Full-dimensional ground- and excited-state potential energy surfaces and state
couplings for photodissociation of thioanisole

Shaohong L. Li and Donald G. Truhlar

Citation: J. Chem. Phys. 146, 064301 (2017); doi: 10.1063/1.4975121
View online: http://dx.doi.org/10.1063/1.4975121

View Table of Contents: http://aip.scitation.org/toc/jcp/146/6
Published by the American Institute of Physics

[TT11 PHYSICS |

a | TODAY
l 5 I XX ]
D Physics Today Buyer's Guide

| Search with a purpose.

RIGHTS LI N K}



http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Li%2C+Shaohong+L
http://aip.scitation.org/author/Truhlar%2C+Donald+G
/loi/jcp
http://dx.doi.org/10.1063/1.4975121
http://aip.scitation.org/toc/jcp/146/6
http://aip.scitation.org/publisher/

THE JOURNAL OF CHEMICAL PHYSICS 146, 064301 (2017)

® CrossMark
¢
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Analytic potential energy surfaces (PESs) and state couplings of the ground and two lowest singlet
excited states of thioanisole (C¢HsSCH3) are constructed in a diabatic representation based on elec-
tronic structure calculations including dynamic correlation. They cover all 42 internal degrees of
freedom and a wide range of geometries including the Franck-Condon region and the reaction valley
along the breaking S—CH3 bond with the full ranges of the torsion angles. The parameters in the PESs
and couplings are fitted to the results of smooth diabatic electronic structure calculations including
dynamic electron correlation by the extended multi-configurational quasi-degenerate perturbation
theory method for the adiabatic state energies followed by diabatization by the fourfold way. The
fit is accomplished by the anchor points reactive potential method with two reactive coordinates and
40 nonreactive degrees of freedom, where the anchor-point force fields are obtained with a locally
modified version of the QuickFF package. The PESs and couplings are suitable for study of the
topography of the trilayer potential energy landscape and for electronically nonadiabatic molecular
dynamics simulations of the photodissociation of the S—CHj3 bond. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4975121]

. INTRODUCTION

Nonadiabatic transitions happen most efficiently near
conical intersection seams,!™ and the characteristics of cou-
pled potential energy surfaces near such seams are critical
for understanding many spectroscopic observables and elec-
tronically nonadiabatic processes.®” The photodissociation
of thioanisole, as well as that of similar molecules such as
phenol, thiophenol, and anisole,®% is a prototype of the
photo-induced hydrogen/methyl detachment and proton trans-
fer reactions mediated by conical intersections between a
bound !'mm* state and a repulsive 'mo* or 'no* state.3’*0
For thioanisole, the role that conical intersections play in the
mechanism has been studied both theoretically and experimen-
tally.3®#142 The proposed mechanism can be understood based
on Figure 1, a schematic of the relevant adiabatic potential
energy surfaces along the S-CH3 bond stretch coordinate, R. At
the equilibrium geometry (with R = 1.8 A), the molecule is first
excited (by an ultraviolet photon with energy 4.3—4.5 eV) from
the closed-shell ground state Sy to the bound singlet excited
state S; with ;tt* character. The reactive flux then transfers in
the region near the S;-S; conical intersection (labeled CI1)
to the repulsive no™ state and proceeds to the region near
the Syp-S; conical intersection (labeled CI2) with elongated
S—CH3 bond. Finally, the flux bifurcates near CI2, and the
molecule dissociates to either the Dy or D; state of thiophe-
noxyl radical plus methyl radical. In Figure 1 and also in the
remainder of this paper, “mx,” “mw*,” and “no*” are used as
diabatic labels based on the character of the diabatic states; the
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diabatic potential energy surfaces (PESs) are the diagonal ele-
ments of the diabatic potential energy matrix and are denoted
by Uii, Uy, Uss. On the other hand, “Sp,” “S1,” and “S;”
are used as adiabatic labels for the potential energy func-
tions of the adiabatic states, whose PESs are denoted by V;
<Vy<Vij.

Previous theoretical studies have focused on either the
local topography of the PESs at the minimum-energy conical
intersection (MECI) geometries or on the global topography of
the PESs along only two dimensions, namely the S—-CH3 bond
stretch and the C—C-S—C torsion.’®*! Although these two
coordinates are considered to be the most important “reaction
coordinates,” the PESs can still have important dependence
on the other 40 “spectator” degrees of freedom. In particular,
the conical intersection seam is multi-dimensional in nature,
and the reactive flux can access the seam or a low barrier
near the seam at geometries where the 40 “spectator” degrees
of freedom are away from their values for the equilibrium
geometry or the MECI geometry. Therefore, all degrees of
freedom can be important for nonadiabatic dynamical simu-
lations. This is a challenge because a set of full-dimensional
analytic potential surfaces and couplings has never previously
been presented for a system with this many degrees of freedom.
We shall address the challenge by using a diabatic representa-
tion. The advantage of a diabatic representation is that PESs
and state couplings are smooth scalars in a diabatic represen-
tation, whereas in an adiabatic representation the PESs have
cuspidal ridges at high-dimensional seams of conical inter-
section, and the state couplings or vectors become singular
at these ridges. Note that we define a diabatic representa-
tion as one that reduces the coupling of electronic states due
to nuclear momentum and nuclear kinetic energy “to a level

Published by AIP Publishing.
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R(A)

FIG. 1. Schematic cut of the adiabatic potential energy surfaces of thioanisole
along the S—C bond stretch coordinate, R.

comparable to the nonadiabatic coupling that occurs in the BO
representation in regions where the Born-Oppenheimer
approximation is a good approximation”® so they may be
neglected, and all the coupling that needs to be retained for
a realistic treatment of dynamics comes from the electronic
Hamiltonian. Furthermore, we assume that the fourfold way
diabatization scheme** produces a good approximation to such
a diabatic representation.

In the present work we present an analytic fit to the full-
dimensional diabatic PESs and diabatic state couplings of the
three lowest singlet states of thioanisole. Note that, following
the usual conventions, the couplings in the diabatic represen-
tation are called diabatic couplings, whereas the couplings
in the adiabatic representation are called nonadiabatic cou-
plings. The diabatic PESs are diagonal elements of the diabatic
potential energy matrix, and the diabatic couplings are off-
diagonal elements of this matrix; thus—as mentioned in the
previous paragraph—the diabatic PESs and diabatic couplings
are scalars. The scalar adiabatic PESs and vector nonadiabatic
couplings are also available from these fits since they are easily
calculated® by a diabatic-to-adiabatic diagonalization with a
small number of states, in particular three states in the present
case.

The present fits cover a wide range of geometries from the
Franck-Condon region to the dissociation of the S—CH3 bond.
By using the anchor points reactive potential (APRP) scheme
developed by our group,®*® we treat two coordinates, which
are called reactive coordinates, globally, and we treat other
coordinates by system-specific, reaction-coordinate-specific
molecular mechanics (MM). In constructing the PESs of
thioanisole, we have made two improvements of the APRP
scheme as compared to its previous employment: (1) we gen-
eralized the scheme, which originally was implemented with
one reactive coordinate, to include two reactive coordinates
(and the same kind of generalization could be used in the future
to treat more than two reactive coordinates); (2) we made the
fitting of the potential functions along the non-reactive coor-
dinates much more convenient by using a locally modified
version*’ of the QuickFF package*® for “automatic” force field
generation.

The PESs are full-dimensional in the sense that they
are functions of all the 42 internal degrees of freedom of
thioanisole. By construction, however, the PESs are most
accurate near the anchor points, which are the most impor-
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tant for the photodissociation of the S—CH3 bond. The PESs
are not appropriate for study of other reaction channels of
thioanisole.

The rest of this paper is arranged as follows. Section II
gives the technical details of the construction of the APRP
potential energy matrix. Section III compares the APRP poten-
tial energy matrix elements and the derived properties, such as
equilibrium and saddle point geometries, conical intersections,
excitation energies, and vibrational frequencies, with experi-
ment and with electronic structure calculations. Section IV is
a summary.

Il. METHODS AND COMPUTATIONAL DETAILS

A. Introduction

The APRP can be applied to a single potential energy
surface or to a diabatic potential energy matrix, whose diago-
nal elements are called diabatic potential energy surfaces, and
whose off-diagonal elements are called diabatic couplings. The
whole potential energy matrix is referred to as the “potential”
in this work. In the present case, we fit three diabatic sur-
faces and their couplings. The APRP scheme involves two
steps. In the first step of the present work we fit the dia-
batic potential energy matrix in the reactive degrees of free-
dom, which are called the primary and secondary degrees of
freedom.

First we review the fitting of a single one of the diabatic
potential energy surfaces. The reactive coordinates must be
able to describe any bond breaking, bond making, or bond
rearrangements and any other coordinates that have wider-
amplitude motion than can accurately be described by non-
reactive molecular mechanics. The reactive coordinates can
be subdivided into two groups: those with a strong coupling to
nonreactive degrees of freedom are called primary coordinates,
and those, if any, with a negligible coupling to nonreactive
degrees of freedom are called secondary coordinates. The
method that can be used for fitting the dependence of the sur-
face on the reactive degrees of freedom is completely general
and depends on the system under study; for the present appli-
cation it is described in Section II C 1. The dependence of the
potential on the reactive degrees of freedom is fitted with the
remaining coordinates fixed, for example, at their equilibrium
values in the reactant or product or at partially optimized values
with fixed secondary and tertiary coordinates; these remaining
coordinates are called the tertiary coordinates.

In the second step we add the dependence of the poten-
tial on the tertiary coordinates. This is done by identifying
a number of points, called anchor points, specified by their
values of the primary and secondary coordinates (the primary
coordinates differ among the anchor points, but the secondary
coordinates, if any, do not), and fitting a nonreactive molecular
mechanics potential to each surface and coupling in the tertiary
coordinates at each anchor point. The regional potentials at
the anchor points are then sown together into a single tertiary
potential by functions called tent functions. In this way the
potential as a function of the tertiary coordinates also depends
on, i.e., is coupled to, the primary coordinates. To make the
procedure more robust, the nonreactive molecular mechan-
ics potential is expressed in terms of Simon-Parr-Finlan
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coordinates®® for stretches (rather than the usual bare bond
extension coordinates) and trigonometric functions>? for bends
(rather than the usual bare bond angles). Because these coor-
dinates extend the region over which the fits are valid, as
compared to using the usual internal coordinates, we label the
anchor-point fits as regional potentials rather than local poten-
tials. Further details of the tertiary potential fits for the present
application are given in Section II C 2.

In the present case, we use one primary coordinate, one
secondary coordinate, and a set of 73 or 67 redundant inter-
nal coordinates as tertiary coordinates for diabatic potential
energy surfaces. We use two primary coordinates, no sec-
ondary coordinates, and a set of 8§ tertiary coordinates for
diabatic couplings. (Details are given in Sections II C 3
and II C 5.) The diabatic potential energy surfaces in the
primary coordinates and all the diabatic couplings are fit-
ted to the corresponding quantities obtained by the extended
multi-configurational quasi-degenerate perturbation theory
(XMC-QDPT)**2 followed by the fourfold way**>3-5 and
model space diabatization.® (Details are given in Section ITE.)
The diabatic potential energy surfaces in the tertiary coordi-
nates are fitted to those computed by Kohn-Sham density func-
tional theory (DFT)’”3® and linear-response time-dependent
DFT (TDDFT).”” (Details are given in Section IT E.)

Figure 2(a) shows our convention for numbering the
atoms. We do not distinguish elements for the numbering; for
instance, we have “C1” and “H9” rather than “C1” and “H1.”
We will refer to the atoms by “element + number” (e.g., S7), by
number only (e.g., 7), or by element only (e.g., S), depending
on the context.

15

* 914‘* 16

FIG. 2. (a) Numbering of atoms. (b) Definition of coordinates R and ¢; the
blue plane contains C2 and C6 and is normal to the C6—-C1-C2 plane.
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B. Primary and secondary coordinates

In the APRP scheme we need to define a set of “reactive”
internal coordinates that must be treated globally to describe
the reaction; in the present application of the APRP scheme,
these are primary and secondary coordinates. Primary coor-
dinates can have arbitrarily large amplitude of motion in the
reaction, and they have strong potential energy coupling to
other coordinates. Secondary coordinates can have arbitrarily
large amplitude of motion in the reaction and are treated glob-
ally as well, but they have weaker coupling to coordinates other
than the primary ones. For photodissociation of thioanisole, the
S—CHj3 bond stretch and C—C—S—C torsion are the conventional
internal coordinates that play the most prominent roles. In our
previous work® we studied the diabatic PESs of thioanisole
along these two coordinates, and we showed that they both play
significant roles in the adiabatic-to-diabatic transformation. A
more detailed examination, though, shows that the diabatiza-
tion depends most strongly on the orientation of the S—-CHj3
bond relative to the phenyl plane. The C—C—S—C torsion is a
good representation of this orientation only when C2, C1, C6,
and S are coplanar. Therefore, in the present work, in which
these four atoms are not constrained to be coplanar, we use
an alternative angular coordinate as a primary or secondary
coordinate (secondary for fitting the diabatic potential energy
surfaces and primary for fitting the diabatic couplings); in par-
ticular, we use the angle between the vector C6—C2 and the
projection of vector S—C8 on the plane defined by the vector
C6—-C2 and the normal vector of the C6—-C1-C2 plane. Here-
after we label this angular coordinate as ¢ and the S—C8 bond
length as R. They are defined explicitly as

R = |r7-g|, (D
Ie—2 - |Vp
cosp = ——,
[re—s] |Vp
Vx - I'7-8

@)

Vx = T2 X (rg_1 Xri-2),

where r;_; is the vector from atom i to atom j. These two coor-
dinates are illustrated in Figure 2(b). For treating the diabatic
potential energy surfaces, R is a primary and ¢ is a secondary
coordinate, whereas for treating the diabatic couplings, both R
and ¢ are primary. The key distinction between the treatments
of diabatic potential energy surfaces and diabatic couplings is
that the tertiary couplings depend on both R and ¢, while the
tertiary potential energy surfaces depend only on R, as will be
discussed in detail in Sections II C 2 and II C 5.

We note that some coordinates involving the S—CHj
bond such as the C—S—C bond angle can have large ampli-
tude of motion when the S—CH3 bond stretches and may
be treated as secondary coordinates. However, based on the
excessive energy of S; compared to the dissociation asymp-
tote and our previous work on a similar system, phenol,*?
we expect that the molecule will dissociate quickly once it
goes past CI1 into the repulsive region and will not have time
to distribute energy to such coordinates as the C—S—C bond
angle to have large amplitude of motion. Therefore, we treat
those coordinates as tertiary coordinates for simplicity. Our
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sample trajectories show that the molecule dissociates in less

than 0.5 ps after entering the repulsive region, which supports
our decision.

C. Anchor points reactive potential (APRP)
for constructing the diabatic potential
energy matrix

To apply the APRP scheme to thioanisole, the diabatic
potential energy matrix elements for diabatic states i and j are
written as

Uj(R, ¢,Q) = U PR, ¢) + U, (QIR, ¢), 3)

where R and ¢ denote the two reactive coordinates; Q denotes
collectively all the other internal coordinates, which are the ter-
tiary coordinates; and the notation f(Q | R, ¢) means a function
f of Q that depends parametrically on R and ¢.

The diagonal elements of U are the diabatic potential
energy surfaces and the off-diagonal elements are the diabatic
couplings. The two terms on the right-hand side of Eq. (3)
are respectively called reactive-coordinates diabatic potential
energy surfaces and tertiary diabatic potential energy surfaces
for i = j and are respectively called primary and tertiary dia-
batic couplings for i # j. The reactive-coordinates diabatic
potential energy surfaces and primary diabatic couplings are
fitted globally with general functional forms. The tertiary dia-
batic potential energy surfaces and diabatic couplings are fitted
regionally with MM functional forms. Standard MM fits are
local, by which we mean that they are valid only in a quadratic
or near-quadratic region around their central point, except
for torsions, which are usually fitted with more widely valid
trigonometric functions; our tertiary potential goes beyond
standard MM in two ways: (i) we use more widely valid
internal coordinates than those usually used in MM; (ii) we
tie several such MM fits (each centered at an anchor point)
together via tent functions of the primary coordinates. Thus the
molecular mechanics expressions in the tertiary diabatic poten-
tial energy surfaces depend parametrically on the primary
coordinates.

1. Reactive-coordinates diabatic potential energy
surfaces and primary diabatic couplings

As mentioned in Section II A, the reactive-coordinates
matrix elements are fitted to values calculated by XMC-QDPT
followed by fourfold way and model space diabatization.
These are single-point calculations at geometries on a two-
dimensional grid of R and ¢ values, while the other coordinates
are fixed at values of the Sy equilibrium geometry. These dia-
batic potential energy surfaces and diabatic couplings are then
fitted with general analytic functions.

For diabatic state st (corresponding to Sy in the Franck-
Condon region), the surface is fitted with the following
function including a Rydberg model potential®' term:

ULIR, ¢) = A1 = Di[1 + bi(R - Ryp)le 1 B-Ri)
+ By exp[—a1(R — R12)*1(1 - cos 2¢), )

where Ay, Dy, by, R11, B1, @1, and R, are parameters.
Diabatic state ™ (corresponding to Sy in the Franck-
Condon region) is energetically accessible only for small-R
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geometries, and it is fitted with the following function includ-
ing a Morse potential®> term:

Ul " AR, §) = Az + Da(1 — e 2RFe0y?
+ Bye @ RR2’ (| _ c032), (5)

where Ay, D7, by, Ry, Ba, a3, and Ry, are parameters.

For diabatic state no™ (corresponding to S; in the Franck-
Condon region), the surface is fitted with the following
function:

U3[;’2](R’ ¢) = A3 + D3eib3R + [336*03(R—R3)2

. C3€_4a3(R—R3)2] (1 = cos 2¢), ©)

where A3, D3, b3, B3, C3, a3, and R3 are parameters.
The primary diabatic couplings are fitted with

ULR, ¢) = By + B exp[-ay P (R - R{?)?| sin?
+ By exp[-af P (R - R}?)?|sin* g, (D)

R 9 = B e a1 - 77 2
+(cy " + Ry exp[~af VR] sindg,  (8)

ULR. ¢) = BY exp[-a() (R - RTV)] sin4¢
+ B(623) exp[—a(623)(R - R(623 ) )2] sin6¢, (9)

where Bg’), arl({”), R;{’]), and c](c’]) (i,j = 1,2, 3; k is an integer)
are parameters. These functional forms are chosen to have
the correct symmetry about ¢ = nm/2 (where n is an integer,
including zero), namely U1, is even and U3 and U»3 are odd.
(See the supplementary material for the explanation of this
symmetry.)

2. Tertiary diabatic potential energy surfaces

The tertiary diabatic potential energy surfaces are con-
structed via interpolation of MM-like potentials modeled at
predetermined anchor point geometries, each of which has
primary and secondary coordinates fixed at certain values
(referred to as “anchor point nodes” for the individual primary
and secondary coordinates and as “anchor point locations”
for the set of primary and secondary coordinates) and tertiary
coordinates relaxed by partial geometry optimization.

The tertiary diabatic potential energy surfaces are given
by
R (i) AGD
Ui Q@1 (R’ {R“” }a=1 )’ (10)

a=1

U (QIR) =

where A(ii) is the number of anchor point nodes for fitting
N
U™ where {Rf,’l)}a(:l) is the set of the nodes specifying these

i
anchor points, Ul.[i3](“) is tertiary surface i at anchor point node

a,and T, called a tent function, gives the weight of the anchor
point node in the interpolation. The tent functions are given by

I, q<q
(q-q)*
TV (g,{qa)22,) = . 1 <q<q,
( =) G-+ (@q-q)
0, otherwise

an
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(g _Qa—l)4

(@ - q9a)* +(q = qa1)*

T(a) (q’ {Qa }Z\:l) = (q - CIa+])4

(G = qar)* + (g — )"

0,

(¢ —qa1)*
4 4a] T qA1 <4< qa
T0(g. lquy) = (g =qa)" +(q = qa-1)
qd>Yaig=1) = 1, q>qx
0, otherwise
(13)

where g, is the value of ¢ at anchor point node a, and the
anchor point nodes are arran%ed in ascending order of ¢g,,.

The tertiary surface U Y@ at an anchor point location is
modeled by force field terms whose parameters are optimized
to reproduce the Hessian matrix at a partially optimized anchor
point geometry calculated by DFT and TDDFT. (The proce-
dure of optimizing the parameters will be discussed later in
this section.) In particular, it is written as

U 3l(a) _ U[’; (a) + Us(a) + UB(a) + UT(a) + UD(a), (14)

i rel,ii

where Ursl](a) is the energy of the partially optimized anchor
point geometry relative to the geometry with primary and
secondary coordinates fixed at their anchor point values and
tertiary coordinates fixed at values corresponding to the Sg
equilibrium geometry. Notice that Eq. (14) does not contain
the optional van der Waals terms or electrostatic terms of the
QuickFF procedure; they could be included in the general case
but were deemed unnecessary for the present problem. The last
four terms on the right-hand side of Eq. (14) are contributions
from bond stretches, valence angle bends, torsions, and out-
of-plane distances (defined as the distance d from one atom to
the plane formed by another three atoms).*® These terms are
given respectively by

_R@ \?

0,
Ui (R QZES“R( ) (1s)
Us“ (6, ZZkB(a)(cosé’ —cos0® 2, (16)

JIR1} O,peii
T(a) T(ll)
) Zkﬂ ;

D(u)( 2 Z kD(u)(d d(ll) ) (18)

- cos [nﬂ(qﬁ,, - ¢§)al)m)]) (17)

(TR1} 0,peii

where u runs over the appropriate tertiary coordinates (note
that Eq. (17) is equivalent to Eq. (14c) of Ref. 33); the k quan-
tities are force constants, the variables with a subscript O are
force field parameters representing the position of the min-
imum of the term, and the n parameters are dihedral multi-
plicities. The dihedral multiplicities are predetermined based
on local or regional symmetry, and the force constants and
minimum-position parameters are determined by the fitting
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Ga-1 £ 9 <qq
fora=2,...,A-1, (12)

da < 4 < qa+1

otherwise

[
procedure described in Section II C 3 rather than fixed at val-
ues for the partially optimized anchor point geometry. The
functional forms of the stretches, valence bends, and torsions
terms in Egs. (15)—(18) have better global behavior than sim-
ple harmonic terms. Notice that the force field used here has
no cross terms that couple different tertiary coordinates; this
would be a poor approximation if made in Cartesian coordi-
nates, but it is much safer to neglect cross terms when one uses
internal coordinates.%?

The tertiary coordinates used are all the (redundant) bond
stretches, valence bends, torsions, and out-of-plane distances
based on the connectivity of the atoms shown in Figure 2. They
are listed in Table I along with the dihedral multiplicities.

3. Determination of force field parameters for tertiary
diabatic potential energy surfaces

A four-step procedure is used to determine the force field
parameters for the tertiary diabatic potential energy surface
of each diabatic state. (1) A set of anchor point values of R
is chosen. (2) An anchor point geometry is obtained for each
anchor point value of R by partial geometry optimization on the
corresponding adiabatic state using DFT or TDDFT with the
constraint that R is fixed at the chosen node and ¢ fixed at 0°. (In
the original QuickFF procedure, force fields are constructed
around one location, which is the equilibrium geometry. Here
with multiple anchor point locations, partial optimization is
needed for each anchor point.) (3) The Cartesian Hessian
matrix is obtained for each partially optimized anchor point
geometry by DFT or TDDFT. (4) The force field parameters
are optimized against the DFT or TDDFT Hessian matrix. This
procedure is repeated for each of the three diabatic states.

For step (1), anchor g)omt nodes of R = 1.8, 2.2, 3.2, and
6.0 A are chosen for UH], R=18and 2.2 A for Uz‘?, and

=1.9,2.2,3.2, and 6.0 A for Ugl. All these anchor point
geometries have Cg symmetry, for which we can model the
dependence of the diagonal diabatic potentials on the tertiary
coordinates as being the same as the dependence of the adi-
abatic potentials on these coordinates; therefore we use the
Hessian matrix of the adiabatic state for modeling the tertiary
diabatic potential energy surfaces. The first anchor point value
is chosen to be at or near the Sy equilibrium value of 1.8 A.
(1.9 A is chosen for Ugl because at R = 1.8 A the partial
geometry optimization for this state does not converge.) The
last anchor point is chosen in the asymptotic region, and the
geometry optimizations at this anchor point were carried out
separately for the thiophenoxyl and methyl radicals.

Step (4) was carried out by using our own modified ver-
sion*” of the QuickFF package.*® For each anchor point,
QuickFF takes as input the anchor point geometry, the set
of internal coordinates and the corresponding force field
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TABLE 1. Tertiary coordinates used for modeling tertiary diabatic potential energy surfaces.?

Tertiary coordinates for anchor
points with R # 6.0 AP

Coordinate type

Tertiary coordinates for anchor
points with R = 6.0 A°

Bond stretches
Valence bends

Torsions

Out-of-plane distance®

C-C (6), C-H (8), C1-S7
C-C—C (6), C-C-H (10), C-C-S (2),
C-S-C, S-C-H (3), H-C-H (3)

d C-C-C-C (6,2), C-C-C-H (10,2),
C-C—C-S (2,2), H-C-C-H (4,2),
H-C-C-S (2,2), C-S—C-H (3,3)
H9-C1-C3-C2, H10-C2-C4-C3,
H11-C3-C5-C4, H12-C4-C6-C5,

H13-C1-C5-C6, S7-C2-C6-Cl1

C-C (6), C-H (8), C1-S7
C-C-C (6), C-C—H (10), C-C-S (2),
H-C-H (3)

C-C-C—C (6,2), C-C~C-H (10,2),
C-C-C-S (2,2), HC-C-H (4,2),
H-C-C-S (2,2)
H9-C1-C3-C2, H10-C2-C4-C3,
H11-C3-C5-C4, H12-C4-C6-C5,
H13-C1-C5-C6, S7-C2-C6-Cl,
H14-H15-H16-C8

#For bond stretches and valence bends, the number in parentheses, if given, is the number of coordinates of the given type; for
example, C—C (6) means six C—C bond stretches are used. If no number is given there is just one.

YInternal coordinates are chosen based on the connectivity in Figure 2.

“Internal coordinates are chosen based on the connectivity in Figure 2 except that C7 and C8 are disconnected due to R being

large.

dThe first number in parentheses is the number of coordinates of the given type, and the second number in parentheses is the

dihedral multiplicity.

¢Notation for out-of-plane distances: a-b-c-d denotes the distance from atom d to the a-b-c plane.

functions in Egs. (15)—(18), and the ab initio Cartesian
Hessian matrix. The internal coordinates are the tertiary coor-
dinates listed in Table I, plus the S7T-C8 bond stretch, the
C2—-C1-S7-C8 torsion, and the C6—~C1-S7-C8 torsion for
anchor points with R # 6.0 A. The last three coordinates
are closely correlated with primary and secondary coordi-
nates. They are needed for QuickFF to construct the force
field, but their corresponding potential functions are replaced
by the reactive-coordinates surface terms when the reactive-
coordinates and tertiary diabatic potential energy surfaces are
combined for the full surface. QuickFF optimizes the force
field parameters by optimizing the Cartesian Hessian derived
from the force field against the ab initio Hessian. The details
of how QuickFF derives force field parameters using infor-
mation in the ab initio Hessian matrix can be found in Ref.
48. With our improved force field functional forms, the proce-
dure is essentially the same, except that the simple quadratic
functions in Egs. (2.11) and (2.12) of Ref. 44 are replaced
by our improved functions, with the parameters to be fitted
being the ones in Egs. (15)—(18) of this paper. For asymptotic
anchor points with R = 6.0 A, we use force constants derived
from isolated thiophenoxyl and methyl radicals in order that
the diabatic potential energy surfaces will have the correct
asymptotic behavior.

4. Born-Mayer potential

To avoid the non-bonded carbons from coming too close
during a trajectory, we added additional Born-Mayer poten-
tials between all pairs of para carbon atoms (C1-C4, C2-CS5,
C3-C6) to all diagonal elements of the diabatic potential
energy matrix. The Born-Mayer potential is given by

Vem = B Z

i=1-4,2-53-6

exp(—ari;), (19)

where the parameters are set to B = 42 000 kcal mol~! and
a =358 A°1.%
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5. Tertiary diabatic couplings

Similar to tertiary diabatic potential energy surfaces, ter-
tiary diabatic couplings are built by interpolating the couplings
modeled at preselected anchor point locations. However, the
set of anchor point locations for the tertiary couplings is dif-
ferent from the set used for tertiary diabatic potential energy
surfaces, and throughout Section II C 5 we will use the term
“anchor point locations” to refer to this set for tertiary cou-
plings rather than to the set for tertiary surfaces. Unlike those
for tertiary diabatic potential energy surfaces, the anchor point
geometries for couplings differ from the S¢ equilibrium geom-
etry only in the values of R and ¢; the tertiary coordinates are
not optimized for fitting the couplings. The expression for the
tertiary couplings is

2 3
UPQIR. ) =50 Y > UF D@ (1 (R RS), )

a=1

a=1 b=1
x (10 (v 5], ) i %, (20)
¥(¢) = —cos 24,
yg = —cCos 2¢§.

The argument of the second tent function is chosen to be
y =—co0s2¢ so that it has the correct periodicity along ¢ and so
that the argument is monotonically increasing in ¢ € [0, 7t/2].
Equation (20) can describe the tertiary diabatic couplings for
geometries of any ¢ value by choosing anchor point nodes of
¢ only in [0, 7t/2]. The additional multiplicative factor s;; is
given by

si(p) =1, o on
513(9) = s23(¢) = sign(sin 2¢),
where the sign function is defined by
1, x>0
sign(x) =4 0, x=0. (22)
-1, x<0

The 8 factor is introduced because U, is even and U3 and
Uys are odd about ¢ = nyt/2 (where n is an integer, including
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zero). The double sum over anchor points in Eq. (21) will be
constructed, as described in Section II C 6, such that it is zero
at ¢ = nm/2 (where n is an integer, including zero) and that
the s;; factor does not cause discontinuity.

The U i[j3] so defined have periodicity along ¢ because of
the definition of y in Eq. (20) and the 8 factor in Eq. (21).
Such periodicity exists only for a relaxed scan along ¢, where
the molecule has Cg symmetry for ¢ = 0° or 90°. In practice,
however, we make an approximation of assuming such period-
icity for general geometries in the anchor point interpolation
along ¢.

A set of nonredundant internal coordinates is used to
expand the tertiary diabatic couplings. These coordinates are
different from those used for the tertiary diabatic potential
energy surfaces. We examined the magnitude of diabatic
couplings introduced by changing each angular coordinate
(valence bends, torsions, and out-of-plane bends), and we
chose only eight coordinates that are symmetric and make
the most significant contributions to the variations of the
couplings; these are listed in Table II.

The diabatic coupling at an anchor point,
sum of terms, each term corresponding to one coordinate,

Ui?](a’b)(Q) _ Z U.[3](a’b)(Qp)~ (23)
)i

Ued s o

i1

For most coordinates Q,,, the corresponding term in the
sum is a second-degree polynomial damped by a Gaussian
function,

Ul-[ji],(“’b)(Qﬂ) _ [ K@b) (Qﬂ B Qe#) + k@b (Qy _ Qe,ﬂ)z]

1,uij 2,pij
X exp [— (Qu - Cess)’ /0'2] , (24)

where the K parameters are to be fitted and the parameters with
subscript e are fixed at values for the Sy equilibrium geometry.
The Gaussian function is used to damp the diabatic couplings
when (Q, — Qe ) is large, because the polynomial may have
too large values for those unphysical distorted geometries. The
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parameter o is set to 100° so that it does not compromise the
physical region with small (Q, — Qe ;).

For the C-S—C bending coordinate (coordinate 8§ in
Table II), however, the term is a second-degree polynomial
of the cosine of the coordinate,

[31(a,b) _ (a,b)
ULN(Qy) = [K1“2) (cos O — cos Q)

1,uij
b 2
+ Kéawj) (cos Qy — cos Qe#) ] ,
for Qﬂ = chc. (25)

The reason for this treatment is that cosfcsc has better behavior
for large amplitude motion of fcsc, which can occur as R
increases and the S—-CHj3; bond weakens.

6. Determination of force field parameters for tertiary
diabatic couplings

A three-step procedure, different from the modified
QuickFF procedure used for the tertiary diabatic potential
energy surfaces, is used to numerically fit the polynomial coef-
ficients in Egs. (24) and (25). (1) A set of anchor point locations
is chosen and the corresponding anchor point geometries are
built. Every pair of (RS, (bg) corresponds to an anchor point
location. Every anchor point geometry has primary coordi-
nates specified by the anchor point location, with the other
coordinates fixed at values of Sg equilibrium geometry. (Par-
tial optimization is not used in this fit.) (2) For each anchor
point geometry, each coordinate in Table Il is in turn displaced
by -30°,-20°, -10°,-5°, -4°,-3°,-2°,-1°,1°,2°,3°,4°,5°,
10°,20°, 30° and the tertiary diabatic couplings are computed
by XMC-QDPT followed by the fourfold way and model space
diabatization. (3) The K parameters in Egs. (24) and (25) are
determined by fitting Eq. (24) or (25) to the difference of the
ab initio data from step (2) and the primary diabatic couplings.

For step (1), we choose RS = 1.97 and 3.5 A and ¢¢
=0°, 10°, 45°, 80°, and 90° as anchor point nodes. The two
anchor point nodes of R are chosen to be near the two conical
intersections where the state couplings are most important.

TABLE 1I. Coordinates along which tertiary diabatic couplings are modeled.?

Symmetry Symmetry
Coordinate Coordinate type Description (¢ =0°)° (¢ =90°)°
1 Out-of-plane bend 71629 a” a’
234 — $2.3.4.5 + P3.4.5.
) Ring puckering $12-3-4 — P2.3-45 T P3.4.5.6 a” a”
—P4-5-6-1 T P5-6-1-2 ~ P6-1-2-3
. . . —01.2:3-4 — ©2.3-4-5 + 2¢03.4.5.
3 Ring asymmetric torsion P12:3:4 7 2345 T 203456 a” NS
—4-56-1 = P5-6-1-2 + 2¢06-1-2-3
—601.23 +2623.4 — 63.4.
4 Ring asymmetric bend 123 234 7 P45 a’ NS
—0456 + 20561 — 0612
. . —0123 + 6034
5 Ring asymmetric bend 123 7 U345 a NS
—0O456+066.1-2
6 Asymmetric bend 0r.1.12 — Og.1-12 a’ a”
— 1234 + Pr3.4-
7 Ring asymmetric torsion P1234 T 42345 a” NS
—®4-5-6-1 + P5-6-1-2
8 Bend 0178 a’ a’

In the table, ¢ denotes torsion, & denotes bond angle, NS stands for “not symmetric,” and symmetries are for the Cy point group.

bey point group for geometries where ¢ = 0° and the symmetry plane is the coplanar C¢HsSC.

€Cs point group for geometries where ¢ = 90° and the C-S—C symmetry plane is perpendicular to the coplanar CgHsS.
dOut-nf—plane angle between vector C1-S7 and plane C1-C6-C2. The sign is determined by the sign of (ve.1 X v1.2)-V1.7, where

v;.j is the vector pointing from atom i to atom j.

RIGHTS L1 N Hig
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TABLE III. Vertical excitation energies (in eV) of thioanisole.?

So=S1 So-S2
Method (2A’) (1 A") Reference
APRP® 4.56 5.02 This work
EOM-CCSD/aug-cc-pV(T+d)Z 4.84 5.21 69
TD-MO06-2X/MG3S 4.94 5.05 69
TD-B3LYP/maTZ 4.60 4.82 69
TDA-7-HCTHhyb/6-31+G* 4.65 4.97 69
SA(3)-MC-QDPT(12,11)/maTZ 4.64 5.13 69
SA(3)-XMC-QDPT(12,11)/maTZ 464 513 69
SA(3)-MC-QDPT(12,11)/aug-cc-pV(T+d)Z  4.52 5.02 69
CR-EOM-CCSD(T)/aug-cc-pV(T+d)Z 4.53 5.03 69

4 All data are calculated at the equilibrium geometry optimized by M06-2X/MG3S, unless
specified otherwise. The references for methods and basis sets not described in this paper
can be found in Ref. 69.

bCalculated at the equilibrium geometry optimized by APRP.

For steps (2) and (3), for each anchor point location with
¢If = 10°, 45°, or 80°, ab initio calculations were carried out
and the K parameters in Eqgs. (24) and (25) are determined by
fitting Eq. (24) or (25) to the difference of the ab initio dia-
batic couplings and the already-determined primary diabatic
couplings. For each anchor point location with ¢C =0°or90°,

the K parameters are set to zero so that U [3)(a b) = 0 and that
the s;; factor in Eq. (20) does not cause dlscontmulty

D. Gradients, adiabatic potentials,
and nonadiabatic couplings

The gradients of diabatic matrix elements with respect to
Cartesian coordinates are given by the chain rule
oUj oU; 0
Y _ Z _‘Jﬂ, (26)
0xq 0q, 0xq
where x,, and g,, are Cartesian and internal coordinates and u
runs over all internal coordinates on which U; depends. The
derivatives 8¢, /0x, are given by the Wilson B matrix,® which
is coded in the FORTRAN PES subroutine.

The adiabatic potentials are obtained by diagonalizing the
diabatic potential energy matrix,

Vi = Z Z CiiUj Ci, 27
T

where C is the orthogonal matrix that diagonalizes U.
The gradients of adiabatic potentials and the nonadiabatic
couplings are given by®

iy = 22 o 2s)

TABLE IV. Sp—S; adiabatic and 0-0 excitation energies (in eV) of
thioanisole.?

Adiabatic 0-0
APRP 435 4.08
SA(3)-XMC-QDPT/maTZ//CASSCF/maTZ 4.36 422
Expt.® e 4.28

J. Chem. Phys. 146, 064301 (2017)

TABLE V. Geometric parameters of the Sy equilibrium geometry of
thioanisole.

Electron Electron
APRP MO06-2X? diffraction” diffraction®

Bond lengths A)

Cl1-C2 1.407 1.392 1.4024 1.391
C2-C3 1.405 1.390 1.3994 1.391
C3-C4 1.400 1.385 1.3954 1.391
C4-C5 1.405 1.391 1.3994 1.391
C5-C6 1.398 1.383 1.3934 1.391
C6-Cl1 1.412 1.397 1.4064 1.391
C1-S7 1.765 1.761 1.775 1.749
S7-C8 1.827 1.797 1.813 1.803
C-H (average) 1.092 1.084 1.120 1.096
Bond angles (deg)

C1-C2-C3 119.9 120.0 120.2 120.0
C2-C3-C4 120.7 120.8 120.8 120.0
C3-C4-C5 119.3 119.2 119.3 120.0
C4-C5-C6 120.5 120.4 120.6 120.0
C5-C6-C1 120.3 120.4 119.8 120.0
C6-C1-C2 119.3 119.1 119.3 120.0
C1-S7-C8 102.9 102.9 104.5 105.6

“Basis set: MG3S.

YReference 89.

“Reference 85.

dThis experiment did not distinguish the different C—C bonds in the phenyl; these values
were refined using B3LYP.

1 Uy .
> > sy
V-V 22 oy [](l;é])’

0 (i=))
(29)

F& = (il % ) =

where |i/;) is the ith adiabatic state. A proof of Eq. (28) is given
in the supplementary material.

TABLE VI. Geometric parameters of the S; equilibrium geometry of
thioanisole.

APRP TD-t-HCTHhyb?

Bond lengths A)

Cl1-C2 1.408 1.400
C2-C3 1.455 1.446
C3-C4 1.426 1.418
C4-C5 1.407 1.400
C5-C6 1.457 1.448
C6-Cl1 1.432 1.421
C1-S7 1.758 1.758
S7-C8 1.809 1.800
C-H (average) 1.094 1.094
Bond angles (deg)

C1-C2-C3 117.7 117.4
C2-C3-C4 118.6 118.4
C3-C4-C5 122.9 1233
C4-C5-C6 119.4 119.3
C5-C6-Cl 116.8 116.4
C6-C1-C2 124.6 125.2
C1-S7-C8 107.0 107.0

“See text for definition of adiabatic and 0-0 excitation energies.
PReference 36.
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3Basis set: jul-cc-pV(D+d)Z. Imaginary frequency of 53i cm™!
C-C-S-C torsional mode.

is present for the
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FIG. 3. Frequencies of Sq equilibrium geometry of thioanisole computed by
APRP and by DFT with M06-2X.

E. Additional computational details

The ab initio data used for constructing the reactive-
coordinates diabatic potential energy surfaces and all the
diabatic couplings were calculated by extended multiconfig-
urational quasidegenerate perturbation theory (XMC-QDPT)
followed by the fourfold way and model space diabati-
zation, with a mixed, minimally augmented basis set of
6-311+G(d)**%7 for carbon and hydrogen and MG3S% for
sulfur, denoted by maTZ in this paper (standing for minimally
augmented triple zeta). (The same basis set was denoted by
MB in Refs. 60 and 69.) Details of the calculations such as
active orbitals and diabatic prototypes, as well as detailed dis-
cussion about the diabatization, can be found in Refs. 56 and
60. The GAMESS"! electronic structure package was used
for these calculations.

The partial geometry optimizations and Hessian calcu-
lations for constructing the tertiary diabatic potential energy
surfaces were performed by Kohn-Sham DFT for the ground
state and linear-response TDDFT for the excited states.
The MO06-2X">73 exchange-correlation functional and the
jul-cc-pV(D+d)Z7+77 basis set were used for DFT. The
1-HCTHhyb’® functional and the jul-cc-pV(D+d)Z basis set
were used for TDDFT. The Gaussian 097 electronic structure
package was used for these calculations.

The minimum energy conical intersections (MECIs)
between adiabatic states i and j are obtained by minimizing

TABLE VII. Energies and geometric parameters of the S; saddle point and
S1-S» MECL

Coordinate S saddle point S1-S» MECI
Vy® (eV) 4.33 4.53

RY (A) 1.909 1.959

@€ (deg) 23.1 0.0
©2.1.78% (deg) 329 0.0
1234 (deg) 7.9 0.0
197_1_(,_2e (deg) 11.0 0.0

2 Adiabatic potential energy of S relative to the S energy at the Sg equilibrium geometry.
Y$7-C8 bond length.

€See Section II B for definition.

9dTorsions.

€Coordinate 1 in Table II.
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TABLE VIII. Values of primary and secondary coordinates at some key
geometries.

Geometry Description® R (A) ¢ (deg)
1 Planar minimum 1.809 0.0
2 Saddle point 1 1.811 6.1
3 Nonplanar minimum 1.867 22.0
4 Saddle point 2 1.909 23.1
5 Point along MEP? at 0.529 A 2.023 24.1
from geometry 4
6 Point along MEP® at 1.038 A 2.087 25.4

from geometry 4

4Minimum geometries, saddle point geometries, and MEP optimized with the APRP PES.
YMinimum energy path scaled to a reduced mass of 1 amu.

the following function using an in-house BFGS optimizer:®°

Vi+V

+a(Vi - V), (30)

where V; is the adiabatic energy of state i and the parameter
« is set to 10° Ey~2.

The geometry optimization, vibrational analysis, and min-
imum energy path calculations with the fitted APRP potential
matrices were done with POLYRATE.®' We have run thou-
sands of sample trajectories with the APRP potential matrices
interfaced to ANT®? to ensure they conserve energy and do
not visit unphysical geometries.

lll. RESULTS AND DISCUSSION
A. Excitation energies in the Franck-Condon region

Tables III and IV compare the vertical, adiabatic, and
0-0 excitation energies given by APRP to various electronic
structure methods and to experiment. Here vertical excitation
energy is defined as the difference of potential energies at the
So equilibrium geometry; adiabatic energy is defined as the
difference of potential energies of S; and Sg at their respec-
tive equilibrium geometry (S, is not considered since it does
not have a minimum); 0-0 excitation energy is defined as the
adiabatic excitation energy plus the difference of zero-point
vibrational energy of S; and Sy at their respective equilib-
rium geometry. (The zero point energies are computed in the
harmonic approximation.)

Table III shows that APRP compares well with the
best estimates of vertical excitation energy, which are the
ones given by completely renormalized equation-of-motion
coupled cluster theory with singles, doubles, and non-
iterative connected triples (CR-EOM-CCSD(T))*3#* with
the aug-cc-pV(T+d)Z basis set’*"7 and by SAQ3)-MC-
QDPT(12,11)/aug-cc-pV(T+d)Z. Table IV shows that the
adiabatic excitation energy given by APRP also compares
well with XMC-QDPT, while the 0-0 excitation energy is
underestima