
Model space diabatization for quantum photochemistry
Shaohong L. Li, Donald G. Truhlar, Michael W. Schmidt, and Mark S. Gordon 
 
Citation: The Journal of Chemical Physics 142, 064106 (2015); doi: 10.1063/1.4907038 
View online: http://dx.doi.org/10.1063/1.4907038 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/142/6?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Insights into mechanistic photochemistry of urea 
J. Chem. Phys. 132, 194308 (2010); 10.1063/1.3397067 
 
Photochemistry of the water dimer: Time-dependent quantum wave-packet description of the dynamics at the
S 1 - S 0 conical intersection 
J. Chem. Phys. 131, 134307 (2009); 10.1063/1.3226568 
 
A model Hamiltonian to simulate the complex photochemistry of benzene II 
J. Chem. Phys. 131, 064303 (2009); 10.1063/1.3197555 
 
Computation of conical intersections by using perturbation techniques 
J. Chem. Phys. 122, 104107 (2005); 10.1063/1.1866096 
 
Direct diabatization of electronic states by the fourfold way. II. Dynamical correlation and rearrangement
processes 
J. Chem. Phys. 117, 5576 (2002); 10.1063/1.1500734 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.84.2.167 On: Sat, 14 Feb 2015 19:01:28

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1576713568/x01/AIP-PT/JCP_ArticleDL_0115/AIP-2394_JCP_1640x440_Deputy_editors.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Shaohong+L.+Li&option1=author
http://scitation.aip.org/search?value1=Donald+G.+Truhlar&option1=author
http://scitation.aip.org/search?value1=Michael+W.+Schmidt&option1=author
http://scitation.aip.org/search?value1=Mark+S.+Gordon&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4907038
http://scitation.aip.org/content/aip/journal/jcp/142/6?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/132/19/10.1063/1.3397067?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/131/13/10.1063/1.3226568?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/131/13/10.1063/1.3226568?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/131/6/10.1063/1.3197555?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/122/10/10.1063/1.1866096?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/117/12/10.1063/1.1500734?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/117/12/10.1063/1.1500734?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 142, 064106 (2015)

Model space diabatization for quantum photochemistry
Shaohong L. Li,1 Donald G. Truhlar,1,a) Michael W. Schmidt,2 and Mark S. Gordon2
1Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota,
Minneapolis, Minnesota 55455, USA
2Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA

(Received 11 November 2014; accepted 19 January 2015; published online 11 February 2015)

Diabatization is a procedure that transforms multiple adiabatic electronic states to a new represen-
tation in which the potential energy surfaces and the couplings between states due to the electronic
Hamiltonian operator are smooth, and the couplings due to nuclear momentum are negligible. In
this work, we propose a simple and general diabatization strategy, called model space diabati-
zation, that is applicable to multi-configuration quasidegenerate perturbation theory (MC-QDPT)
or its extended version (XMC-QDPT). An advantage over previous diabatization schemes is that
dynamical correlation calculations are based on standard post-multi-configurational self-consistent
field (MCSCF) multi-state methods even though the diabatization is based on state-averaged MCSCF
results. The strategy is illustrated here by applications to LiH, LiF, and thioanisole, with the fourfold-
way diabatization and XMC-QDPT, and the results illustrate its validity. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4907038]

I. INTRODUCTION

The Born-Oppenheimer approximation decouples the
motion of electrons from that of nuclei in molecular systems,
and this leads to the concepts of adiabatic electronic states
and potential energy surfaces (PESs). The adiabatic electronic
states and their energies are calculated with fixed nuclear
positions, and the nuclei move in the potential created by
the electrons in a single electronically adiabatic state. This
approximation is valid when the electronic states are separated
by a large energy gap but breaks down near intersections or
avoided crossings where two or more electronic states become
close in energy and are consequently closely coupled.1–3 In
this case, the coupling of electronic states by the nuclear
momentum vector operators cannot be neglected, and more
than one adiabatic electronic state has to be taken into account
in the equations of motion for the nuclei. For N atoms,
the nuclear momentum couplings, often called nonadiabatic
couplings, are 3N-dimensional vectors that are unsmooth
near, and singular at, conical intersections, making them
cumbersome to use in dynamics simulations. Nevertheless,
by changing the electronic basis from the adiabatic states to
so-called diabatic states,4 it is possible to reduce the magnitude
of those vector couplings to be negligible for most purposes.

Sometimes the diabatic states are called “quasi-diabatic”
while “diabatic” is reserved for the basis in which the vector
couplings strictly vanish, but since strict diabatic states do
not exist in general,5 we—as do many others—simply use the
term “diabatic” to refer to bases in which the vector couplings
are negligible (or neglected) but do not necessarily vanish. In
a diabatic basis, the electronic states are still coupled by the
electronic Hamiltonian operator, and the couplings appear as
off-diagonal elements of the electronic Hamiltonian matrix,

a)Email: truhlar@umn.edu

but these couplings, usually called diabatic couplings, are
smooth scalars that are relatively easy to use in dynamics
calculations and are suitable for analytic representations.
Therefore, diabatic bases are preferable to adiabatic basis for
many aspects of dynamics calculations.

Diabatic states are not unique, and many methods have
been proposed for obtaining them for specific problems;4,6–31

for example, in some methods, this is done by enforcing the
smoothness of some molecular properties. Of special interest
are methods applicable to electronic structure calculations
that add dynamical correlation to multi-configurational self-
consistent field (MCSCF)-type wave functions32–36 since
currently these are the most reliable wave function approx-
imations for describing potential energy surfaces of closely
coupled electronic states. The present article is concerned
with quasidegenerate perturbation theory (QDPT) methods
in which the final step is the diagonalization of a low-
dimensional effective Hamiltonian in a model space where
the dimension is the number of adiabatic states of interest.
The most popular of such methods37–42 are in principle able
to treat several states in a balanced manner and recover a
large part of the dynamic correlation with a relatively modest
computational cost compared to the more expensive multiref-
erence configuration interaction (MRCI) or multireference
coupled cluster (MRCC) theories. Examples of such methods
are the state-averaged complete active space self-consistent
field method (SA-CASSCF) followed by second-order multi-
configurational quasi-degenerate perturbation theory (MC-
QDPT),37 extended MC-QDPT (XMC-QDPT),38 multistate
complete active space second-order perturbation theory (MS-
CASPT2),39 extended MS-CASPT2 (XMS-CASPT2),42 and
quasidegenerate second-order n-electron valence state pertur-
bation theory (QD-NEVPT2).40

The fourfold way18,19,21,29 is a diabatization method that
enforces the smoothness of wave functions by first construct-
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ing diabatic molecular orbitals (DMOs) by a threefold density
criterion and a sometimes employed fourth criterion based on
reference orbitals and then applying a configurational unifor-
mity step originally proposed by Atchity and Ruedenberg.13,15

The fourfold way was developed to have general applicability
to diverse types of electronic states and electronic excitation
problems. It was formulated in the context of SA-CASSCF
and MC-QDPT, but it is straightforwardly extended to the
other QDPT methods mentioned in the previous paragraph.
However, as currently formulated, the fourfold way with any
of these QDPT theories evaluates second-order perturbation
energies in the DMO basis. Although it is possible to formulate
QDPT in a way that is invariant to certain transformations
of orbitals (see, for example, Ref. 38 for the case of XMC-
QDPT), such a reformulation is computationally inefficient
and is not implemented in electronic structure packages. In the
original paper on applying the fourfold way with MC-QDPT,19

we pointed out the dependence of MC-QDPT energies on
orbital rotations, and we resolved the ambiguity by defining the
adiabatic energies as those calculated using the DMOs rather
than the canonical molecular orbitals (CMOs). In the original
work and subsequent work26,43–48 we found, when we checked,
only small differences between the two sets of adiabatic
energies; however, for a current application to thioanisole,
we found differences of up to 0.8 eV when using DMOs
obtained by the fourfold way and up to 0.05 eV when using
DMOs obtained by the threefold way. Therefore, we developed
the scheme presented here to give a diabatic potential energy
matrix that, when diagonalized, gives precisely the adiabatic
energies of standard QDPT with CMOs.

The diabatization strategy for MC-QDPT and XMC-
QDPT (denoted collectively as (X)MC-QDPT) developed
here is called model space diabatization (MSD). It utilizes
information from an initial CASSCF-level diabatization and a
standard QDPT calculation to perform a final diabatization at
the QDPT level. In this paper, we will use the fourfold-way di-
abatization at the CASSCF level and the XMC-QDPT method
to demonstrate the strategy, but by construction, MSD can
also be applied with other diabatization schemes30,49 or other
MCSCF-type wave functions41 for the initial diabatization
step. As will be shown later, the MSD scheme requires that the
MCSCF-level diabatization generates diabatic states that span
the same space as do the MCSCF adiabatic states for the subset
of states being considered, but its formulation does not involve
the details of the MCSCF-level diabatization. All information
needed for MSD is already generated by the MCSCF-level
diabatization and by standard QDPT calculations, and the
additional calculations only involve elementary matrix algebra
like multiplication and transpose, whose computational cost
and complexity are negligible compared to the MCSCF and
QDPT steps.

To test the new strategy, we choose three challenging test
cases, namely, the potential energy curves of the ground and
excited states of LiH, LiF, and thioanisole. These systems all
have state crossings and are challenging because the positions
of the crossings are sensitive to dynamical correlation; thus
the crossings occur at quite different places for MCSCF and
QDPT. To give the reader an example, Fig. 1 shows the
potential energy curves of the three lowest 1Σ+ states of LiF

FIG. 1. Adiabatic (V1−V3) potential energy curves of LiF as functions of
the internuclear separation as calculated by (a) SA-CASSCF and (b) XMC-
QDPT.

as calculated by SA-CASSCF and XMC-QDPT. (The details
of the calculations will be given later.) The difference of the
positions of the avoided crossings is clear, and this poses the
question of whether the new strategy can account for such
a shift of state crossings while keeping the potential curves
smooth, especially in the intermediate region between the two
state crossing locations.

The present article is about using model space quantities
in certain steps of the generation of diabatic states. As such, it
is not a paper about the fourfold way per se. Nevertheless, our
examples use the fourfold way, and hence, some discussion
of the fourfold way is useful as background. Some steps
of the fourfold way are automatic, but others are not. The
fourfold way produces DMOs, which are smoothly varying,
and then the transformation of the usual configuration state
functions (CSFs) written in terms of canonical (adiabatic)
MOs into orthogonal diabatic CSFs (CSFs written in terms
of DMOs) is unique. Next, one must specify the diabatic
prototype CSFs that produce smooth diabatic states. The
choice of diabatic prototypes near the equilibrium geometry
usually corresponds to what one would expect on the basis of
a valence bond analysis (for example, distinguishing a valence
excitation from a charge transfer one) or other conventional
way of classifying the character of the states (for example,
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distinguishing an n→ π* excitation from a π→ π* one), but
every molecule is different and has its own nuances so no
general prescription can be given. Ideally, one would need
only one diabatic prototype per diabatic state, but in practice,
one obtains smoother results if one adds some dominating
correlating configurations to the diabatic prototype lists. Once
the diabatic prototypes are specified, the method becomes
automatic, and it generates orthogonal diabatic state functions.
The resulting diabatic states will depend, to some extent, on
the choice of reference orbitals (if needed) in the fourth term of
the DMO generation and on the choice of diabatic prototypes
in the CSF transformation step, but if the choices made are
physically correct, the various results should be qualitatively
similar; the lack of uniqueness was already mentioned in an
earlier paragraph and is a well known issue in generating
diabatic states, i.e., unique diabatic states do not exist because
strictly diabatic states do not exist. An instructive analogy
is with multiconfiguration self-consistent-field calculations,
such as CASSCF and RASSCF. CASSCF results depend
quantitatively on the choice of active space, and RASSCF
results also depend quantitatively on the restrictions, but
in either case—if one makes physical choices—the various
results should be qualitatively similar. For a dissociation
process, the diabatic states might (but need not) correspond
to the lowest energy states at an asymptote. For example, in
an alkali hydride or alkali halide, one clearly has a mixture of
ionic and covalent states at equilibrium, but the ionic diabatic
state might cross several covalent states between equilibrium
and dissociation. In some experiments, the actual production
of ionic dissociated states might be energetically forbidden,
but a diabatic treatment of the photodissociation to produce
various neutral excited states will nevertheless require one to
have an ionic state included in the diabatic state list.

The present paper uses example of conical intersections
where two adiabatic states intersect. In general, one expects
that there are also points of confluence of three or more
potential energy surfaces.1 Although the method presented
here would be expected to be valid also for such cases, we
limit explicit discussion to the intersection of just two states.

The rest of the paper is organized as follows. In Secs. II A
and II B, we will review the fourfold-way diabatization and the
relevant theoretical aspects of (X)MC-QDPT (the differences
between MC-QDPT and XMC-QDPT have no effect on the
procedures, so we can discuss them both at the same time).
Section II C then introduces the MSD strategy and the detailed
algorithm for calculations. Section III presents the computa-
tional details of three test cases, namely, LiH, LiF, and
thioanisole, and Sec. IV presents the results and discussion.
Section V gives a summary.

II. THEORY

A. Review of the fourfold way

The fourfold way18,19,21,29 is a general diabatization
scheme based on configurational uniformity that generates
diabatic states spanning the same model space as the selected
adiabatic states; the diabatic states and the adiabatic states
are related by an orthogonal transformation. The fourfold

way was first formulated at the CASSCF level18 and then
extended to the MC-QDPT level19 and to include spin-orbit
coupling.45 At the MC-QDPT level, it can be used with diabatic
molecular orbitals obtained at either the MC-QDPT level19

or the CASSCF level.29 It has been successfully applied to
a variety of systems at both the CASSCF and MC-QDPT
levels.26,43–48 However, as mentioned in the Introduction, for
some cases, the original fourfold way at the MC-QDPT level
may give results that are quite different from the standard MC-
QDPT method. These problematic cases are the motivation for
developing the present MSD strategy.

The fourfold way generates diabatic states that are smooth
and retain their valence character for all molecular geometries
of interest; it accomplishes this by means of configurational
uniformity. In particular, the “valence character” of a diabatic
state is determined by a group of CSFs called diabatic
prototypes of which at least one is dominant at each
molecular geometry of interest, with the requirement that the
diabatic prototype groups corresponding to different diabatic
states cannot have any CSFs in common. For the many-
electron CSFs to be smooth functions of geometry, they
must be expressed in terms of smoothly varying one-electron
molecular orbitals (MOs), but the CMOs generated by SA-
CASSCF or indeed by any variational procedure often change
character due to avoided crossings and so are not suitable for
this purpose. The first step of the fourfold-way diabatization is
therefore to generate smoothly varying MOs, which are called
DMOs. We next review the procedure for obtaining DMOs
from SA-CASSCF wave functions.

In the inactive and external orbital spaces, the DMOs are
identical to CMOs since these orbitals are doubly occupied
or unoccupied in all the “internal” CSFs (CSFs generated
by distributing all active electrons in all active orbitals in
all possible ways, from which the CASSCF wave functions
are constituted) and thus inconsequential in characterizing
the internal CSFs. In the active orbital space, the DMOs are
obtained by an orthogonal transformation of the CMOs so that
they satisfy the “threefold density criterion” and, if needed, the
“maximum overlap of reference MOs” (MORMO) criterion.

The threefold density criterion is to maximize the
following functional of the orbitals:

D3= αNDNO+αRDON+αTDTD, (1)

where DNO, called the natural orbital term, measures how
close the MOs are to state-averaged natural orbitals; DON,
called the occupation number term, is the sum of the diagonal
elements of the one-particle density matrix of all the states;
and DTD, called the transition density term, is related to the
transition density matrix. The D3 functional is the weighted
average of these three functionals of the orbitals with the
weights usually taken as αN= 2, αR= 1, and αT= 0–0.5. The
threefold density criterion with these particular weights is
shown18 to generate satisfactory DMOs in many situations,
but there are difficult cases that require an additional criterion,
the MORMO criterion. The reference orbitals for the MORMO
criterion can be obtained in two ways. One way is to choose
a reference geometry at which the adiabatic states are already
approximately equal to the desired diabatic states and use the
threefold density criterion to obtain preliminary DMOs, from

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.84.2.167 On: Sat, 14 Feb 2015 19:01:28



064106-4 Li et al. J. Chem. Phys. 142, 064106 (2015)

which a subset of λ DMOs is chosen as reference orbitals.
Another way is to use appropriately modified CMOs at a
reference geometry, where the modification would typically
be to drop some components on all but one center. At
any geometry other than the reference geometry, λ DMOs
are constructed by maximizing a functional related to a
generalized “overlap” with the reference DMOs. The rest of
the DMOs are constructed by the threefold density criterion.

After the DMOs are generated, complete active space
configuration interaction (CAS-CI) calculations are carried
out in the DMO basis. These calculations give the same
wave functions and energies as CASSCF calculations in the
CMO basis. Dominant CSFs for each state are identified at
one or several key geometries and are grouped into diabatic
prototype groups. Finally, diabatic states at the CASSCF level
are constructed by maximizing the preponderance of one of the
CSFs in each of the diabatic prototype groups in one or another
of the diabatic CSFs. For diabatization at the MC-QDPT level,
one performs MC-QDPT calculations in the DMO basis (either
the CASSCF DMO basis or a new DMO basis determined
at the MC-QDPT level) and diabatizes the MC-QDPT wave
functions in the same manner.

In this paper, the calculations of fourfold way diabatiza-
tion at the XMC-QDPT level use only the CASSCF DMO
basis since this basis gives smoother diabatic potentials.29

B. Analysis of the (X)MC-QDPT wave functions

In this paper, we use Granovsky’s XMC-QDPT,38 which
is an extension of Nakano’s original MC-QDPT.37 The XMC-
QDPT and MC-QDPT differ in the choice of the zero-
order Hamiltonian. Granovsky showed that XMC-QDPT gives
smoother potential energy surfaces than MC-QDPT. However,
the choice of zero-order Hamiltonian is irrelevant to the
construction and analysis of our MSD strategy, and hence,
we outline here only the relevant theoretical framework
shared by XMC-QDPT and MC-QDPT (denoted together as
(X)MC-QDPT) and give an analysis of the wave functions.
For more details, we refer the readers to the original
papers.37,38,50

In (X)MC-QDPT, the zero-order wave function space is
partitioned into three parts: the P space including all CASSCF
states of immediate interest (also called the model space in this
article), the O space consisting of the other CASSCF states,
and the S space consisting of CSFs that have excitations
out of the active space (known as external CSFs). The P
and O spaces together form the CAS-CI space (R space)
spanned by the CSFs with active electrons distributed among
the active orbitals (known as internal CSFs). (The P, O, S,
and R spaces were denoted P0, P1, Q, and P, respectively,
in Ref. 19.) The O and S spaces together form the Q space
complementary to the P space. The zero-order wave functions
are chosen to be the CASSCF states in the R space and the
individual external CSFs in the S space. The corresponding
partitioning of the electronic Hamiltonian matrix in the basis
of zero-order wave functions is illustrated in Fig. 2, following
Ref. 38.

The (X)MC-QDPT method uses a unitary transformation
G to block-diagonalize the electronic Hamiltonian H in the

FIG. 2. Schematic of the partitioning of the electronic Hamiltonian matrix
into blocks corresponding to subspaces of the wave function space (see the
text for an explanation of the notation).

basis of zero-order wave functions

G−1HG= H̃. (2)

Here, H̃ is a block-diagonal matrix whose PQ and QP blocks
are zero; the QQ block is not of interest, and the PP block is
defined as the effective Hamiltonian matrix, Heff. Upon left-
multiplication of both sides of Eq. (2) by G, it can be written
as

*
,

HPP HPQ

HQP HQQ

+
-
*
,

GPP GPQ

GQP GQQ

+
-
= *
,

GPP GPQ

GQP GQQ

+
-
*
,

Heff 0
0 H̃QQ

+
-
,

(3)

where each block is a rectangular matrix. Diagonalization of
Heff gives eigenvectors and eigenvalues of Heff as well as of
H̃. For the ith eigenvector, we have

*
,

Heff 0
0 H̃QQ

+
-
*
,

mP, i

0
+
-
= *
,

HeffmP, i

0
+
-
= Ei

*
,

mP, i

0
+
-
, (4)

where mP, i is a column vector of the same dimension as the
P space; mP, i is an eigenvector of Heff, and we will call it a
“model state”; Ei is the corresponding eigenvalue. By right-
multiplying Eq. (3) by the model state, we have

*
,

HPP HPQ

HQP HQQ

+
-
*
,

GPP GPQ

GQP GQQ

+
-
*
,

mP, i

0
+
-

= *
,

GPP GPQ

GQP GQQ

+
-
*
,

Heff 0
0 H̃QQ

+
-
*
,

mP, i

0
+
-

= Ei
*
,

GPP GPQ

GQP GQQ

+
-
*
,

mP, i

0
+
-

(5a)

which yields

*
,

HPP HPQ

HQP HQQ

+
-
*
,

GPPmP, i

GQPmP, i

+
-
= Ei

*
,

GPPmP, i

GQPmP, i

+
-
. (5b)

Thus, we see that Ei is also an eigenvalue of the Hamilto-
nian matrix H in the chosen (finite) basis of zero-order wave
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functions. According to Eq. (5b), the eigenvector of the effec-
tive Hamiltonian, mP, i, and the (X)MC-QDPT wave function
(eigenvector of H), ψi, are related by

ψi = *
,

GPPmP, i

GQPmP, i

+
-
. (6)

Recalling that the Q space is composed of O and S spaces, we
can rewrite Eq. (6) as

ψi =
*...
,

GPPmP, i

GOPmP, i

GSPmP, i

+///
-

. (7)

In (X)MC-QDPT at the second order, as implemented in the
GAMESS51 electronic structure software package and as we
use it here, GPP is unity and the GOP part of GQP is zero,37 so
Eq. (7) becomes

ψi =
*...
,

mP, i

0
GSPmP, i

+///
-

. (8)

Note that all components of GSPmP, i are in the S space, and
therefore, all components of ψi in the CAS-CI space are from
mP, i. This means the model states are the projection of the
(X)MC-QDPT wave functions on the CAS-CI space at the
second order of perturbation. This is the key relationship
to be exploited by our proposed model space diabatization
strategy.

C. The MSD strategy

1. Notation

In a given basis, e.g., the zero-order wave functions des-
cribed above or the individual CSFs, an adiabatic or diabatic
wave function can be expressed as a column vector. For
example, in the CSF basis, a wave function can be written as

|v⟩=
NCSF
µ=1

vµ
�
CSFµ

�
, (9)

where NCSF is the number of CSFs. A vector v with compo-
nents vµ can be used to represent this wave function. Hereafter,
in this section, we use collections of such vectors {vi} (i runs
from 1 to the number of states) to represent the adiabatic
and diabatic states without explicit reference to the basis.

The CASSCF diabatic states {di} are given by an
orthogonal transformation of the CASSCF adiabatic states of
interest {ci}. This transformation is denoted BCD, and we have

di =

N
j=1

c jBCD
j i , (10)

where N is the dimension of the model space. The (X)MC-
QDPT model states {mi} (representing the same wave func-
tions as the mP, i in Sec. II B) are also obtained by orthogonally
transforming the CASSCF states, and the transformation is

denoted BCM,

mi =

N
j=1

c jBCM
j i . (11)

Its inverse transformation, BMC, that converts the model states
to CASSCF states, is the transpose of BCM,

BMC=
�
BCM�T. (12)

All of the transformations are represented by N×N orthogonal
matrices.

2. The MSD strategy applied with fourfold-way
diabatization and (X)MC-QDPT

To diabatize the (X)MC-QDPT states within the frame-
work of configurational uniformity, we seek a transformation
of the wave functions given by Eq. (8) such that each
diabatic state thus generated has the largest projection on
the configuration space of a specific diabatic prototype
group, i.e., that it is dominated by the configurations of this
group; the equations for such a transformation are given
by Atchity and Ruedenberg.15 The prototype groups for
(X)MC-QDPT diabatic states are taken to be the same as
for CASSCF diabatic states. Therefore, only the components
of the wave functions in the CAS-CI space are relevant for
the diabatization. Diabatizing the QDPT wave functions (Eq.
(8)) is equivalent to diabatizing the model states, resulting in
the same transformation. Since the model states span the same
N-dimensional model space as the selected CASSCF adiabatic
states, diabatization of the CASSCF states and of the model
states will result in exactly the same diabatic states. From
these discussions, we conclude that diabatic states obtained
by configurational uniformity from the (X)MC-QDPT wave
functions are equivalent within the CAS-CI space to the
diabatic states obtained from the CASSCF wave functions.

By virtue of this conclusion, the transformation from the
(X)MC-QDPT wave functions to the QDPT diabatic states,
BMD, is exactly the same as the transformation from the model
states to the CASSCF diabatic states. Such a transformation
is equivalent to first transforming the model states back to
CASSCF states and then transforming the CASSCF states to
the diabatic states

BMD=BMCBCD. (13)

The diabatic electronic Hamiltonian U (which is the poten-
tial energy matrix governing nuclear motions) is given
by similarity-transforming the diagonal adiabatic potential
energy matrix V whose diagonal elements are the (X)MC-
QDPT energies

U=
�
BMD�TVBMD, (14)

where BMD is an orthogonal matrix (unitary matrix if we were
using a complex treatment). All the necessary ingredients
(the matrices BMC, BCD, and V) are standard outputs of the
CASSCF-level fourfold way and the (X)MC-QDPT calcula-
tions. Additional calculations are simply matrix multiplication
and transposes.
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Although in this paper we discuss and apply the MSD
method with the fourfold way and (X)MC-QDPT, by construc-
tion, it can also be used with other MCSCF-level diabatization
and other QDPT methods if they produce the corresponding
BMC and BCD matrices. This is equivalent to the requirement
that the MCSCF-level diabatization and the QDPT generate
diabatic states and model states that span the same space as
do the MCSCF adiabatic states.

3. Consistency of the phases of wave functions

The consistency of the phases of wave functions is an
important technical issue that has to be handled carefully
when the strategy is applied to potential energy surfaces.
Any procedure that generates consistent phases would be
acceptable, and the best scheme probably depends on the
particular problem (for example, whether the system has an
even or odd number of electrons) and on the software used.
In the rest of this section, we discuss the general problem and
present one scheme (the one we used for the applications in
this paper) for ensuring consistent phases.

The wave functions are defined up to a phase factor eiθ,
which is ±1 for almost all practical calculations where the
wave functions are taken to be real. Accordingly, the signs of
the rows and columns of the transformation matrices depend
on the phases of both the wave functions being transformed
and the transformed wave functions. Although the absolute
phases are arbitrary, it is essential for calculating dynamics
that the phases be defined consistently from point to point.
In general, one can determine the phase along a path through
coordinate space (for example, along a trajectory) by enforcing
continuity of the signed matrix elements as a function of
coordinate change. This strategy is general and applies to the
case of either an even or an odd number of electrons.

In addition to the consistency of phases across different
geometries, there is consistency of a different type that is more
challenging to maintain, namely the consistency of the implicit
phases of wave functions in the different matrices at the
same geometry. In particular, the MSD strategy concatenates
two transformations obtained from two separate calculations,
namely, BMC from a CASSCF diabatization and BCD from a
(X)MC-QDPT, to calculate BMD and uses Eq. (14) to calculate
the diabatic potential energy matrix U. The signs of the matrix
elements of BMC and BCD are affected by the phases of the
many-electron wave functions involved in the transformations.
Whereas the phases of the diabatic states (affecting the signs
of the columns of BCD) and of the (X)MC-QDPT model states
(affecting the signs of the rows of BMC) are not important
since they influence eventually only the signs of the off-
diagonal elements of U (diabatic couplings), the phases of the
CASSCF adiabatic states are critical and must be consistent
in BMC and BCD; otherwise we would get an incorrect BMD

(the mathematical details behind this statement are given in
the Appendix). Unfortunately, standard implementations of
the methods do not automatically generate phases that are
consistent between the (X)MC-QDPT part of the calculation
(giving BMC) and the fourfold way part of the calculation
(giving BCD); nor do they generate phases consistent from
point to point in coordinate space. Nevertheless, we do not

need uniquely defined phases; we only need the phases to be
consistent. For systems with an even number of electrons, we
are able to ensure this by examining their CAS-CI coefficients.

We note that the signs of the CSFs and thus of the
CAS-CI coefficients can also be arbitrary because of the
undetermined phases of the orbitals, with the important
exception that closed-shell singlet CSFs with all occupied
orbitals being doubly occupied are unaffected by the signs
of orbitals, and the signs of their CAS-CI coefficients are
determined by the overall phase of the wave function only.
We used this exception in the scheme we used in this paper,
taking advantage of the fact that all systems considered in this
paper have an even number of electrons. For such systems,
we can determine the phases of the CASSCF states in the
(X)MC-QDPT and fourfold way calculations by the sign of
the CAS-CI coefficient of a closed-shell CSF, and we can then
adjust the signs of the rows of BCD so that it is consistent with
BMC. After attaining consistency between BMC and BCD at one
geometry, we can enforce the smoothness of the two matrices
at all geometries as a convenient way to ensure that BMC and
BCD are also consistent in phase for those geometries. Based
on this analysis, the scheme we used to adjust the signs of
the elements of BMC and BCD so that they are consistent in
the phases of the CASSCF states and across the molecular
geometry space of interest is as follows.

(1) Choose a molecular geometry where DMOs are close to
CMOs and find the CASSCF wave functions and their
CAS-CI coefficients.

(2) Choose a certain CSF with all occupied orbitals doubly
occupied, for example, the ground-state closed-shell CSF.
Examine its CAS-CI coefficient for each state, whose sign
is used as the “indicator” of the phase of that state. Note
that in the diabatization output, the CSFs are in the DMO
basis and their coefficients are different from those in the
CMO basis in the (X)MC-QDPT output. However, they
will be close when DMOs are close to CMOs.

(3) If for the ith CASSCF state the sign of the “indicator”
coefficient is different in the fourfold way and (X)MC-
QDPT, then change the signs of all elements of the ith
row of BCD. This adjustment will account for the different
phases of the ith CASSCF state in the two calculations.
Do this for all the CASSCF states.

(4) The matrix BCD, adjusted according to the steps above,
now becomes a reference for nearby geometries. At such
adjacent geometries, the signs of the matrix elements of
BMC and BCD are determined as follows. By changing
the signs of any rows and columns of the matrices at the
current geometry in all possible ways, we maximize an
overlap-like function M for BMC and BCD, respectively,

M =


i, j
B(ref)
i j B(curr)

i j , (15)

where Bi j are elements of matrix B, which is either BMC

or BCD; the sum is over all matrix elements; superscripts
“ref” or “curr” mean the matrix is for the reference or
current geometry. The current geometry is then used as
the new reference and the matrices for the next adjacent
geometry are adjusted in the same manner. We can follow
a path of geometries and repeat this step for all geometries
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of interest. This is equivalent to enforcing the smoothness
of the transformation matrices across the geometries,
which is more efficient than applying steps (1)-(4) at each
geometry individually. Of course, one can use steps (1)-(4)
to check the results if needed. The path to follow can be
general; for example, it can encircle a conical intersection,
in which case the adiabatic wave functions change sign
due to the geometric phase effect52 while the diabatic wave
functions do not.

The procedure of ensuring the consistency in the phases
of matrices across different geometries is applicable to any
system. However, the procedure used here for making the
phases of CASSCF wave functions consistent in BMC and
BCD at a given geometry is limited to systems with an even
number of electrons since it utilizes the CI coefficients of a
singlet CSF with all occupied orbitals being doubly occupied;
there is no such CSF for systems with an odd number of
electrons. For open shell systems, one practically convenient
alternative is to try all possible combinations of the phases
of CASSCF wave functions in BMC and BCD and generate a
set of diabatic potential energy curves for each combination
of phases following a path while ensuring the consistency
across the path. By looking at the sets of potential energy
curves, one should be able to select the correct one, because
the curves generated with consistent phases should be smooth
and reflect the different positions of state crossings in the
CASSCF-level and (X)MC-QDPT-level diabatizations. This
procedure is convenient due to the fact that there are only a
limited number of combinations of phases (2N−1 combinations
for a model space of dimension N where N is usually a
small number in practical calculations of coupled potential
energy surfaces) and that the procedure of generating diabatic
potential energy curves using MSD is very efficient without
the need of additional electronic structure calculations. More
efficient schemes can probably be devised, but they will
probably be software dependent.

III. COMPUTATIONAL DETAILS

All SA-CASSCF, fourfold-way diabatizations, and XMC-
QDPT calculations were carried out with the GAMESS51

software package. Intruder state avoidance53 for XMC-QDPT
was used throughout with the energy denominator shift
parameter51 set equal to 0.02. The model space diabatization
strategy was performed, using in-house developed codes,
to extract the needed information from the outputs of the
CASSCF diabatization and XMC-QDPT calculations, to
adjust the phases of the matrices, and to calculate the diabatic
potential energy matrices. The strategy was applied to the
potential energy surfaces of three molecules: LiH, LiF, and
thioanisole. The fourfold way at the XMC-QDPT level was
also performed, with CASSCF DMOs in all cases, on these
molecules for comparison.

The potential energy curves of the three lowest 1Σ+ states
of LiH were calculated with SA-CASSCF averaging over the
three states with equal weights, and with XMC-QDPT with
a three-dimensional model space, for internuclear distances

from 1.5 to 6.0 Å. The coordinate system is defined by
putting Li at the origin and H on the positive z axis. The
active space consists of two electrons in five orbitals, which
have the character of 2s and 2pz of Li and 1s, 2px, and
2py of H. Further increase of the active space results in no
qualitative difference in the potential energy curves. The basis
set used was aug-cc-pVDZ.54 The SA-CASSCF calculations
were constrained to A1 states in C4v spatial symmetry. The
XMC-QDPT calculations were carried out with C1 spatial
symmetry.

The potential energy curves of LiH were diabatized using
the fourfold way. The threefold density criterion with param-
eters αN = 2, αR = 1, and αT = 0.5 is sufficient to generate
satisfactory DMOs. The diabatic prototypes include one CSF
for each state, corresponding nominally to configurations
(1sH)2, (1sH)(1sLi), and (1sH)(1pz,Li).

The potential energy curves of the three lowest 1Σ+ states
of LiF were calculated with SA-CASSCF by averaging over
the three states with equal weights, and with XMC-QDPT with
a three-dimensional model space, for internuclear distances
from 3.0 to 8.0 Å. The coordinate system is defined by putting
Li at the origin and F on the positive z axis. In C2v spatial
symmetry, the active space consists of two electrons in eight
orbitals, which have the character of one s and one py on
Li and one s, one py, two px, and two pz on F. (Here, the
labeling of x and y is arbitrary and interchangeable; notice,
however, that the C2v symmetry does not treat the degenerate
x and y components of the π space equivalently.) Further
increase of the active space results in no qualitative difference
in the potential energy curves. The basis set used was aug-cc-
pVTZ.54,55 The SA-CASSCF and XMC-QDPT calculations
were constrained to A1 states in C2v spatial symmetry.

The potential energy curves of LiF were diabatized
using the fourfold way. The threefold density criterion with
parameters αN = 2, αR = 1, and αT = 0.5 is sufficient to
generate satisfactory DMOs. The diabatic prototypes include
one CSF for each state, corresponding nominally to three
configurations: closed-shell Li+F−, excitation (pz ,F)→ (sLi)
from the closed shell, and excitation (py,F)→ (py,Li) from the
closed shell.

The geometry of thioanisole was first optimized by den-
sity functional theory with the M06-2X exchange-correlation
functional56,57 and the MG3S basis set58 using the Gaussian
0959 software package. The optimized geometry has Cs
symmetry, and the coordinate system is defined by taking
the symmetry plane as the xy plane with the Ph-S bond on the
x axis. The potential energy curves of the three lowest singlet
states of thioanisole, which are two A′ and one A′′ states, were
calculated along the S–CH3 bond distance coordinate from 1.8
to 4.0 Å while other coordinates were fixed at their values at
the equilibrium geometry, with SA-CASSCF averaging over
the three states with equal weights and XMC-QDPT having
a three-dimensional model space. The active space consists
of 14 electrons in 13 orbitals, which have the character of
three π and three π* orbitals on the phenyl ring, one σ and
one σ* orbital on the Ph–S bond, one σ and one σ* orbital
on the S–CH3 bond, and one s, one pz, and one d orbital on
the sulfur. (The d orbital is a combination of dxz and dyz,
and its orientation changes with the S–CH3 distance.) The σ
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and σ* canonical orbitals on the S–CH3 bond become more
localized when the diabatic orbitals are formed, as discussed
below. The basis set used is a mixed one with 6-311+G(d)60,61

for C and H and MG3S58 for S. The SA-CASSCF and
XMC-QDPT calculations were carried out in C1 spatial
symmetry.

The potential energy curves of thioanisole were diabatized
using the fourfold way. The threefold density criterion
with parameters αN = 2, αR = 1, and αT = 0.5 together with
the MORMO criterion was used to generate DMOs. Two
MORMO reference orbitals were used. One of them was
prepared by taking a π CMO at rS-CH3= 4.0 Å and keeping its
components in the atomic orbitals (AOs) of Ph–S and dropping
the components in the AOs of CH3. The other one was prepared
by taking a sulfur py-like CMO and keeping its components
in the AOs of sulfur only. (The shapes of the two reference
orbitals are given in the supplementary material.62) With this
choice of MORMO reference orbitals, the DMOs are close
to CMOs except that at short S–CH3 distances, the σ and σ*
CMOs on the S–CH3 bond become a py-like DMO on sulfur
and a sp3-like DMO on CH3.

The selection of MORMO reference orbitals and diabatic
prototypes is complicated because we chose them to be appro-
priate for calculating global potential energy surfaces, not just
for the local cuts presented here. The diabatic prototypes are
chosen as follows. For conciseness of description, we define
a reference CSF corresponding to the closed-shell [Ph–S]−

anion, with the bonding- and non-bonding-like DMOs on Ph-
S doubly occupied (one s, one py, and one pz orbital on sulfur,
three π orbitals on Ph, and one bonding orbital on the Ph-S
bond) and the other anti-bonding-like orbitals on Ph–S and
the sp3-like orbital on CH3 unoccupied. The prototype for
the first state is one CSF corresponding to a single excitation
from the py-like orbital on sulfur to the sp3-like orbital on
CH3. Prototypes for the second state are three CSFs, two
corresponding to single excitations from π to π*, and the
other one corresponding to a double excitation from the pz-
like orbital on sulfur to a π* orbital on Ph-S and the sp3-like
orbital on CH3. Prototypes for the third state are two CSFs, one
corresponding to a single excitation from the pz-like orbital on
sulfur to the sp3-like orbital on CH3, the other corresponding
to a single excitation from a π orbital to the sp3-like orbital
on CH3.

IV. RESULTS AND DISCUSSION

A. LiH

The ionic-covalent crossing of LiH is a classic problem
whose study dates back to the early days of quantum
chemistry.63,64 The lowest three 1Σ+ states of LiH, denoted
here as V1, V2, and V3, are one ionic [(1sH)2] and two covalent
[(1sH)(2sLi), (1sH)(2pz,Li)] states. The adiabatic and diabatic
potential energy curves given by SA-CASSCF and the fourfold
way are shown in Fig. 3(a). The curve of V3 is unsmooth at
internuclear distance∼2.6 Å because it has an avoided crossing
with a higher state, and it also affects V1 and V2 via state
averaging. However, the higher state is not calculated since
it has no significant influence on the diabatization. The ionic

FIG. 3. Potentials and couplings for LiH as functions of the internuclear
separation as calculated by SA-CASSCF and the fourfold way at the CASSCF
level. (a) Adiabatic (V1−V3; solid lines) and diabatic (U1−U3; open symbols)
potential energy curves and (b) the squared diabatic couplings (Ui j)2 between
diabatic states i and j (i, j = 1-3).

diabatic state U1 transforms smoothly from adiabatic state V1
near the equilibrium bond length of 1.595 Å (Ref. 65) to V3
in the dissociation limit as the internuclear distance increases.
The two covalent diabatic states U2 and U3 change from V2
and V3 at short bond lengths to V1 and V2, respectively, at the
dissociation limit. There are two diabatic crossings, one at 2.8-
2.9 Å between U1 and U2 and the other at ∼3.7 Å between U1
and U3. The squared diabatic couplings shown in Fig. 3(b) are
overall smooth except a small “kink” at rLi-H∼ 2.5 Å caused
by the sudden change of character of V3. The couplings peak
in the region where the diabatization mixes different adiabatic
states and they decrease toward zero in the asymptotic region,
as expected.

The adiabatic potential energy curves given by XMC-
QDPT are shown in Fig. 4 together with the ones given by
SA-CASSCF for comparison. The zero of energy for each
theory is chosen to be the S0 energy at rLi-H = 6.0 Å given
by that theory. The figure shows that XMC-QDPT deviates
from SA-CASSCF significantly for S0 at short bond lengths,
for S1 in the intermediate region, and for S2 at the dissociation
limit. This is because in those regions the particular adiabatic
state has ionic character. The dynamic correlation introduced
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FIG. 4. Adiabatic (V1−V3) potential energy curves of LiH as functions of
the internuclear separation as calculated by SA-CASSCF (solid lines) and
XMC-QDPT (open symbols). The zero of energy is set to be the ground-state
energy at dissociation limit (rLi-H= 6.0 Å) given by the respective theories.

by XMC-QDPT for the covalent states is similar for different
internuclear distances, leading to an overall downshift of the
absolute energies without significant effect on the relative
energies, while the dynamic correlation for the ionic state is
more pronounced, resulting in further lowering of the energies.

Because of this, the diabatic crossing between the ionic and a
covalent state should occur at different internuclear distances
in SA-CASSCF and in XMC-QDPT. Such a difference has
to be incorporated by the transformation BMC that converts
XMC-QDPT model states to CASSCF states since BCD, the
transformation of CASSCF adiabatic states to diabatic states,
has no information about this difference.

The XMC-QDPT-level diabatic potential energy curves
given by the MSD strategy are shown in Fig. 5(a). The sign of
BCD has been adjusted for rLi-H= 1.5 following steps (2)–(4)
discussed in Sec. II C 3 as well as for all other rLi-H following
step (5) to ensure the consistency of phases in BMC and BCD

for each geometry and consistency over all geometries. The
diabatic crossings occur at 3.0-3.1 Å between U1 and U2 and at
4.2-4.3 Å between U1 and U3, both at longer rLi-H compared to
CASSCF. To emphasize the significance of phase consistency,
diabatic potential energy curves obtained with inconsistent
phases in BMC and BCD (but the individual matrices are smooth
over different geometries) are also given in Figs. 5(b)–5(d) for
comparison. (There are four possible combinations of the signs
of rows in a 3×3 matrix BCD, with BCD and −BCD considered
as the same, only one of which is consistent with a given BMC.)
The diabatic curves in Figs. 5(b) and 5(d) are still smooth, but
the shapes are incorrect. For instance, in Figs. 5(b) and 5(c),
the crossing between U1 and U3 occurs at a similar position
as for CASSCF diabatization, and the same happens for the

FIG. 5. Adiabatic (V1−V3; solid lines) and diabatic (U1−U3; open symbols) potential energy curves of LiH as functions of the internuclear separation as
calculated by XMC-QDPT and the MSD strategy with transformation matrices corresponding to (a) consistent phases and ((b)–(d)) inconsistent phases of the
wave functions. Only (a) is the proper result from the correct application of the MSD strategy (indicated by the check mark, as opposed to a red x for the other
cases).
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crossing between U1 and U2 in Fig. 5(d). The squared diabatic
couplings shown in Fig. 6 corresponding to the diabatization
in Fig. 5(a) are qualitatively similar to those at the CASSCF
level in Fig. 3(b).

For this system, the DMOs generated by the threefold
density criterion are close to CMOs, and as a result, the
XMC-QDPT energies in the DMO basis differ only slightly
from those in the CMO basis (mean unsigned deviation= 0.01
eV, maximum deviation = −0.03 eV); therefore, we have an
additional check for the diabatic curves generated by the MSD
strategy, namely, to compare them to those generated by the
fourfold way at the XMC-QDPT level. Figure 7 shows they
match well, further verifying the validity of the MSD strategy.

B. LiF

The potential energy curves of the ground X1Σ+ and the
excited 11Σ+ states of LiF also provide a challenging case
for electronic structure methods because of their intrinsically
multi-configurational character (usually called multireference
character) when the bond stretches and because of the ionic-
covalent avoided crossing66,67 at internuclear distance rLi-F ∼
7.2 Å.67 On the left side of the avoided crossing where rLi-F is
less than 7.2 Å, the X1Σ+ state has ionic character and the 11Σ+

state has covalent character, while the character of the two states
switches on the other side of the crossing. Obtaining the correct
distance for the avoided crossing depends on calculating the
asymptotic energies of the ionic and covalent states accurately,
and this requires a very high level calculation, especially for F−.
However, the present work is focused on diabatization method-
ology, not on obtaining a converged calculation of the crossing
point. As for LiH, the ionic state of LiF is more sensitive than the
covalent states to dynamic correlation, and SA-CASSCF and
XMC-QDPT give significantly different locations of the ionic-
covalent avoided crossings as discussed below. It therefore
constitutes another difficult test case for MSD which utilizes
information from diabatization at the CASSCF level to perform
diabatization at the XMC-QDPT level.

The adiabatic and diabatic potential energy curves calcu-
lated by SA-CASSCF and the fourfold-way diabatization are
shown in Fig. 8(a). The ionic diabatic state U1 corresponds

FIG. 6. Squared diabatic couplings (Ui j)2 between diabatic states i and j (i,
j = 1-3) of LiH as functions of the internuclear separation as calculated by the
MSD strategy.

FIG. 7. Adiabatic and diabatic potential energy curves of LiH as functions
of the internuclear separation. Black lines: adiabatic curves calculated by
XMC-QDPT with CMOs. Red lines: diabatic curves calculated by MSD.
Black triangles: adiabatic curves calculated by XMC-QDPT with CASSCF
DMOs. Red circles: diabatic curves calculated by the fourfold way at the
XMC-QDPT level with CASSCF DMOs.

to the adiabatic state V1 at short Li-F distances, to V2 at
intermediate distances, and to V3 at long distances, similar
to LiH. The diabatic crossings occur at 4.1–4.2 Å between the
ionic U1 and covalent U2 and at ∼7.0 Å between U1 and the
covalent U3. The squared diabatic couplings shown in Fig. 8(b)

FIG. 8. Potentials and couplings for LiF as functions of the internuclear
separation as calculated by SA-CASSCF and the fourfold way at the CASSCF
level. (a) Adiabatic (V1−V3; solid lines) and diabatic (U1−U3; open symbols)
potential energy curves; (b) the squared diabatic couplings (Ui j)2 between
diabatic states i and j (i, j = 1-3).
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FIG. 9. Adiabatic (V1−V3; solid lines) and diabatic (U1−U3; open symbols) potential energy curves of LiF as functions of the internuclear separation as
calculated by XMC-QDPT and the MSD strategy with transformation matrices corresponding to (a) consistent phases (indicated by a check mark) and ((b)–(d))
inconsistent phases (indicated by a red x) of the wave functions. Only the one with the check mark is the proper result from the correct application of the MSD
strategy.

are again smooth and decrease toward zero in the asymptotic
region.

The XMC-QDPT adiabatic and diabatic potential energy
curves are shown in Fig. 9(a). The adiabatic curves are
considerably different from the CASSCF ones due to the
significantly different amounts of dynamic correlation for
different states and at different geometries. As a consequence,
the avoided crossing between S0 and S1 occurs at much longer
rLi-F, and the avoided crossing between S1 and S2 vanishes
in the calculated bond distance range. These differences are
fully captured by the MSD strategy. The resulting diabatic
potential energy curves have only one crossing at ∼6.1 Å
between U1 and U2. Like what we have done for LiH, the
diabatic curves of LiF generated from inconsistent BMC and
BCD are shown in Figs. 9(b)–9(d). It is even more obvious
here that the consistency of phase is essential for the correct
diabatization, otherwise the diabatic curves will exhibit erratic
shapes. (There are exceptions for which the phase is practically
unimportant, to be discussed in Subsection IV C.) The squared
diabatic couplings, shown in Fig. 10(a), have small bumps at
∼4.5 Å and ∼7.1 Å but the curves are still overall smooth.
We note that the bumps originate from the fourfold way rather
than the MSD strategy, as explained in the following.

As for LiH, the DMOs are also similar to CMOs for
LiF and so the XMC-QDPT energies in the DMO basis are
essentially the same as the standard XMC-QDPT energies

in the CMO basis. Consequently, the fourfold way at the
XMC-QDPT level is in principle equivalent to MSD. Indeed,
they give essentially the same diabatic potential curves,
differing by less than 0.01 eV (not shown here). The squared
diabatic couplings (Fig. 10) given by the two schemes are
also essentially the same despite some numerical differences.
Obviously, the bumps at ∼4.5 Å and ∼7.1 Å are also present in
the curves given by the fourfold way at the XMC-QDPT level
(Fig. 10(b)), showing that it is not an inaccuracy introduced
by MSD. Nonetheless, this “unsmoothness” is minor without
noticeable influence on the potential energy curves and should
not be a problem.

To test the sensitivity of the MSD strategy to using a
model space of a different dimension, calculations were also
carried out by SA-CASSCF averaging over only two states
(again with equal weights) and with a two-dimensional model
space for XMC-QDPT. The computational details and results
are reported in the supplementary material.62 The conclusions
about the success of the MSD strategy are unchanged.

C. Thioanisole

Thioanisole has 66 electrons, which is rather larger than
is typical for a system used for testing new methods. We chose
it because the use of MORMO reference orbitals in fourfold-
way diabatization results in DMOs that are significantly
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FIG. 10. Potentials and couplings of LiF as functions of the internuclear
separation as calculated by MSD. (a) Squared diabatic couplings (Ui j)2
between diabatic states i and j (i, j = 1-3) and (b) the fourfold way at the
XMC-QDPT level with CASSCF DMOs.

different from CMOs, such that XMC-QDPT in the CASSCF
DMO basis gives inaccurate energies, making the original
MC-QDPT diabatization scheme19,29 unsuitable. (The com-
parison of potential energy curves obtained by XMC-QDPT
in the CMO and DMO bases is given in the supplementary
material.62)

At the equilibrium geometry of thioanisole, the ground
state S0 and the first excited singlet state S1 belong to the A′

irreducible representation (irrep) in the Cs group, while the
second excited singlet state S2 belongs to A′′. S0 is a closed-
shell state, S1 is a ππ* state, and S2 is an nπ* state. Within
Cs symmetry, as the distance, rS-CH3, between sulfur and CH3
increases, a symmetry-allowed conical intersection occurs first
between S1 and S2. After this intersection, S1 becomes an A′′

state, and the second intersection occurs between S1 and S0 at
longer rS-CH3. The intersections can be seen in the CASSCF
adiabatic and diabatic potential energy curves in Fig. 11(a),
located at rS-CH3= 2.0–2.1 Å and ∼3.3 Å. The crossing states
should not mix in diabatization since they belong to different
irreps, and the diabatic energies essentially overlap with the
adiabatic ones. The diabatic states simply connect different
adiabatic states as they pass the intersections so that U1 and
U2 remain A′ states and U3 remains an A′′ state. The squared
diabatic couplings, shown in Fig. 11(b), are overall small. U23
undergoes an abrupt increase at rS-CH3 = 2.5 Å because V3
passes another crossing (with the uncalculated V4) and acquires

FIG. 11. Potentials and couplings for thioanisole along the S - CH3 distance
with the other coordinates fixed at the S0 equilibrium geometry, as calculated
by SA-CASSCF and the fourfold way at the CASSCF level. (a) Adiabatic
(V1−V3; solid lines) and diabatic (U1−U3; open symbols) potential energy
curves. (b) Squared diabatic couplings (Ui j)2 between diabatic states i and j
(i, j = 1-3).

a major configuration shared by V1 so that the fourfold way
distinguishes the two states less well. The coupling is never-
theless unimportant since its magnitude is still far smaller than
the energy gap between the two states. At the XMC-QDPT
level, the intersections occur at different locations, rS-CH3 =

1.9-2.0 Å and ∼3.5 Å, due to the inclusion of dynamical
correlation (Fig. 12(a)). The diabatic potential energies again
match the adiabatic ones, and the difference of location of the
intersections is properly reflected. The fact that the CASSCF
diabatic wave functions are essentially the same as the adia-
batic wave functions means that BCD serves only to map the
adiabatic states to diabatic states one-to-one with virtually no
mixing, and as a consequence, the phase inconsistency is not
a problem since it affects only the mixing of states. (All four
possible phase choices of BCD give essentially the same dia-
batic curves, which are not shown individually.) Diabatization
at the XMC-QDPT level again introduces a minor unsmooth-
ness to the squared diabatic couplings in Fig. 12(b) compared
to Fig. 11(b), but the couplings are so small that the lack of
smoothness is insignificant.

V. SUMMARY

We have proposed a diabatization strategy called model
space diabatization that, when used with an MCSCF-level
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FIG. 12. Potentials and couplings for thioanisole along the S - CH3 distance
with the other coordinates fixed at the S0 equilibrium geometry, as calculated
by XMC-QDPT and the MSD strategy. (a) Adiabatic (V1−V3; solid lines)
and diabatic (U1−U3; open symbols) potential energy curves. (b) Squared
diabatic couplings (Ui j)2 between diabatic states i and j (i, j = 1-3).

diabatization and a QDPT post-SCF method, generates
diabatic states and diabatic potential energy matrix at the
standard QDPT level. Diagonalizing the diabatic potential
energy matrix produced by model space diabatization gives
states and energies that agree exactly with the usual adiabatic
states and energies.

The new diabatization method has been applied with
the fourfold-way SA-CASSCF-level diabatization and XMC-
QDPT adiabatic energies to obtain diabatic potential energy
curves for LiH and LiF and cuts through the diabatic
potential energy surfaces for thioanisole. These cases provide
a critical challenge to the new method because the shape
of the potential energy curves at the XMC-QDPT level is
qualitatively different from those at the SA-CASSCF level
for these molecules as a result of the inclusion of dynamic
correlation; in particular, the avoided crossings or conical
intersections occur at different geometries according to the
two levels of theory. We find that these differences are properly
accounted for by the MSD method, and the resulting diabatic
potential energy curves are smooth with the correct shape.

The original fourfold way for QDPT calculations used
DMOs determined at the QDPT level.19 We have now made
two changes. First, in a previous paper,29 we showed that
the method could be used, even for QDPT calculations, with
DMOs determined at the CASSCF level. Second, in the present

paper, we show that it can be used, even for QDPT calculations,
with an adiabatic-to-diabatic transformation determined at the
CASSCF level; this preserves the accuracy of the QDPT
adiabatic energies even when the DMOs differ largely from
the canonical molecular orbitals. With these two changes, the
method becomes more convenient and more general. Although
we have mainly discussed MSD as an extension of the fourfold
way, it is also a general scheme that can, in principle, be
used with any other MCSCF-level diabatization scheme that
produces diabatic states spanning the same space as do the
MCSCF adiabatic states. Furthermore, it can be used with any
QDPT method that produces model states spanning the same
space.

The MSD strategy is simple in that it can be applied as an
independent step after the MCSCF diabatization calculations
and QDPT calculations are finished, and its use does not
require one to modify the electronic structure codes; further-
more, the additional computational cost is negligible. With
these advantages, the strategy is recommended for QDPT-level
diabatization of potential energy surfaces involving avoided
crossings or conical intersections.
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APPENDIX: HOW THE PHASES OF WAVE FUNCTIONS
AFFECT THE MSD STRATEGY
1. The relation between the phases of wave functions
and the signs of rows and columns
of a transformation matrix

To be concrete, let us consider the transformation matrix
BCM converting CASSCF states to (X)MC-QDPT model states
for a two-state problem (with two-dimensional model space)
as an example. Suppose a valid relation is(

c1 c2

) *
,

BCM
11 BCM

12

BCM
21 BCM

22

+
-
=
(
m1 m2

)
, (A1)

where bold-faced letters denote CAS-CI vectors, in particular
c1 and c2 are CASSCF states, and m1 and m2 are model states.
If ci changes its sign, the ith row of BCM has to change sign
accordingly; e.g., for i = 2,(

c1 −c2

) *
,

BCM
11 BCM

12

−BCM
21 −BCM

22

+
-
=
(
m1 m2

)
. (A2)

On the other hand, if mi changes sign, the ith column of BCM

has to change sign accordingly; e.g. for i = 2,(
c1 c2

) *
,

BCM
11 −BCM

12

BCM
21 −BCM

22

+
-
=
(
m1 −m2

)
. (A3)
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Apparently, this applies to any N by N transformation. We
conclude that the signs of the rows of a transformation are
related to the phases of the states to be transformed, while
the signs of the columns are related to the phases of the
transformed states.

2. The effect of the phases of the transformation
matrices on the calculation of the diabatic potential
energy matrix

To see how the signs of the elements of the transformation
matrices affect the calculation of the diabatic potential energy
matrix U, we note first that changing the signs of some rows
of a matrix B is equivalent to left-multiplying it by a diagonal
matrix whose diagonal element is −1 if the corresponding row
is to change sign or 1 if otherwise, e.g.,

*
,

B11 B12

−B21 −B22

+
-
= *
,

1 0
0 −1

+
-
*
,

B11 B12

B21 B22

+
-
. (A4)

Changing the signs of some columns of a matrix B is
equivalent to right-multiplying it by a diagonal matrix whose
diagonal element is −1 if the corresponding column is to
change sign or 1 if otherwise, e.g.,

*
,

B11 −B12

B21 −B22

+
-
= *
,

B11 B12

B21 B22

+
-
*
,

1 0
0 −1

+
-
. (A5)

Therefore, we can account for the sign changes of the rows
and columns of a matrix by left- and right-multiplying it by
such matrices which we will denote as J,

Ji j = (−1)αiδi j, (A6)

where αi = 0 or 1, δi j is the Kronecker delta function. Different
J matrices commute. Each J matrix satisfies the following
equality:

JT= J−1= J, (A7)

where superscripts “T” and “−1” denote transpose and inverse,
respectively.

Now let us assume that a BMC and a BCD corresponding to
consistent choices of phase for the wave functions have been
found, and the following relation is valid (equivalent to Eq.
(14)):

U=
�
BCD�T�BMC�TVBMCBCD. (A8)

However, the matrices printed by electronic structure calcu-
lations, denoted as B̃MC and B̃CD, may differ from the ones
above by the signs of rows and columns. Using the J matrices,
we can write in general

B̃MC= JMC
r BMCJMC

c , B̃CD= JCD
r BCDJCD

c , (A9)

where the subscripts “r” and “c” of the J matrices signify
that they are responsible for the sign change of rows and
columns, respectively. Using these matrices, the calculated
diabatic potential energy matrix is

Ũ =
�
B̃CD�T�B̃MC�TVB̃MCB̃CD

= JCD
c
�
BCD�TJCD

r JMC
c

�
BMC�TJMC

r VJMC
r BMCJMC

c JCD
r BCDJCD

c .

(A10)

Our aim is to analyze the effect of the J matrices on the
calculated Ũ, compared to the U in Eq. (A8) that is correct by
assumption.

The first observation is that JMC
r VJMC

r =V. It means the
signs of the rows of B̃MC, corresponding to the phases of the
(X)MC-QDPT model states, have no consequence. Second, if
we rewrite Eq. (A10) as

JCD
c ŨJCD

c =
�
BCD�TJCD

r JMC
c

�
BMC�TJMC

r VJMC
r BMCJMC

c JCD
r BCD,

(A11)

we see that JCD
c , responsible for the signs of columns of B̃CD

and the phases of the diabatic states, only affects the signs
of the off-diagonal elements of the diabatic potential energy
matrix without changing its nature. The only significant part is
the product of JMC

c and JCD
r . The calculated Ũ will be correct

(differing from U only by the signs of off-diagonal elements)
if and only if JMC

c JCD
r =±I, where I is the identity matrix. This

corresponds to the consistency of the phases of CASSCF wave
functions used in the construction of the two matrices. One
may keep JMC

c intact and adjust JCD
r , equivalent to changing

the signs of rows of B̃CD, to satisfy the condition, which is
what we adopted in this paper.
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