation we need to note that for adia-
batic reaction on the potential energy surface with the mass
combination studied here, variational transition state theory
with multidimensional tunnelling contributions is accurate to
within 14% over the entire 200È1000 K temperature
range.55,56 Thus a picture of direct reaction occurring with a
near-unity transmission coefficient is a good model, and the
paradigm of quantized transition-state control of global
reactivity54 explains the general increase of the CRP as a
manifestation of an increasing number of accessible transition
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state levels on the lower surface. At a resonance energy
though, the system becomes temporarily trapped in a metasta-
ble level of the funnel. Such a system “ forgets Ï whence it
entered the metastable state and decays with a probability of
0.5 to reactants and of 0.5 to products. Since this is 0.5 less
than the reactive-decay probability of 1.0 of the direct tran-
sition state levels accessible at this energy, the CRP dips by
0.5. (Since the metastable states have such short lifetimes,
trapped systems might have a slightly larger probability of
one reÑection along the reaction coordinate than of two, and
this could even account for the dip slightly exceeding 0.5, but
we do not place such great faith in the simple model as to
expect it to reproduce the accurate scattering calculations per-
fectly.)

Fig. 11 partitions the CRP for the case with a 400 cm~1 gap
into two components. The sum over n in eqn. (2) is, in more
detail, a sum over initial vibrational quantum number l and
initial rotational quantum number j. (For J \ 0 there is a
unique value of the relative translational orbital angular
momentum quantum number l for each value of j.) Over the
energy range considered in this paper only the l\ 0 and 1
states are open. Therefore we write

N0`(E)\ ;
l/0.1

N0`(l, E) (5)

where

N0`(l, E) \;
j

;
l{

;
j{

P1lj2l{j{0` (E) (6)

Fig. 11 shows that the resonance dip is approximately evenly
distributed over the two components of the CRP. We con-
clude that both vibrationally unexcited and vibrationally

Fig. 11 Vibrational-state-selected and total CRPs as functions of
total energy E for the adiabatic system and for the one with a 400
cm~1 gap. JS\ 0].

excited reactants can access the metastable state in the funnel.
Looking at Fig. 11 from another point of view we note that
the dip in the total CRP is 19%, whereas the dip in the state-
selected l\ 1 CRP is fractionally much larger, 45%. Thus the
resonance e†ects may be quite dramatic in state-selected
quantities.

When we examine the state-to-state results, we see that
many observables show non-monotonic behaviour in the
vicinity of a resonance. Table 1 provides examples of some
state-selected aspects of the results for the case with a 400
cm~1 gap. Table 1 shows factors of 4È5 changes in selected
inelastic (i.e., non-reactive) probabilities of vibrational and
rotational excitation. Looking at individual Ðnal states of B2 ,
we see that there is a big resonance e†ect on the probability of
producing AB in the l@\ 1, j@\ 0 state (0.02 increases to 0.10)
and a big enhancement for l@\ 0, j@\ 2(4 ] 10~4 increases to
1.8] 10~2), but only about a 10% e†ect for l@\ 0, j@\ 8. For
reactive scattering, Table 1 shows a large e†ect for the prob-
ability of producing vibrationally excited AB.

So far we have analysed the e†ect of coupling to the funnel
in terms of the resonances that are exhibited when this coup-
ling is turned on. O† resonance, the e†ect of coupling is typi-
cally small, 2È20%. There are, however, a few exceptions, e.g.,
the rotational excitation process A ] B2(l\ j \ 0) ] A

j@\ 2). For the case with a 400 cm~1 gap, coup-] B2(l@\ 0,
ling to the funnel increases this probability by only 10% o†
resonance at low energy, but by a factor of 3 at some energies
above the resonance. For example, this probability is
8 ] 10~4 at 0.97 eV in the adiabatic case but increases to
2.2] 10~3 when coupling is turned on.

Summary

We have reported quantum mechanical calculations on a
three-body reactive system that indicate the possibility of a
new phenomenon, namely metastable states associated with a
funnel located over a saddle point. Converged quantum
dynamics calculations of energy-dependent reaction probabil-
ities for a series of model atomÈdiatom reactions reveal struc-
ture associated with collisional resonances in which the
three-body system is trapped in the funnel for times on the
order of 25 fs. Resonances decrease the microcanonical-
ensemble reaction probability by 15È20%, and the e†ect may
be much larger for state-selected results, e.g., 45% for the reac-
tion probability of vibrationally excited molecules. O†-
resonant e†ects of coupling to the funnel tend to be smaller,
although o†-resonant e†ects as large as a factor of 3 were
observed in state-to-state non-reactive transition probabilities.

The authors are grateful to Greg Tawa for earlier contribu-
tions to the electronically non-adiabatic reactive scattering
project. This work was supported in part by the National
Science Foundation under grant no. CHE94-23927.

Table 1 Examples of the resonance e†ect on some state-stelected quantities (case V, initial state has l\ j \ 0)

typical value

quantity background on resonance resonance e†ect

inelastic vibrational excitation probabilitya,b 0.03 0.1 factor of ca. 4
inelastic l\ j \ 0 ] l@\ 0, j@\ 2 probabilitya 0.004 0.02 factor of ca. 5
total reaction probabilityc 0.67 0.59 [13%
probability of AB (l@\ 1)/prob. of AB(l@\ 0) 0.5 1.0 factor of 2
mean j@ of AB 5 512 10%

a We use “ inelastic Ï in the sense of non-reactive. b Summed over j@\ 0, 2, 4 for l@\ 1. c Not state-selected.
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Appendix

Functional forms of potential energy surfaces

We consider the system A ] BB@. We begin with a set of Ham-
iltonian matrix elements that correspond to the type B@ cross-
ing of valence bond conÐgurations and that, when
diagonalized, yield a result very similar to the G3Cl] H2surface as the lowest eigenvalue, which will be called WeE1* .
begin with a diabatic representation based on the London
equation :39

H11 \ DBB{ ] V BB{S ] 14(V ABS ] V AB@S ) ] 34(V ABT ] V AB{T ) (A1)

H22 \ DBB{ ] 34(V ABS ] V AB{S ) ] V BB{T ] 14(V ABT ] V AB{T ) (A2)

and

H12 4 H21 \
)3

4
(V ABS [ V AB{S [ V AB{T [ V ABT ) (A3)

where eV, and and areDBB{\ 4.747 V BB{S , V BB{T , V ABS , V ABT
taken from ref. 22. The diabatic coupling potential is then
modiÐed to make symmetry with respect to exchange of B and
B@ manifest ; in particular we found that we could do this
without making a qualitatively undesirable change in the
nature of the diabatic representation by replacing byH12

H12* \
G (H12)4
[a exp([2b

H2
R

H2
)]] (H12)2

H
(A4)

where a \ 333.9 meV, and is the HwHbH2
\ 1.9413 A� ~1 RH2distance. This Hamiltonian matrix is diagonalized numerically

to yield the eigenvalues andE1* E2*

C cos c
[sin c

sin c
cos c

DCH11
H12*

H12*
H22

DCcos c
sin c

[sin c
cos c

D
\
CE1*

0

0

E2*
D

(A5)

We then calculate a new value, for the upper adiabaticE2**,
surface which gives the desired separation *Et at the saddle
point.

E2** \ E2* [ (1 [ sin4s)z*(E2* [ E1*)z exp(1[ z)[exp([!)]

(A6)

where s is the angle between the BÈB@ axis and a vector from
A to the centre of mass of BB@, and

!\
ArAB[ rABt ] rAB{[ rAB{t

r1,0

B4
]
ArBB{ [ rBBt

r2,0

B4
(A7)

z\
E2* [ E1*

(E2* [ E1*)t
(A8)

z* \
(E2* [ E1*)t [ *Et

(E2* [ E1*)t
(A9)

(E2* [ E1*)t\ 5.9184 eV (A10)

We obtained Ðve surface sets by successively equating *Et to
(I) 1.24, (II) 12.40, (III) 24.80, (IV) 37.20, and (V) 49.59 meV.
We then back transform to obtain a new Hamiltonian matrix

Ccos c
sin c

[sin c
cos c

DCE1*
0

0

E2**

DC cos c
[sin c

sin c
cos c

D

\
CH11@
H12@

H12@
H22@
D

(A11)

Finally, we introduce a “ fadingÏ factor, j,

j \ 12M1 [ tanh[bBB{(rBB{ [ rBB{0 )]N (A12)

and transform to the Ðnal form of the diabatic Hamiltonian
matrix

CH11d
H12d

H21d
H22d
D

\
Cx
y

[y
x
DCH11@

H12@
H12@
H22@
DC x

[y
y
x
D

(A13)

where

x \ [(H11@ [ H22@ )2 ] 4(1 ] j)H12@2 ]

^
(H11@ [ H22@ ) ] 4(1 [ j2)H12@2

8H12@2 ] 2(H11@ [ H22@ )
(A14)

y \ ^J1 [ x2 (A15)

The constant and were set equal to 1.9413 andbBB{ rBB{0 A� ~1
2.8046 respectively.Ó,

We note for completeness that in ref. 48, is calledH
ij
d V

ij
,

the lower adiabatic surface is called and the upperV1 V111,adiabatic surface is called We note that our procedureV2 V122 .
does not require evaluating the non-adiabatic coupling (i.e.,
the coupling in the adiabatic representation) at any point in
the calculation.
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