January 6, 2017

SUPPLEMENTARY MATERIAL

for article to be Published in J. CHEM. PHYS.

Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole

Shaohong L. Li and Donald G. Truhlar*

Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA

Table of contents

Section S1. Symmetry of diabatic couplings along ϕ	S-2
Section S2. Geometric parameters of the D_0 and D_1 equilibrium geometries of thiophenoxyl radical	S-3
Section S3. Frequencies for S_1 of thioanisole and D_0 and D_1 of thiophenoxyl	S-5
Section S4. Proof of eq. (28) in the main text	S-6
Additional References	S-7

S1. Symmetry of diabatic couplings along ϕ

By construction the absolute value of diabatic couplings has to be even about $\phi = n\pi/2$ along ϕ (*n* is an integer). To determine if the diabatic couplings themselves are even or odd, we used the plot of diabatic couplings along the C-C-S-C torsion with all other coordinates fixed at their values for the equilibrium geometry of the ground state (in which case ϕ is equal to the torsion), which is shown in Figure S1. U_{12} is even about $\phi = 0$ and 90° according to the shape of the curve and the fact that U_{12} is nonzero at the two C_s geometries with $\phi = 0$ and 90°. By the same token, U_{13} and U_{23} are odd about $\phi = 0$ and 90° according to the shape of the fact that U_{13} and U_{23} are zero at the two C_s geometries with $\phi = 0$ and 90°. (Note that U_{13} and U_{23} are not zero at $\phi = 90^\circ$ in the plot because it is an unrelaxed scan and the geometry at 90° does not have C_s symmetry.)

Such symmetries of diabatic couplings are dictated by symmetries of the corresponding diabatic wave functions. At $\phi = 0$, diabatic states 1 and 2 (DS1 and DS2) have A' symmetry while DS3 has A'' symmetry. At $\phi = 90^{\circ}$, DS1 and DS2 have A'' symmetry while DS3 has A' symmetry. (Such symmetries of diabatic wave functions can be seen from their dominant configurations.¹) Since ϕ behaves like an a'' mode, A' wave functions are even, and A'' wave functions are odd, about ϕ . The symmetry of coupling U_{ij} is in turn determined by the symmetry of diabatic states *i* and *j*. For instance, at $\phi = 0$, U_{13} is odd since DS1 (A') is even and DS3 (A'') is odd.

Figure S1. Diabatic couplings as a function of C-C-S-C torsion with all other coordinates fixed at their values for the equilibrium geometry of the ground state (in which case ϕ is equal to the torsion). (Note that the U_{13} curve has a different scale from U_{12} and U_{23} .)

S2 Geometric parameters of the D_0 and D_1 equilibrium geometries of thiophenoxyl radical

	APRP	M06-2X ^a
Bond lengths (Å)		
C1-C2	1.410	1.401
C2-C3	1.401	1.393
C3-C4	1.403	1.394
C4-C5	1.403	1.395
C5-C6	1.401	1.393
C6-C1	1.410	1.401
C1-S7	1.755	1.755
C-H (average)	1.090	1.090
Bond angles (deg)		
C1-C2-C3	119.7	119.7
C2-C3-C4	120.7	120.7
C3-C4-C5	119.4	119.4
C4-C5-C6	120.7	120.7
C5-C6-C1	119.6	119.7
C6-C1-C2	119.9	119.9

TABLE S1. Geometric parameters of the D₀ equilibrium geometry of thiophenoxyl radical

^{*a*} Basis set: jul-cc-pV(D+d)Z.

	APRP	τ-HCTHhyb ^{<i>a</i>}
Bond lengths (Å)		
C1-C2	1.423	1.414
C2-C3	1.405	1.397
C3-C4	1.410	1.402
C4-C5	1.410	1.402
C5-C6	1.405	1.397
C6-C1	1.423	1.414
C1-S7	1.747	1.747
C-H (average)	1.093	1.093
Bond angles (deg)		
C1-C2-C3	119.8	119.8
C2-C3-C4	120.8	120.9
C3-C4-C5	119.3	119.2
C4-C5-C6	120.8	120.9
C5-C6-C1	119.8	119.8
C6-C1-C2	119.4	119.4

TABLE S2. Geometric parameters of the D_1 equilibrium geometry of thiophenoxyl radical.

^{*a*} Basis set: jul-cc-pV(D+d)Z.

S3. Frequencies for S_1 of thioanisole and D_0 and D_1 of thiophenoxyl

S4. Proof of eq. (28) in the main text

Here we give a simple proof of eq. (28) in the text,

$$\frac{\partial V_i}{\partial x_{\alpha}} = \sum_j \sum_k C_{ji} \frac{\partial U_{jk}}{\partial x_{\alpha}} C_{ki}$$
(28)

where the (diagonal) adiabatic potential matrix V and the diabatic potential matrix U is related by eq. (27) in the text

$$V_i = \sum_j \sum_k C_{ji} U_{jk} C_{ki}$$
⁽²⁷⁾

which is, in matrix notation, $\mathbf{V} = \mathbf{C}^{\mathrm{T}} \mathbf{U} \mathbf{C}$. This, according to the orthogonality of \mathbf{C} , implies

$$\mathbf{U}\mathbf{C} = \mathbf{C}\mathbf{V} \Rightarrow \sum_{k} U_{jk}C_{ki} = \sum_{k} C_{jk}V_k\delta_{ki} = C_{ji}V_i$$
$$\mathbf{C}^{\mathrm{T}}\mathbf{U} = \mathbf{V}\mathbf{C}^{\mathrm{T}} \Rightarrow \sum_{j} C_{ji}U_{jk} = \sum_{j} V_i\delta_{ij}C_{kj} = C_{ki}V_i$$

where δ is the Kronecker delta function.

To prove eq. (28), we start by applying the chain rule of differentiation on eq. (27)

$$\frac{\partial V_i}{\partial x_{\alpha}} = \sum_j \sum_k \frac{\partial C_{ji}}{\partial x_{\alpha}} U_{jk} C_{ki} + \sum_j \sum_k C_{ji} U_{jk} \frac{\partial C_{ki}}{\partial x_{\alpha}} + \sum_j \sum_k C_{ji} \frac{\partial U_{jk}}{\partial x_{\alpha}} C_{ki}$$

and we will prove that the sum of the first two terms on the right-hand side is zero. The first term on the right-hand side is

$$\sum_{j} \sum_{k} \frac{\partial C_{ji}}{\partial x_{\alpha}} U_{jk} C_{ki} = \sum_{j} \frac{\partial C_{ji}}{\partial x_{\alpha}} \sum_{k} U_{jk} C_{ki} = \sum_{j} \frac{\partial C_{ji}}{\partial x_{\alpha}} C_{ji} V_{i}$$

The second term on the right-hand side is

$$\sum_{j} \sum_{k} C_{ji} U_{jk} \frac{\partial C_{ki}}{\partial x_{\alpha}} = \sum_{k} \frac{\partial C_{ki}}{\partial x_{\alpha}} \sum_{j} C_{ji} U_{jk} = \sum_{k} \frac{\partial C_{ki}}{\partial x_{\alpha}} C_{ki} V_{i}$$

Therefore the sum of the two terms above is

$$\sum_{j} \sum_{k} \frac{\partial C_{ji}}{\partial x_{\alpha}} U_{jk} C_{ki} + \sum_{j} \sum_{k} C_{ji} U_{jk} \frac{\partial C_{ki}}{\partial x_{\alpha}} = \sum_{j} \frac{\partial C_{ji}}{\partial x_{\alpha}} C_{ji} V_{i} + \sum_{k} \frac{\partial C_{ki}}{\partial x_{\alpha}} C_{ki} V_{i}$$
$$= V_{i} \frac{\partial}{\partial x_{\alpha}} \sum_{j} C_{ji} C_{ji} = V_{i} \frac{\partial}{\partial x_{\alpha}} 1 = 0$$

from which eq. (28) follows.

Additional References

¹ S. L. Li, X. Xu, C. E. Hoyer, and D. G. Truhlar, J. Phys. Chem. Lett. **6**, 3352 (2015).