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potentials and state couplings and
multidimensional tunneling calculations for the
photodissociation of phenol†

Ke R. Yang, Xuefei Xu, Jingjing Zheng and Donald G. Truhlar*

We present an improved version of the anchor points reactive potential (APRP) method for potential energy

surfaces; the improvement for the surfaces themselves consists of using a set of internal coordinates with

better global behavior, and we also extend the method to fit the surface couplings. We use the newmethod

to produce a 3 � 3 matrix of diabatic potential energy surfaces and couplings for the photodissociation of

phenol as functions of 33 nonredundant internal coordinates. The diabatic potential matrix is based on two

kinds of calculations at a sequence of anchor points along the O–H dissociation coordinate: (1) fourfold way

diabatic calculations based on MC-QDPT/jul-cc-pVDZ calculations for the potential energy surfaces and

diabatic couplings as functions of the O–H bond stretch, C–O–H bond angle, and C–C–O–H torsion

and for the diabatic couplings as functions of the nine out-of-plane phenoxyl distortion coordinates and

(2) M06-2X/jul-cc-pVDZ density functional Hessian calculations for the potentials along the 30

vibrational coordinates of the phenoxyl group. The potential energy surfaces and couplings are used to

calculate and characterize adiabatic surfaces and conical intersections, and the resulting equilibrium

geometries, vibrational frequencies, and vertical excitation energies are in good agreement with available

reference data. We also calculate the geometries of the minimum energy conical intersections. The

surfaces and couplings are used for full-dimensional tunneling calculations of the adiabatic

photodissociation rate, i.e., the rate of O–H bond fission following photoexcitation. Finally we use the

couplings to provide indicators of which vibrational modes are effective in promoting dissociation.
1. Introduction

By separating the electronic and nuclear degrees of freedom,
the widely used Born–Oppenheimer (BO) approximation1 leads
the useful concepts of adiabatic states and potential energy
surfaces (PESs). Adiabatic PESs are (3N � 6)-dimensional
hypersurfaces (where N is the number of atoms in a molecule)
with (3N � 8)-dimensional cuspidal ridges along conical inter-
section (CI) seams where two or more adiabatic PESs are
degenerate. The couplings between nuclear motions and elec-
tronic motions are usually called nonadiabatic couplings, and
they are responsible for nonadiabatic transitions between
different adiabatic states and for the development of coherent
superpositions of adiabatic electronic states as the nuclear
positions evolve. Nonadiabatic couplings are usually small in
regions removed from conical intersection seams and from the
regions of near degeneracy surrounding them, and when they
ory Center, Supercomputing Institute,
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hemistry 2014
are small, nuclear motions can be treated to a good approxi-
mation as evolving on a single adiabatic PES.2

The BO approximation breaks down when two or more
adiabatic PESs approach closely or intersect. The nonadiabatic
couplings vary rapidly in such regions and become singular at
CIs, thereby promoting nonadiabatic transitions in those
regions. To model electronically nonadiabatic processes where
two or more electronic states are coupled via nonadiabatic
couplings, one can use either the adiabatic representation or a
diabatic representation.3 In the adiabatic representation, which
is unique, the electronic Hamiltonian (always dened here, as
usual, to also include nuclear repulsion) is diagonal; the diag-
onal elements are the adiabatic PESs Vi, and the semiclassically
dominant nonadiabatic couplings are vectors deriving from the
action of nuclear momentum operators on the adiabatic elec-
tronic wave functions. In a diabatic representation, these vector
couplings are negligible (or assumed negligible), and diabatic
electronic states and their associated PESs, Uii, are coupled
through scalar off-diagonal elements, Uij, of the electronic
Hamiltonian; these off-diagonal elements are called diabatic
couplings. Diabatic states are sometimes called quasidiabatic
states because strict diabatic states, in which the nuclear-
momentum couplings are not just negligible but zero, do not
exist in general.4 Thus diabatic states are not uniquely dened,
Chem. Sci., 2014, 5, 4661–4680 | 4661
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Fig. 1 The figure shows the structure of the transition state on adia-
batic surface S1, and it also shows four sets of geometrical parameters
for key eight C–C, C–O, and O–H bond lengths (in Å) and the C–O–H
bond angle (in degrees). From top to bottom are values for the equi-
librium geometry of the S1 state of phenol, the saddle point of the S1
state (the structure shown), the ~X 2B1 state of phenoxyl radical, and the
Ã 2B2 state phenoxyl radical. “N.A.” denotes not applicable.
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and many schemes have been proposed to construct diabatic
states.5–31

Potential energy surfaces can be constructed in either the
adiabatic or diabatic representation, but the cuspidal ridges of
the adiabatic potentials and the singularity of nonadiabatic
couplings in ubiquitous conical intersection regions32 prevent
the analytic representation of adiabatic PESs and nonadiabatic
couplings. On the other hand, diabatic potentials and couplings
change smoothly with respective to geometrical variations, and
they allow for convenient representation. Aer one has the
diabatic PESs available, one can carry out dynamics calculations
in either the diabatic or the adiabatic representation, where the
latter would be obtained from the diabatic PESs and diabatic
couplings by transformations. In the present article, we develop
an analytic representation of the multidimensional coupled
potential energy surfaces for phenol in the diabatic represen-
tation, in particular we use potentials obtained by fourfold-way
diabatization,17,31,33 and the resulting diabatic surfaces and
couplings yield the adiabatic surfaces and couplings by stan-
dard equations given elsewhere.34

As a prototypical process in photochemistry, the photodis-
sociation of phenol to phenoxyl radical and H atom has been
studied extensively both experimentally and theoretically,
especially in recent years.33,35–57 The photodissociation of phenol
involves passage through a crossing region of the 1pp* excited
state and the 1ps* state, which is repulsive along the O–H
dissociation coordinate r, and this crossing region surrounds a
conical intersection (CI1) of the 1pp* and 1ps* states. The
repulsive 1ps* state further crosses the 1pp ground state at
another conical intersection (CI2) at larger r. Thus we need to
consider three adiabatic PESs called Vi, with i ¼ 1, 2, 3, or three
diabatic PESs; the latter are the diagonal elements Uii of a 3 � 3
matrix potential, but we call them Ui for simplicity. The roles of
the two CIs in the photodissociation of phenol and of the
vibrational modes that affect the probabilities of transitions at
the CIs have been studied extensively, leading to stimulating
insights and debates. Wave-packet studies37,43,50,51 have been
carried out to study the dynamics of phenol photodissociation,
but they were performed with two-dimensional potential energy
surfaces by considering only the O–H stretching coordinate and
a selected coupling mode. Due to the complexity of the phenol
molecule, which has 13 atoms and whose PESs are therefore 33-
dimensional, only recently was there an attempt to get higher-
dimensional PESs.54 Very recently, Zhu and Yarkony con-
structed full-dimensional coupled PESs of phenol using a dia-
batic Hamiltonian whose domain of denition was constructed
using quasiclassical surface hopping trajectories.55 In the
present article we present full-dimensional coupled PESs of
phenol as obtained by a quite different approach. Either set of
coupled PESs should be able to lead to more complete studies of
the phenol photodissociation process including the key role of
the phenoxyl ring vibrations.

The size of phenol prevents the use of many PES tting
approaches, such as permutation-invariant polynomials,58–60

and the interpolated moving-least squares61–63 method, that
have been widely used for smaller systems. Here we use an
improved version of our recently proposed anchor points
4662 | Chem. Sci., 2014, 5, 4661–4680
reactive potential (APRP) method,64 which combines general
analytic forms for large-amplitude modes with molecule-
specic and anchor-point-specic molecular mechanics terms
for small-amplitude modes, to obtain full-dimensional semi-
global diabatic PESs for photodissociation of phenol. The
improvement consists in the use of internal coordinates with
better global behavior. The surfaces are based on partitioning
the internal coordinates into three groups: the reaction coor-
dinate r (also called the primary coordinate), secondary coor-
dinates s, and tertiary coordinates Q, and the potentials are
semiglobal in that they are dened for all possible values of the
primary and secondary coordinates but only for small-ampli-
tude vibrations of the tertiary coordinates away from the planar
reference geometry of the phenoxyl fragment.

The geometry and atomic numbering of phenol and phe-
noxyl radical are shown in Fig. 1. (The structures mentioned in
the caption of Fig. 1 will be explained more fully below.) In the
present work, the O–H ssion coordinate was chosen as the
reaction coordinate r; the C1–O–H bond angle q and C2–C1–O–H
torsion angle f were chosen as secondary coordinates; and the
internal coordinates of phenoxyl were chosen as tertiary coor-
dinates Q. We use smooth diabatic potentials and couplings
along r and f calculated previously33 combined with new
calculations of the diabatic potentials and couplings along q

and small-amplitude-vibration approximations of the depen-
dence of the potentials on the tertiary coordinates at several
anchor points (explained below).

Upon dissociation, the ground 1pp state of phenol diabati-
cally connects to the excited Ã 2B2 state of phenoxyl radical and
H atom, while the repulsive 1ps* state diabatically connects to
the ground ~X 2B1 state of phenoxyl radical and H atom. These
diabatic connections are apparent in Fig. 2, which more prop-
erly belongs in the results section but is placed here to provide
the reader with a picture of the general shapes of the potential
surfaces to make the presentation in Section 2 clearer.
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Calculated and APRP diabatic potential energy curves of phenol
along the O–H dissociation coordinate. The other geometric param-
eters are fixed at their values at the equilibrium geometry of ground
state phenol. The locations of the conical intersections on the APRP
surfaces for these cuts are r ¼ 1.316 Å and r ¼ 2.231 Å, respectively.
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This paper has two “take home” messages – (i) improved
methodology that others may want to adopt and (ii) new
insights into the excited state photochemistry of a prototype
molecule. Because the paper is multi-faceted, we close the
introduction with a guide to the contents of the various
sections.

Section 2 presents the improved version of the APRPmethod.
The APRP method stands in relation to full surface tting as
combined quantum mechanical and molecular mechanical
(QM/MM) methods stand in relation to pure quantum
mechanics.65 In QM/MM methods, most of a system is treated
by MM, but a subset of atoms is treated by QM. In APRP, the
dependence of the potential onmost coordinates (called tertiary
coordinates) is treated by MM, but the dependence on a subset
of the coordinates (called primary and secondary coordinates) is
treated by completely general surface tting. Furthermore, the
treatment of the MM subsystem in the APRP goes beyond
conventional MM in several respects: rst, although the
dependence of the potential on tertiary coordinates uses a type
of MM functional form, the coordinates are chosen to have
better global behavior than those usually used in MM; second,
the parameters in the MM part are not general parameters
chosen to be reasonable for typical systems, but rather than are
system specic; third, as compared to previous system-specic
MM methods,66,67 the MM parameters vary as functions of the
primary coordinates. A key element of the treatment is that,
unlike conventional MM, the APRP method is applicable to
reactive systems.

Section 2 contains many equations; although these are the
heart of the paper, readers only interested in take home
message (ii) need not fully absorb these equations in order to
read the later sections. Section 3 presents the results of applying
the APRP method not just to the ground-state potential energy
surface of phenol but to a 3 � 3 matrix representation that
yields the three lowest singlet states and their couplings. We use
the results of this t to understand the stationary points on the
adiabatic surfaces, the multidimensional character of elec-
tronically adiabatic tunneling, the relation between the
This journal is © The Royal Society of Chemistry 2014
thickness of a barrier and its closeness to a conical intersection,
the conical intersection seams both for geometries where the
diabatic coupling vanishes by symmetry and for general
geometries where there is no symmetry (C1 point group), and
the possible role of various normal-mode vibrations in the
photodissociation process.
2. Methods and computational details
2.1. Anchor points reactive potential (APRP) method for
diabatic potentials

Here we summarize the APRP method, specializing the
description to the case of phenol photodissociation. The
potential of diabatic state i is written as

Ui ¼ U[1]
i (r) + U[2]

i (s|r) + U[3]
i (Q|r), (1a)

where f(x|r) denotes a function with a dependence on x and a
parametric dependence on r, and the three terms on the right
side are called the primary, secondary, and tertiary terms.
General functional forms were used to t U[1]

i and U[2]
i with

tertiary coordinates xed at the reference geometry, and we take
U[2]
i to be separable:

U[2]
i ¼ U[2,f]

i (f|r) + U[2,q]
i (q|r). (1b)

The tertiary potentials are described by interpolation
between preselected anchor points with tent functions:

U
½3�
i ¼

XNA

a¼1

U
½a�
i

�
Q½a�
�
T

½a�
i ðrÞ; (2)

where U[a]
i (Q[a]) is the expansion of the potential energy of dia-

batic state i around anchor point a, and T[a]i (r) is the tent
function at anchor point a.

The tent functions are dened by

T
½1�
i ¼

8>>>><
>>>>:

1 r\r
½1�
i�

r� r
½2�
i

�4
�
r� r

½2�
i

�4
þ
�
r� r

½1�
i

�4 r
½1�
i # r\r

½2�
i

; (3a)

T
½a�
i ¼

8>>>>>>>>><
>>>>>>>>>:

�
r� r

½a�1�
i

�4
�
r� r

½a�
i

�4
þ
�
r� r

½a�1�
i

�4 r
½a�1�
i # r\r

½a�
i

�
r� r

½aþ1�
i

�4
�
r� r

½aþ1�
i

�4
þ
�
r� r

½a�
i

�4 r
½a�
i # r\r

½aþ1�
i

for a ¼ 2; :::;NA � 1;

(3b)

T
½NA �
i ¼

8>>>><
>>>>:

�
r� r

½NA�1�
i

�4
�
r� r

½NA�
i

�4
þ
�
r� r

½NA�1�
i

�4 r
½NA�1�
i # r\r

½NA �
i

1 r
½NA �
i # r

: (3c)
Chem. Sci., 2014, 5, 4661–4680 | 4663
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In the present case of phenol, all diabatic calculations were
carried out by fourfold-way diabatization using multi-congura-
tional quasi-degenerate perturbation theory (MC-QDPT)68 with
the jul-cc-pVDZ basis set,69 as described previously.33 More
specically, we calculated the diabatic states U1 (

1pp), U2 (
1pp*),

and U3 (1ps*) along the chosen reaction coordinate r (O–H
distance) and secondary coordinates q (C1–O–H bond angle) and
f (C2–C1–O–H torsion) with other coordinates xed, and we used
these calculations to t the primary and secondary potentials.
The scans of r and f were performed in the same way as in the
previous work;33 in particular, rigid scans of the C1–O–H bend (q,
with values of 90, 100, 107, 120, and 130�) were carried out at
various r from 0.964 to 5.0 Å with other coordinates taken as the
same as those obtained for the planar equilibrium geometry of
ground-state phenol by the complete-active-space self-consistent-
eld (CASSCF)70 method with the aug-cc-pVTZ basis set.71

Primary potentials. The primary potential of the diabatic
1pp state was t to the Varshni model potential,72 given by.

U[1]
1 ¼ D1{1 � (r1/r)exp[�b1((r1/r)

2 � 1)]}2. (4)

The diabatic 1pp* state has aminimum near the ground-state
equilibrium distance re, and it crosses the diabatic rst 1ps*

state at about 1.3 Å and a second 1ps* state of higher energy at
about 1.5 Å. For the photodissociation of phenol, the 1pp* state
is only important in the small-r range, so it is acceptable to t the
U[1]
2 (r) curve to a Morse potential73 and we used

U[1]
2 ¼ D2{1 � exp[�a(r � r2)]}

2 + A2. (5)

A three-term function was used to t the repulsive potential
of rst diabatic 1ps* state:

U
½1�
3 ¼

X3
i¼1

ai exp½�a3;iðr� r3;iÞ� þ A3: (6)

Secondary potentials. The torsion potential U[2]
i (f|r) of dia-

batic state i is tted with the following expression:

U
½2;f�
i ¼

Xnj
j¼1

Wi;jðrÞð1� cos 2fÞj ; (7)

where nj is the number of terms to expand the torsion potential
[nj ¼ 1 for diabatic states U1 and U2 (

1pp and 1pp*) and nj ¼ 2
for diabatic state U3 (

1ps*)], and Wi,j is the barrier height of the
jth term. The latter was expanded as a linear combination of
Gaussian functions, given by

Wi;j ¼
Xnk
k¼1

Ai;j;k exp
h
�ai;j;k

�
r� ri;j;k

�2i
: (8)

In tting the C1–O–H bending potentials, we used cos q
rather than q in order to have the proper symmetry of bend
potentials with respect to p � Dq and p + Dq:

U
½2;q�
i ¼

Xnj
j¼2

ki;jðrÞðcos q� cos qi;0ðrÞÞj (9)
4664 | Chem. Sci., 2014, 5, 4661–4680
The force constant ki,j was further expanded with linear
combinations of Gaussians similar to eqn (8). A hyperbolic
tangent function is used to t the dependence of cos qi,0 on r:

cos qi;0 ¼ cos qi;1 þ 1þ tanhðai;1ðr� ri;1ÞÞ
2

ðcos qi;2 � cos qi;1Þ
(10)

where cos qi,1 and cos qi,2 are constant parameters.
Tertiary potentials. Now we turn to U[3]

i , which depends on
tertiary coordinates and depends parametrically on r through
the use of anchor points. The dependence of the diabatic
potentials on tertiary coordinates is needed only for small
extensions from planar geometries. For planar geometries, the
diabatic states U1 (

1pp), U2 (
1pp*), and U3 (

1ps*) belong to the
A0, A0, and A00irreducible representations, respectively, and as
shown in Fig. 2, the two states with same symmetries are always
well separated, while the intersecting diabatic states along the
reaction coordinate r have different symmetries; thus the
adiabatic states are good approximations to the diabatic states
under the Cs symmetry constraint of the planar geometries.
Hence we chose anchor points with planar structures and
obtained the diabatic states at each anchor point by adiabatic
calculations of the correct symmetry as described next.

For diabatic states U1 (
1pp) and U3 (

1ps*), since they are the
lowest states of their symmetry, we utilize ground-state Kohn–
Sham calculations with the M06-2X exchange-correlation
potential74 and the jul-cc-pVDZ basis set to perform partial
optimization (optimizing all secondary and tertiary coordinates
for xed r) and calculate the Hessians at each of the anchor
points. For diabatic state U2 (

1pp*), since it is an excited state
(S1) in A0 symmetry, time-dependent density functional theory
(TDDFT)75,76 was used to perform the partial optimization and
Hessian calculations, again with the M06-2X exchange-correla-
tion potential and the jul-cc-pVDZ basis set.

For each diabatic state, four planar anchor points were
chosen along the O–H dissociation coordinate; for U1, they are
at r¼ 0.964, 1.32, 2.00, and 5.00 Å, and for U2 and U3, they are at
r ¼ 0.964, 1.32, 2.26, and 5.00 Å. The rst anchor point for each
of the diabatic states has the ground-state equilibrium O–H
bond length calculated by CASSCF/jul-cc-pVDZ; the second
anchor point was chosen to have an O–H bond length close to
the rst conical intersection (CI1) in planar geometry; the third
anchor points were chosen to have an O–H bond length close to
the second conical intersection (CI2); and the nal anchor
points were chosen to yield the correct asymptotic limit of
phenoxyl radical.

The ground state of phenoxyl is ~X 2B1 and it has a low-lying Ã
2B2 excited state; these states connect diabatically to surfaces U3

(1ps*) and U1 (
1pp), respectively, and they were optimized with

UM06-2X/jul-cc-pVDZ. The geometric parameters and Hessians
of phenoxyl in these two states were used for the nal anchor
points with r ¼ 5.00 Å. For anchor points with other O–H bond
lengths, geometrical parameters and Hessians were obtained
with partial optimizations. Since U2 state is not very relevant
aer the rst conical intersection (CI1), the geometrical
parameters and Hessian elements at r ¼ 1.32 Å were used for it
at the next two anchor points r ¼ 2.26 Å and 5.00 Å.
This journal is © The Royal Society of Chemistry 2014
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In our original APRP, the tertiary potential around anchor
point a was expanded as

U
½a�
i ¼ U

½a�
rel;i þ

1

2
Q

½a�T
i F

½a�
i Q

½a�
i ; (11)

where U[a]
rel,i is the energy of state i at the partially optimized

geometry of anchor point a, relative to the energy of a xed
reference geometry, F[a]i is the partial force constant matrix, and
Q[a]
i is a column vector of the internal displacements around

anchor structure a with elements

Q[a]
ji ¼ Qj � Q[a]

e,ji, (12)

where Qj is an internal coordinate, and Q[a]
e,ji is the optimized

value of Qj for state i in the constrained optimized geometry of
anchor point a. By partitioning internal displacements Q[a]

i into
stretches (S), bends (B), and torsions (T), eqn (11) can be written
as

U[a]
i ¼ U[a]

rel,i + USS,a
i + UBB,a

i + UTT,a
i + USB,a

i + UST,a
i + UBT,a

i ,(13)

where the SS, BB, and TT terms are the potentials from bond
stretches, bond angle bends, and torsions, and the SB, ST, and
BT terms are the potentials from stretch–bend couplings,
stretch–torsion couplings, and bend–torsion couplings,
respectively. The force constant matrices in the terms of eqn
(13) are respectively called FSS,ai , FBB,ai , FTT,ai , FSB,ai , FST,ai , and
FBT,ai .

In the current application of APRP to the construction of
diabatic PESs of phenol, instead of using simple internal
displacements Q[a]

i , we used variables with better global
behaviors.

For bond stretches, instead of r � re, we use R ¼ (r � re)/r.
This coordinate was originally proposed by Simons, Parr and
Finlan (SPF)77 for diatomic molecules. The use of SPF coordi-
nates includes anharmonic effects and corrects the over-repul-
sion for large bond length (r > re) and under-repulsion for short
bond length (r < re) of widely used force elds using r � re.

For bond angle bends, instead of q� qe, we use cos qe� cos q
to preserve the continuity when the bond angle crosses p.

For torsions, f � fe is replaced with sin
nðf� feÞ

2
or sin n(f

� fe) (depending on whether it is a diagonal or off-diagonal
term) to maintain the correct periodicity behavior, where n is an
integer number that indicates the local periodicity of
the torsion. For phenol, the torsions in the phenoxyl ring all
have n ¼ 1.

With the new choice of variables, the terms in eqn (13) can be
written explicitly as

USS;a
i ¼ 1

2

XNS

j¼1

kSS;a
jj;i

 
rj � r

½a�
e;ji

rj

!2

þ 1

2

XNS

j¼1

XNS

ksj

kSS;a
jk;i

 
rj � r

½a�
e;ji

rj

!

�
 
rk � r

½a�
e;ki

rk

!
;

(14a)
This journal is © The Royal Society of Chemistry 2014
UBB;a
i ¼ 1

2

XNB

j¼1

kBB;a
jj;i

�
cos qj � cos q

½a�
e;ji

�2

þ 1

2

XNB

j¼1

XNB

ksj

kBB;a
jk;i

�
cos q

½a�
e;ji � cos qj

��
cos q

½a�
e;ki � cos qk

�
;

(14b)

UTT;a
i ¼ 1

2

XNT

j¼1

kTT;a
jj;i sin2

nj

�
fj � f

½a�
e;ji

�
2

þ 1

2

XNT

j¼1

XNT

ksj

kTT;a
jk;i sin nj

�
fj � f

½a�
e;ji

�
sin nk

�
fk � f

½a�
e;ki

�
;

(14c)

USB;a
i ¼

XNS

j¼1

XNB

k¼1

kSB;a
jk;i

rj � r
½a�
e;ji

rj

�
cos q

½a�
e;ki � cos qk

�
; (14d)

UST;a
i ¼

XNS

j¼1

XNT

k¼1

kSB;a
jk;i

rj � r
½a�
e;ji

rj
sin nk

�
fk � f

½a�
e;ki

�
; (14e)

UBT;a
i ¼

XNB

j¼1

XNT

k¼1

kBT;a
jk;i

�
cos q

½a�
e;ji � cos qj

�
sin nk

�
fk � f

½a�
e;ki

�
: (14f)

Note that in eqn (14c), sin
nðf� feÞ

2
is used to build the local

periodicity for the diagonal terms, while sin n(f � fe) is used to
replace f � fe in cross terms.

The force constants in eqn (14a)–(14f) are related to the
Hessian elements in eqn (13) by

kSS;a
jk;i ¼ FSS;a

jk;i r
½a�
e;jir

½a�
e;ki;

kBB;a
jk;i ¼ FBB;a

jk;i

sin q
½a�
e;ji sin q

½a�
e;ki

;

kTT;a
jj;i ¼ 4FTT;a

jj;i

nj2
;

kTT;a
jk;i ¼ FTT;a

jk;i

njnk
for jsk;

kSB;a
jk;i ¼ FSB;a

jk;i r
½a�
e;ji

sin q
½a�
e;ki

;

kST;a
jk;i ¼ FST;a

jk;i r
½a�
e;ji

nk
;

and

kBT;a
jk;i ¼ FBT;a

jk;i

sin q
½a�
e;kink

:
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With our new choice of variables to describe bond stretches,
bond angle bends, and torsions, eqn (14) have much better
behavior than the terms used previously for large distortions,
although they require no more information. Thus, we recom-
mend using them to construct force elds in the future. In
addition to the above terms, we added a repulsive Born–Mayer
potential between all pairs (1–4, 2–5, and 3–6) of para carbon
atoms to all three diabatic potentials (see Fig. 1 for atomic
numbering); this prevents the nonbonded atoms from getting
too close during trajectories. The Born–Mayer potential is
given as

VBM ¼ B
X

X�Y¼1�4;2�5;3�6

expð�arX�YÞ (15)

where the interaction parameters are taken from the litera-
ture:78 B is 42000 kcal mol�1, and a is 3.58 Å�1.
Table 1 Out-of-plane coordinates of phenoxyl

Coordinate Denition

d1 C2–C1–C6–C5 torsion
d2 C1–C6–C5–C4 torsion
d3 C6–C5–C4–C3 torsion
d4 C5–C4–C3–C2 torsion
d5 C4–C3–C2–C1 torsion
d6 C3–C2–C1–C6 torsion
S1 6�1/2(d1 � d2 + d3 � d4 + d5 � d6)
S2 12�1/2(�d1 + 2d2 � d3 � d4 + 2d5 � d6)
S3 4�1/2(�d1 + d3 � d4 + d6)
S4 O7 out-of-plane bend
S5 H12 out-of-plane bend
S6 H11 out-of-plane bend
S7 H10 out-of-plane bend
S8 H9 out-of-plane bend
S9 H8 out-of-plane bend
2.2. Diabatic couplings

In a similar spirit to that used in the APRP representations of
the diabatic potentials, the diabatic couplings are expressed as

Uij ¼ U[3,S]
ij (S|r) + U[2,f]

ij (f|r), (16)

where U[2,f]
ij is tted to MC-QDPT data, and U[3,S]

ij is constructed
by interpolating linear expansions around anchor structures
with tent functions:

U
½3;S�
ij ¼

XNA

a¼1

 
U

½0�
ij;a þ

X9
a¼1

AijaaSa

!
TaðrÞ; (17)

where U[0]
ij,a is a constant parameter for anchor structure a, and

Ta(r) is the tent function with the same form as T[a]i (r) used for
tertiary potential. The parameter Aijaa in the representation of
diabatic coupling Uij equals the rst partial derivative of Uij with
respect to Sa at anchor structure a. Four planar anchor points
with other geometric parameters xed at CASSCF/aug-cc-pVTZ
optimized ground state minimum were chosen along the O–H
dissociation coordinate, and they are the same for all diabatic
couplings: r ¼ 0.964, 1.32, 2.26, and 5.00 Å.

The diabatic coupling U12 of diabatic state U1 (1pp) to dia-
batic state U2 (

1pp*) is less important than the other couplings
since the energy separation between those two states is quite
large at all considered geometries. Therefore we used a simpler
treatment for this coupling. In particular, we set all A12aa
parameters equal to zero, and we set U[0]

12,3 and U[0]
12,4 equal to

zero; we set U[0]
12,1 ¼ �0.02 eV, and we set U[0]

12,2 ¼ �0.03 eV.
By symmetry, there is no contribution to diabatic couplings

U13 and U23 from the in-plane vibrational coordinates of planar
phenol. So we need only consider the contribution of out-of-
plane modes to the diabatic couplings U13 and U23. Phenol has
ten out-of-plane coordinates, nine in the phenoxyl ring plus the
C2–C1–O–H torsion f. The nine out-of-plane phenoxyl coordi-
nates we use (labeled S1 to S9) are similar to those used by
Pongor et al.79 These coordinates are given in Table 1.

Since the diabatic coupling matrix elements U23 and U13 are
important near the rst conical intersection (near anchor point
2) and the second conical intersection (near anchor point 3),
4666 | Chem. Sci., 2014, 5, 4661–4680
respectively, the gradients A23aa (a¼ 1 to 9) and A13aa (a¼ 1 to 9)
were calculated numerically (with a step size of 10 degree) from
MC-QDPT/jul-cc-pVDZ fourfold-way calculations for anchor
points 2 and 3, respectively. The gradients of diabatic couplings
were set to zero for anchor points away from the relevant conical
intersections.

To t U[2,f]
13 and U[2,f]

23 , exible and general functional form
needs to be used. As discussed previously, both of these
couplings are zero at f ¼ 0� due to symmetry. At f ¼ 90�, the
phenol molecule also has Cs symmetry and in this case,
three diabatic states U1 (

1pp), U2 (
1pp*), and U3 (

1ps*) belong
to A0, A0 0, and A0, respectively. Only U[2,f]

23 would be zero at f¼ 90�

due to symmetry. We use the following functional forms to t
U[2,f]
13 and U[2,f]

23

U
½2;f�
13 ¼

X3
h¼1

ahðrÞ sin2h�1
f; (18a)

U
½2;f�
23 ¼

X3
h¼1

ahðrÞ sin 2hf; (18b)

where ah(r) is tted with a linear combination of N Gaussians:

ah ¼
XN
m¼1

Ah;m exp
h
�ah;mðr� rh;mÞ2

i
(19)

Three Gaussian functions were used to t a1 in eqn (18a),
and two Gaussian functions were used to t a2 and a3 in eqn
(18a). All ah (h ¼ 1, 2, and 3) in eqn (18b) were tted with one
Gaussian function.
2.3. Adiabatic potentials and nonadiabatic couplings

With diabatic potentials and couplings tted in internal coor-
dinates, the analytic Cartesian gradients of diabatic potentials
and diabatic couplings VnUij (n ¼ 1, ., 3N) are evaluated
straightforwardly by using Wilson B-matrices.64 The adiabatic
potential energies Vi are the eigenvalues of diabatic potential
This journal is © The Royal Society of Chemistry 2014
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Table 2 Calculated and experimental geometric parameters of the
ground 1pp state of phenola

APRP M06-2Xb Microwavec Electron-diffractiond

Bond lengths (Å)
C1–C2 1.402 1.396 1.391 1.399
C2–C3 1.400 1.395 1.394 1.399
C3–C4 1.399 1.394 1.395 1.399
C4–C5 1.402 1.397 1.395 1.399
C5–C6 1.397 1.392 1.392 1.399
C6–C1 1.402 1.396 1.391 1.399
C2–H8 1.092 1.092 1.086 1.083
C3–H9 1.090 1.090 1.084 1.083
C4–H10 1.089 1.089 1.080 1.083
C5–H11 1.090 1.090 1.084 1.083
C6–H12 1.089 1.089 1.081 1.083
C1–O7 1.365 1.365 1.375 1.381
O7–H13 1.022 0.964 0.957 0.958

Bond angles (deg.)
C6–C1–C2 120.4 120.4 120.9 121.6
C1–C2–C3 119.5 119.6 119.4 118.8
C2–C3–C4 120.6 120.6 120.5 120.6
C3–C4–C5 119.3 119.3 119.2 119.7
C4–C5–C6 120.8 120.8 120.8 120.6
C5–C6–C1 119.4 119.4 119.2 118.8
C1–C2–H8 120.0 120.0 120.0
C2–C3–H9 119.3 119.3 119.5
C3–C4–H10 120.3 120.3 120.3
C4–C5–H11 119.9 119.9 119.8
C5–C6–H12 121.7 121.7 121.6
C6–C1–O7 117.1 117.1 117.0 117.2
C1–O7–H13 107.2 109.5 108.8 106.4

a See Fig. 1 for numbering of atoms. b jul-cc-pVDZ. c Ref. 87. d Ref. 88.
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energy matrix U. The analytic Cartesian gradients of the adia-
batic potentials and the nonadiabatic couplings are34

VnVi ¼
X
j;k

c*ijcjkVnUjk; (20)

and

Fij ¼

8><
>:

1

Vj � Vi

X
k;l

c*ikcjlVnUkl ðisjÞ

0 ði ¼ jÞ
; (21)

where n¼ 1,., 3N and cij is the element of orthogonal matrix C
that diagonalizes the diabatic potential matrix U.

2.4. Further information about the surfaces and couplings

Full details of the development of the APRP method and the
optimized parameters are given in the supplementary mate-
rial.80 A Fortran subroutine that provides the diabatic potential
energy surface matrices and their analytic derivatives, adiabatic
potential energies and their analytic derivatives, and nonadia-
batic couplings is available in the POTLIB library.81,82

2.5. Additional computational details

The reference orbitals and diabatic prototypes employed in the
MC-QDPT fourfold-way diabatizations are specied in ref. 33.
These calculations were performed with HONDOPLUS.83

For tting the tertiary potential, the adiabatic partial opti-
mizations and Hessian calculations at anchor points were per-
formed by Kohn–Sham density functional theory with the M06-
2X exchange-correlation functional and the jul-cc-pVDZ basis
set with ultrane grids by using Gaussian 09.84

The geometry optimizations and frequency analyses of
equilibrium and transition structures were performed by the
POLYRATE program85 with the APRP surfaces. The geometry of
the minimum energy conical intersection (MECI) between
adiabatic states Vi and Vj was obtained by minimizing the

penalty function F ¼ 1
2
ðVi þ VjÞ þ aðVi � VjÞ2 with a ¼ 105 Eh

�1

(where Eh ¼ 1 hartree).
We ran thousands of sample dissociative coupled-surface

trajectories to conrm that the nal versions of the coupled
potential energy surfaces conserve energy and angular
momentum and do not visit regions of conguration space
where the surfaces yield unphysical results. These calculations
were carried out with the ANT program.86

3. Results and discussion
3.1. Equilibrium geometries and frequencies

The bond lengths and bond angles of the 1pp and 1pp* state of
phenol and the 2B1 and

2B2 states of phenoxyl radical are given
in Tables 2–4. For the 1pp state of phenol, the experimental
geometry is available by microwave spectroscopy87 and electron-
diffraction.88 The geometry of the 1pp* state of phenol is
available from simultaneous t to the vibronic intensities and
effective rotational constants.89 No experimental bond lengths
and bond angles are available for phenoxyl radical, and
This journal is © The Royal Society of Chemistry 2014
theoretical results90 obtained by CASPT2 calculations with 9
active electrons in 8 active orbitals with the aug-cc-pVTZ basis
set are listed for comparison. Due to the use of Born–Mayer
repulsion of para-situated C atoms to avoid unphysical behavior
in test trajectory calculations, the C–C bond lengths optimized
with our APRP surface are slightly larger than the M06-2X
results, but the tables show that both are in very good agree-
ment with the literature87–90 results. The C1–O bond of ground-
state phenol is a typical single bond, having the bond length of
1.365 Å. The C–C bond lengths increase from �1.40 Å in the
ground state phenol to �1.43 Å in the S1 state of phenol, sug-
gesting the benzene ring is expanded upon excited to the S1
state.

The excited 2B2 state of phenoxyl radical resembles the
ground-state geometry of phenol (to which it connects diabati-
cally) in that it has all C–C bond distances around 1.40 Å and a
C1–O bond length of 1.33 Å. However, the equilibrium geometry
of the ground state (2B1) of phenoxyl radical differs signicantly
from the geometries of both the 1pp state of phenol and the 2B2

state of phenoxyl radical. The ground state of phenoxyl radical
has a geometry similar to that of a quinone, with much shorter
C1–O bond length of 1.246 Å, and the C–C bond lengths are less
symmetrical, with 1.461 Å for C1–C2 and C1–C6, 1.379 Å for C2–
C3 and C5–C6, and 1.416 Å for C3–C4 and C4–C5, comparable to
Chem. Sci., 2014, 5, 4661–4680 | 4667
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Table 4 Calculated geometric parameters of the ~X 2B1 and Ã 2B2

states of phenoxyl radicala

APRP M06-2Xb CASPT2c

~X 2B1 state

Bond lengths (Å)
C1–C2 1.461 1.453 1.448
C2–C3 1.379 1.375 1.379
C3–C4 1.416 1.410 1.408
C1–O7 1.246 1.249 1.255
C2–H8 1.090 1.090 1.081
C3–H9 1.090 1.090 1.081
C4–H10 1.090 1.090 1.081

Bond angles (deg.)
C6–C1–C2 117.2 117.3 117.5
C1–C2–C3 120.8 120.8 120.7
C2–C3–C4 121.3 120.1 120.3
C1–C2–H8 116.9 116.9 117.1
C4–C3–H9 120.4 120.4 119.6

Ã 2B2 state

Bond lengths (Å)
C1–C2 1.409 1.403 1.402
C2–C3 1.397 1.392 1.393
C3–C4 1.400 1.394 1.394
C1–O7 1.331 1.333 1.330
C2–H8 1.088 1.088 1.079
C3–H9 1.090 1.090 1.081
C4–H10 1.088 1.088 1.079

Bond angles (deg.)
C6–C1–C2 121.0 121.0 120.9
C1–C2–C3 118.7 118.7 118.9
C2–C3–C4 121.3 121.2 121.1
C1–C2–H8 119.6 119.6 119.7
C4–C3–H9 118.7 118.7 118.8

a See Fig. 1 for numbering of atoms. b jul-cc-pVDZ. c Ref. 90.

Table 3 Calculated and experimental geometric parameters of the
1pp* state of phenola

APRP M06-2Xb Expt.c

Bond lengths (Å)
C1–C2 1.434 1.429 1.421
C2–C3 1.424 1.419 1.420
C3–C4 1.427 1.421 1.431
C4–C5 1.425 1.419 1.425
C5–C6 1.426 1.421 1.426
C6–C1 1.425 1.420 1.413
C2–H8 1.090 1.090 1.083
C3–H9 1.087 1.087 1.080
C4–H10 1.090 1.091 1.079
C5–H11 1.087 1.087 1.080
C6–H12 1.087 1.087 1.079
C1–O7 1.338 1.338 1.356
O7–H13 1.034 0.967 0.992

Bond angles (deg.)
C6–C1–C2 123.6 124.0 123.4
C1–C2–C3 117.5 117.3 118.5
C2–C3–C4 119.4 119.3 118.5
C3–C4–C5 122.4 122.7 123.1
C4–C5–C6 119.1 118.9 118.6
C5–C6–C1 118.0 117.8 118.4
C1–C2–H8 120.0 120.1 120.2
C2–C3–H9 120.7 120.8
C3–C4–H10 118.7 118.5
C4–C5–H11 120.2 120.2
C5–C6–H12 123.3 123.4 122.3
C6–C1–O7 116.2 116.0 115.9
C1–O7–H13 106.5 109.5 108.8

a See Fig. 1 for numbering of atoms. b TD-DFT with the M06-2X
functional and the jul-cc-pVDZ basis set. c Ref. 89.
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the C–O bond length (1.222 Å) and two C–C bond lengths (1.334,
and 1.477 Å) in 1,4-benzoquinone.91 The vibrational frequencies
of the ground-state adiabatic surface were calculated at the
minimum-energy geometries of the APRP surface, and they are
compared in Fig. 3 to M06-2X frequencies and available exper-
imental fundamental frequencies of phenol92 and phenoxyl
radical.93 The frequencies calculated with our adiabatic PES
reproduce the M06-2X results, both overestimating the experi-
mental frequencies slightly. The overestimate by M06-2X is
consistent with known trends,94 but nevertheless we did not
scale the density functional frequencies or Hessians in the
present work.
3.2. Energetics and thermal adiabatic rate constants

The adiabatic vertical excitation energies of phenol and phe-
noxyl radical calculated with the APRP PESs are shown and
compared with previous theoretical and available experimental
results in Table 5. Experimentally, the spectrum for the optically
allowed excitation of phenol from its ground state to the 1pp*

state has a maximum at 4.58 eV.95 The excitation to the 1ps*

state is electric dipole forbidden, and no reliable experimental
result is available. Previous high-level ab initio studies sug-
gested that the vertical excitation energy of the 1ps* state
4668 | Chem. Sci., 2014, 5, 4661–4680
should be in the range 5.6–5.9 eV.33,44,51 Our APRP surface
predicts vertical excitation energies to be 4.58 and 5.88 eV for
excitations to the 1pp* state and the 1ps* state, respectively, in
good agreement with these reference values. In comparison to
these results, the MC-QDPT/jul-cc-pVDZ results that were used
in the construction of primary and secondary potential yield
vertical excitation energies of 4.70 and 5.86 eV for the two states
of phenol.33 The slight difference between the APRP and MC-
QDPT values is a result of the different equilibrium geometry of
phenol used in the calculations. The CASSCF/aug-cc-pVTZ
optimized geometry was used in the calculation with MC-QDPT
while the equilibrium geometries of the APRP surface were used
for the APRP result. The fact that the APRP agrees slightly better
with the reference values is just a fortuitous result of this
technical shi in geometric parameters.

The excitation energy of ground state phenoxyl radical to the
2B2 state was rst determined to be 1.06 eV in a gas-phase
ultraviolet photoelectron spectroscopy experiment.96 It was later
observed to be 1.10 eV by UV-VIS and IR polarization spectros-
copy of phenoxyl radical in cryogenic argon matrices.97 The
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 Comparison of vibrational frequencies calculated from the
ground-state APRP surface, from M06-2X calculations with available
experimental results. Top: the 1pp state of phenol; bottom: the ~X 2B1

state of phenoxyl radical.
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excitation energy of phenoxyl radial from the 2B1 state to the 2B2

state calculated by our APRP surface is 1.07 eV, agreeing quite
well with experimental results.

The equilibrium dissociation energy of the O–H bond
calculated from the APRP PES is 3.93 eV, which is smaller than
the experimentally derived De,33,98,99 as shown in Table 5.
Table 5 Vertical excitation energies of phenol and phenoxyl and the eq

Phenol

1pp*–1pp

APRPa 4.58
SA(3)-CAS(12,11)/jul-cc-pVDZb 5.04
SA(3)-MC-QDPT(12,11)/jul-cc-pVDZb 4.70
CC2/aug-cc-pVDZc 4.86
MRCI/aug-cc-pVDZd 4.75
CASPT2(10/10)/aug(O)-cc-pVTZe 4.52
EOM-CCSD/aug(O)-cc-pVTZe 4.97
Experimental 4.58f

a The equilibrium geometries of phenol and phenoxyl radical were optimi
energies and the equilibrium dissociation energy for breaking the O–H bo
from ref. 95. g Derived in ref. 33 from ref. 98 (rst value) and ref. 99 (seco

This journal is © The Royal Society of Chemistry 2014
The classical adiabatic excitation energy, i.e., the energy of
the S1 state minimum minus that of the S0 state minimum on
the APRP surfaces was calculated to be 4.42 eV. We can calculate
the quantal adiabatic excitation energy, i.e., the 000 energy,
which is the energy of the S1 zero point level minus that of the S0
zero point level on the APRP surfaces, by adding the S1 zero
point energy (2.66 eV) and subtracting the S0 zero point energy
(2.85 eV); that yields 4.22 eV. This may be compared to the
experimental value51 of 4.51 eV.

Although there has been considerable emphasis on the
location of the conical intersection, we should keep in mind
that there is generally a saddle point on the lower adiabatic
surface on the side of a conical intersection,100 and for some
purposes the characteristics of this saddle point are equally
important or more important than the characteristics of the
conical intersection. The transition state (i.e., saddle point) for
H dissociation on the rst excited adiabatic state surface was
located, with a classical barrier height of 0.72 eV with respect to
the S1 minimum (or 5.14 eV with respect to the S0 minimum). At
the saddle point geometry, the energies of the S0 and S2 states of
phenol are 1.66 and 5.95 eV, respectively. The large energy gap
(0.81 eV) between the S1 and S2 states at the saddle point
suggests that an adiabatic model of dissociation on the S1
surface might be a good zero-order model for the early
dynamics of H-dissociation. The transition state has two
nonplanar structures, which are mirror images of each other,
with C2–C1–O–H torsion angles of�20.4 and 20.4�. As shown in
Fig. 1, the C–C and C–O bond lengths in the transition state
structures are very close to those in the ground state phenoxyl
radical. The O–H bond length of the transition state structures
is 1.33 Å, close to 1.32 Å at which value the S1 and S2 states of
phenol intersect for planar geometry at the MC-QDPT level.33

The imaginary frequency at the saddle point is 4271i cm�1,
which is rather high because the reduced mass for hydrogenic
dissociation is low and because the saddle point is so close to a
conical intersection. (A barrier due to a CI may be thin because
the CI is pointy at the top, as compared to at for a saddle
point.) The minimum energy path in mass-scaled (i.e., iso-
inertial) coordinates101,102 (MEP) was calculated using the Page–
McIver algorithm,103 and the calculated potential energy VMEP
uilibrium dissociation energy of phenol (in eV)

Phenoxyl

1ps*–1pp De
2B2–

2B1

5.88 3.93 1.07
5.56 2.54 1.79
5.86 4.37 0.94
5.36
5.76
5.64 4.05 0.65
5.67

4.18g/4.08g 1.06h/1.10i

zed with the APRP PES and were used to calculate the vertical excitation
nd. b Ref. 33. c Ref. 49. d Ref. 44. e Ref. 51. f Highest peak value obtained
nd value). h Ref. 96. i Ref. 97.
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Fig. 4 (a) Calculated VMEP vs. the reaction coordinate s (scaled to a
reduced mass of one amu) for the O–H dissociation of phenol on the
S1 adiabatic surface. (b) Calculated ground-state vibrationally adiabatic
potential (VG

a ) vs. the reaction coordinate s; the horizontal dashed lines
labeled n ¼ 0 and n ¼ 1 denote the energy levels of the reaction
coordinatemode (the O–H stretch) with vibrational quantum numbers
of 0 and 1. The numbers denote the values of O–H bond length in Å at
the termini of the classically forbidden regions for tunneling at these
two energies. (c) Calculated O–H bond length and C2–C1–O–H
torsion angle vs. the reaction coordinate s.
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along the MEP is shown in Fig. 4a. The abscissa of this gure is
the reaction coordinate s, dened as the distance along the
curved MEP through the isoinertial coordinates scaled to a
reduced mass of 1 amu. We already noted the high imaginary
frequency, which shows that the barrier is thin at the top, but
Fig. 4a shows it is thin farther down as well. In fact, the VMEP

barrier of photodissociation of phenol on the S1 excited state
surface is much thinner than VMEP curves of typical chemical
reactions, consistent with the large imaginary frequency.

The zero point vibrational energy of the saddle point is 2.58
eV, as compared to the zero point vibrational energy of 2.66 eV for
the equilibrium structure on S1. The ground-state vibrationally
adiabatic potential (VGa ) curve is dened as the sum of VMEP and
the zero point energy of modes transverse to the reaction path;
this potential is important because it serves as an effective
potential energy for vibrationally adiabatic tunneling.101,102,104–108

The ground-state vibrationally adiabatic barrier VGa along the S1
surface of phenol is shown in Fig. 4b. The sum of the potential
energy and the zero point energy at the saddle point is 3.30 eV,
and the maximum value of this sum (i.e., of the ground-state
vibrationally adiabatic potential) is also 3.30 eV, and this occurs
very close to the saddle, at s ¼ 0.004 Å, where rOH ¼ 1.32 Å. Only
two states (n ¼ 0 and n ¼ 1) of the O–H stretching mode have
energies below the barrier as shown in Fig. 4b.

Fig. 4b can be used to illustrate the thinness of the effective
barrier for tunneling by comparing it to that for the H + H2

hydrogen-exchange reaction. The ground-state vibrationally
adiabatic potential (VGa ) curve for the H +H2 reaction is shown in
Fig. 3 of a previous paper.109 In that gure, as in the present
article, the reaction coordinate is scaled to 1 amu, so it is
meaningful to compare the widths of the barriers. Examination
of VGa for the H + H2 reaction at an energy 0.10 eV below the
barrier top shows a width of 0.7 Å, whereas the width of VGa in
Fig. 4b at an energy 0.10 eV below the barrier top is only 0.12 Å, a
factor of six thinner. This is certainly a dramatic difference. This
may uncover a previously unappreciated general phenomenon,
namely that barriers close to conical intersections may some-
times be very thin, allowing considerable tunneling on the lower
surface at energies below the barrier.

Fig. 4c shows that the minimum energy reaction path is
roughly divided into two stages, rst the torsion angle changes
with approximately constant O–H distance, then the O–H bond
breaks at roughly constant torsion angle. If we consider the
MEP in the downward direction, this means that the MEP
approaches the minimum along the lowest-frequency normal
mode, which is the expected result.110,111When the reaction path
changes from the O–H stretch to the torsion, the potential
energy barrier becomes more gradual (the rise from the equi-
librium geometry is less steep along a low-frequency mode than
along a high-frequency one). Although this change in character
of the MEP and the associated VMEP is interesting mechanisti-
cally, it has little effect on the tunneling because, as shown in
Fig. 4, the change of character of the reaction path to become
the torsion occurs for s < �0.3 Å, whereas the tunneling occurs
in the region with s > �0.3 Å. If the change in character of the
MEP were to occur at higher energy, the barrier would not retain
its thin shape all the way down to the lowest tunneling energy.
4670 | Chem. Sci., 2014, 5, 4661–4680
It is interesting to calculate the rate constants for the elec-
tronically adiabatic thermal dissociation of phenol to produce
phenoxyl radical and H atom on the S1 surface; such rate
constants cannot be compared directly to experiment not only
because the actually dissociation is not completely electroni-
cally adiabatic but also, and perhaps more signicantly,
because phenol need not become thermalized on the S1 surface
prior to dissociation. Nevertheless, the calculation – being the
rst calculation of the tunneling process to include all degrees
This journal is © The Royal Society of Chemistry 2014
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of freedom – provides valuable insight. The thermal rate
constants of the unimolecular H-dissociation of phenol on the
V2 surface were calculated with canonical variational theory
(CVT),112,113 with vibrations transverse to the reaction coordinate
quantized. Tunneling was included in the calculations by four
different methods: the zero-curvature tunneling (ZCT) approxi-
mation,101,114 the small-curvature tunneling (SCT) approxima-
tion,108 the large-curvature tunneling (LCT) approximation,115,116

and the microcanonically optimized tunneling (mOMT)
approximation.116,117 The ZCT calculation may be considered to
be an approximation to the SCT one (as explained further
below). The SCT calculations are vibrationally adiabatic and the
LCT calculation is vibrationally nonadiabatic, and they also
have different tunneling paths appropriate to the limits of small
curvature of the reaction path and large curvature of the reac-
tion path; the mOMT approximation chooses between them on
the basis that, for each tunneling energy, the tunneling
approximation that yields the most tunneling (largest rate
constant) is expected to be most accurate.118,119 Since only two
vibrational states of the O–H stretching mode have energy levels
below the barrier, we performed quantized-reactant-state
tunneling calculations.120,121 We found that the SCT and mOMT
approximations give nearly the same result, both larger than the
result given by LCT approximation. Therefore the SCT result is
our most accurate, but we show both the ZCT and SCT results in
Table 6 because the comparison is physically interesting. The
ZCT result shows the effect of tunneling along the MEP as if it
were a straight path in isoinertial coordinates, whereas the SCT
result includes corner cutting across the concave side of the
curved path to shorten the tunneling path and increase the
tunneling probability. The unimolecular thermal rate constants
increase by many orders of magnitude when one includes
tunneling, and the effect of corner cutting is very signicant.

The SCT tunneling probability in the n ¼ 0 state of the O–H
stretch (at an energy 2.66 eV above the equilibriumminimum of
the S1 potential) is 7.5 � 10�6, and the SCT tunneling proba-
bility in the n ¼ 1 state of the O–H stretch (at an energy of
3.07 eV) is 0.050.

Without considering the tunneling effect, the lifetime of the
S1 state, which is the reciprocal of the tabulated unimolecular
Table 6 Thermal unimolecular rate constants and lifetimes for
hydrogen dissociation of phenol on the V2 surface at various
temperatures

T (K) CVT CVT/ZCT CVT/SCT

Rate constant (s�1)
150 7.8 � 10�10 5.4 � 106 5.4 � 108

300 3.0 � 101 2.1 � 106 1.9 � 108

600 4.6 � 106 1.2 � 108 2.2 � 108

1000 5.6 � 108 1.8 � 109 2.4 � 109

Lifetime (ns)
150 1.2 � 1018 185 1.9
300 3.2 � 107 481 5.1
600 213 8.4 4.4
1000 1.8 0.6 0.4

This journal is © The Royal Society of Chemistry 2014
rate constant, is calculated to be 3.2� 107 ns at 300 K. Including
tunneling by the SCT approximation, the lifetime is found to be
between 0.4 and 5 ns for the temperatures shown in Table 6.
Although we cautioned that the electronically adiabatic thermal
lifetime cannot be compared directly to the photochemical
lifetime, it is still interesting that the experimental lifetime of
the S1 state of phenol was reported to be sz 2 ns,49 which shows
that the calculation is not entirely unreasonable even if the
remarkably good agreement of such an approximate calculation
is partly fortuitous. Independent of this quantitative compar-
ison though, the calculations show that without a doubt the
dissociation reaction proceeds many orders of magnitude faster
due to tunneling.
3.3. Selected scans and 3D plots of conical intersections

Fig. 2 show the diabatic potential energy curves of three states,
namely, the ground 1pp state, the 1pp* state, and the repulsive
1ps* state along the O–H stretch with the other geometric
parameters xed at the equilibrium geometry of ground-state
phenol. As the O–H bond length increases, the APRP 1ps* state
intersects the 1pp* state at 1.32 Å (CI1); then it further inter-
sects the 1pp state at 2.23 Å (CI2), and it nally dissociates to
the ground state of phenoxyl radical (2B1 state) and H atom. The
1pp state, which is the ground state of phenol at short O–H
bond length, intersects the 1ps* state at 2.23 Å, and it disso-
ciates to the excited state of phenoxyl radical (2B2 state) and H
atom. MC-QDPT diabatic potential curves are also shown in
Fig. 2 for comparison. The MC-QDPT curves cross at rOH z 1.32
and 2.26 Å for 1pp*/1ps* and 1pp/1ps*.33 Fig. 2 shows clearly
that – despite the small difference in the location of CI2 – the
APRP PES reproduces the MC-QDPT diabatic potential curves
very well.

For planar geometry, the diabatic couplings are zero by
symmetry, so the adiabatic states also intersect at r ¼ 1.316
(CI1), where V2 ¼ V3 ¼ 5.613 eV and r¼ 2.232 Å (CI2) where V1 ¼
V2 ¼ 4.434 eV. Those points belong to the seams of
conical intersections along which two adiabatic states are
degenerate.

In Fig. 5, the diabatic potentials (U1, U2, and U3) and diabatic
couplings (U13 and U23) are shown along the O–H bond stretch
coordinate at various torsion angles (f ¼ 30, 50, 70, and 90�).
The diabatic potential curves calculated by fourfold way dia-
batization with MC-QDPT wave functions are also presented in
Fig. 5 to show how well our PES reproduce both the calculated
diabatic potentials and diabatic couplings. For a nonzero value
of the C2–C1–O–H torsion angle, the diabatic potential U3 still
crosses U2 and U1 along the O–H bond stretch, but the C2–C1–
O–H torsion breaks the planar symmetry and results in nonzero
diabatic couplings, thus liing the degeneracy all along the
adiabatic curves and converting the intersections to avoided
crossings. (Note that the term “avoided crossing” should not be
understood as implying that surfaces do not cross;32 rather it
means that they do not cross along the path under discussion.)
The only exception is at f ¼ 90�, where the phenol molecule
again has Cs symmetry, but now with the symmetry plane
perpendicular to the benzene ring; diabatic states U2 (

1pp*) and
Chem. Sci., 2014, 5, 4661–4680 | 4671
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Fig. 5 Calculated and APRP diabatic potentials (U1, U2, and U3) and
diabatic couplings (U13 and U23) of phenol along the O–H dissociation
coordinate r at various C2–C1–O–H torsion angles f. The other
geometric parameters are fixed at their values at the equilibrium
geometry of ground state phenol.

4672 | Chem. Sci., 2014, 5, 4661–4680
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U3 (1ps*) now have A0 0 and A0 symmetry, respectively, and the
diabatic coupling U23 is zero by symmetry. Our PES yields zero
diabatic coupling of U23 at f ¼ 90� by construction, shown in
Fig. 5d.

Three-dimensional plots of diabatic surfaces U2 and U3 and
adiabatic surfaces V2 and V3 are shown in Fig. 6 as functions of
theO–H bond stretch and the C2–C1–O–H torsion coordinate
with the other geometric parameters xed with their values cor-
responding to the equilibrium structure of ground-state phenol.
The diabatic states cross at both planar and non-planar geome-
tries, forming a seam with U2 ¼ U3 in the r and f space. The
diabatic coupling U23 is not zero for most nonplanar geometries,
but it is zero along the f ¼ 0 cut that intersects the diabatic
intersection seam at r ¼ 1.316 Å to yield a conical intersection
there, this is simply another view of the CI1 intersection shown in
Fig. 2. We should keep in mind that at f ¼ 90�, U23 is zero along
Fig. 6 Three-dimensional plots of (a) theU2 and U3 diabatic potential-
energy surfaces showing the diabatic crossing of the 1pp* and 1ps*

states and (b) the V2 and V3 adiabatic potential-energy surfaces of
phenol as functions of r and f. The conical intersection (CI1) is seen at r
¼ 1.32 Å and f ¼ 0� with all other geometric parameters fixed at the
ground state equilibrium geometry of phenol.

This journal is © The Royal Society of Chemistry 2014
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the O–H bond stretching coordinate by symmetry, and there is
another conical intersection with V2 ¼ V3.

In Fig. 7, we also provide plots similar to Fig. 6 but now for
U1, U3, V1, and V2. This provides another view of the intersection
at r ¼ 2.232 Å and f ¼ 0�, labeled CI2 in Fig. 2. The ability to
reproduce the conical intersection with our diabatic PES reects
one advantage of developing PESs in a diabatic representation –

namely we do not have to t the cusps in the adiabatic repre-
sentation near conical intersections or to line up avoid cross-
ings in the nearly degenerate adiabatic surfaces; these features
emerge naturally from the diagonalization.

Although the conical intersections look like points in Fig. 6
and 7, we should keep in mind that these are just points on 31-
dimensional intersection seams. The point with the lowest
energy along a seam of conical intersections is called the
minimum energy conical intersection (MECI), and its energy is
an important characteristic of the coupled surfaces. With our
analytic PESs, we located the MECI between V2 and V3 (MECI1)
Fig. 7 Three-dimensional plots of (a) the U1 and U3 diabatic potential-
energy surfaces showing the diabatic crossing of the 1pp and 1ps*

states and (b) the V1 and V2 adiabatic potential-energy surfaces of
phenol as functions of r and f. The conical intersection (CI2) is seen at r
¼ 2.23 Å and f ¼ 0� with all other geometric parameters fixed at the
ground state equilibrium geometry of phenol.

This journal is © The Royal Society of Chemistry 2014
and the MECI between V1 and V2 (MECI2). Both MECIs have
planar structures. MECI1 has rOH ¼ 1.273 Å with V2 ¼ V3 ¼ 5.35
eV and MECI2 has rOH ¼ 1.971 Å with V1 ¼ V2 ¼ 4.17 eV. The C–
C, C–O, and O–H bond lengths and C–O–H bond angles of
MECI1 and MECI2 are shown in Fig. 8, along with those of
ground state phenol and phenoxyl radical. Both MECIs have
C–C bond lengths similar to those in the ground-state phenoxyl
radical equilibrium geometry, which corresponds to the dia-
batic state U3 (

1ps*); these ring distortions lower the energy of
the 1ps* state with respect to what is shown in Fig. 2, and
consequently the conical intersections have lower energies and
shorter O–H bond lengths than the CIs in Fig. 2 (1.273 vs. 1.316
Å for the rst CI and 1.971 vs. 2.231 Å for the second CI).

The energy of MECI1, 5.35 eV, is 0.21 eV higher than the
saddle point discussed in the previous subsection. This small
difference is consistent with the statement made there that the
saddle point is close to a conical intersection and yet the gap
between V2 and V3 increases from 0 to 0.81 eV as one moves
from MECI1 to the V2 saddle point, so the dynamics is much
more adiabatic near the saddle point than near the CI. The
displacement of the minimum energy path from the conical
intersection does make the gap nonzero, but the gap is still
much smaller than in the H + H2 reaction where the gap at the
saddle point is more than 6 eV.122
3.4. Diabatic couplings and adiabatic potentials for out-of-
plane geometries

When out-of-plane modes are involved, the Cs symmetry of the
phenol molecule is broken. The diabatic potential U3 still
crosses U2 and U1 along the O–H stretching coordinate, but the
adiabatic potentials V1, V2, and V3 need not intersect each other
because of the non-zero diabatic couplings. Fig. 9 shows one-
dimensional cuts through the potential surfaces for nonplanar
geometries with the C2–C1–O–H torsion angle equal to f ¼
Fig. 8 The figure shows the structure of MECI1 and four sets of bond
distances for key eight C–C, C–O, and O–H bond lengths (in Å) and
the C–O–H bond angle (in degrees). From top to bottom are values for
the equilibrium geometry of the S0 state of phenol, MECI1, MECI2, and
the ~X 2B1 state phenoxyl radical. “N.A.” denotes not applicable.

Chem. Sci., 2014, 5, 4661–4680 | 4673
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145�. The phenoxyl ring is xed at the ground state equilibrium
geometry of phenol with qCOH ¼ 107� and 130� in Fig. 9a and b;
the phenoxyl ring is xed at the transition state geometry of the
S1 excited state with qCOH ¼ 112� in Fig. 9c; and the phenoxyl
ring is xed at the ground-state equilibrium geometry of phe-
noxyl radical with qCOH ¼ 115� in Fig. 9d. In all cases, the
adiabatic potential curves show avoided intersections along the
O–H stretching coordinate, as expected.

Near conical intersections, diabatic potential energy curves
may cross along the C2–C1–O–H torsion coordinate. But adia-
batic potential energy curves avoid crossing since the nonzero
diabatic couplings li the degeneracy of diabatic states. This is
shown clearly in Fig. 10. In Fig. 10a, for rOH ¼ 1.29 Å with all
other geometric parameters except f xed at the ground equi-
librium geometry of phenol, the diabatic potential U3 crosses U2

at f ¼ 25�, but the adiabatic potential curves V2 and V3 avoid
crossing. In Fig. 10b, for rOH ¼ 2.10 Å, the diabatic potential U3

crosses U1 at f¼ 24�, but again the adiabatic potential curves V1
and V2 avoid crossing.

So far we have shown cuts through the APRP PESs for a xed
geometry of the phenoxyl moiety of phenol. The good perfor-
mance of our APRP PES for those geometries is expected since
we used general functional forms to t the dependence of MC-
QDPT diabatic potentials and couplings on the primary and
secondary coordinates. Next we examine the PESs for some
nonplanar geometries with distorted phenoxyl groups. In the
language of the APRP, we are looking here at how the PESs and
couplings vary for geometries with distortions in tertiary
Fig. 9 Diabatic potentials (U1, U2, and U3) and adiabatic potentials (V1, V2,
geometric parameters fixed at the ground state equilibrium geometry of
ground state equilibriumgeometry of phenol, (c) all other geometric para
(d) qCOH ¼ 115� and all other geometric parameters fixed at the ground

4674 | Chem. Sci., 2014, 5, 4661–4680
coordinates. In particular, we examine the dependence on the
n16a (an out-of-plane ring puckering/twisting vibration of a0 0

symmetry) and n16b modes that have been singled out for
attention in experimental studies.46,51 (We use Wilson's labeling
scheme123 for the phenol and phenoxyl vibrational modes.)

The diabatic potentials and relevant diabatic couplings
along Cartesian normal-mode displacements of the n16a and
n16b modes were calculated with our APRP PESs and compared
with MC-QDPT results at the two conical intersections in
Fig. 11 and 12. The normalized Cartesian normal-mode
displacements of n16a and n16b modes calculated by the M06-L
functional124 with the aug-cc-pVTZ basis set were used in order
to be consistent with previous MC-QDPT calculations.33 The
APRP diabatic potentials and couplings agree qualitatively
with the MC-QDPT results. The diabatic coupling U23

increases linearly along the Cartesian normal-mode
displacements of both n16a and n16b modes at CI1. At CI2, the
diabatic coupling U13 also increases linearly along the Carte-
sian normal-mode displacement of the n16a mode. However, it
remains very small along the Cartesian normal-mode
displacement of the n16b mode. These calculations of the
diabatic couplings for out-of-plane distortion of the ring in
phenol can be used in the future for full-dimensional studies
of the effects of vibrational mode coupling on the dynamics of
photodissociation of phenol. However, we can also gain
insight into the photodissociation dynamics by studying the
couplings even without carrying out full dynamics studies,
and we consider that next.
and V3) versus rOH with C2–C1–O–H torsion fCCOH¼ 145�, (a) all other
phenol, (b) qCOH ¼ 130� and all other geometric parameters fixed at the
meters fixed at the excited state (S1) transition state geometry of phenol,
state equilibrium geometry of phenoxyl radical.

This journal is © The Royal Society of Chemistry 2014
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Fig. 10 Diabatic potentials (U1, U2, andU3) and adiabatic potentials (V1,
V2, and V3) versusC2–C1–O–H torsion fCCOH (a) with rOH¼ 1.29 Å and
all other geometric parameters fixed at the ground state equilibrium
geometry of phenol, (b) with rOH ¼ 2.10 Å and all other geometric
parameters fixed at the ground state equilibrium geometry of phenol.

Fig. 11 The atomic displacements of vibrational mode n16a (a), and
calculated and APRP diabatic potentials and the most relevant diabatic
couplings at conical intersections of the 1pp* and 1ps* states (b) and
the 1pp and 1ps* states (c) along scaled Cartesian normal-mode
displacements.
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First we recall the Ehrenfest effective PES, which we will call
�V , for multi-electronic-state molecular dynamics is a weighted
average over the adiabatic PESs, Vj, where the weights are the
diagonal elements, rjj, of the electronic density matrix.34,125–128

Then we consider a photoexcited system with r22 [ r11 and r22

[ r33 approaching CI1. If the system is not adiabatic, we expect
to see r33 increase, and that puts a higher weight on V3 and
raises �V , which makes it less likely that the system dissociates.
Now let the system undergo a vibration in an out-of-plane mode
while it approaches CI1; this has two consequences: (1) the
vibration causes U2 and V2 to go up, which raises �V , decreasing
the probability of dissociation; and (2) the vibration causes |U23|
to go up, which makes the system more adiabatic, which keeps
r33 low, which tends to keep �V low, which increases the prob-
ability of dissociation. For some modes, call them “inactive”
modes, effect (1) may dominate. For other modes, call them
“active” modes, effect (2) may dominate. We conclude that
reaction will preferentially occur through those molecules that
happen to have active modes excited as they get to CI1.

When one experimentally observes the products (as Ashfold
and coworkers46,51 do), one will then see an excess of molecules
with active modes excited since those are the ones that prefer-
entially reacted. Under the conditions of the experiments, most
of the vibrational modes are initially in their ground vibrational
This journal is © The Royal Society of Chemistry 2014
state. Let qm be an out-of-plane vibrational mode, and let Zm be
the zero point energy in that mode. Near a planar geometry,

U2 ¼ U2ðq ¼ 0Þ þ 1

2
kmqm

2; (22)

and

U23 ¼ Cmqm, (23)

where km is a force constant, and Cm depends on the t to the
diabatic couplings. (Both km and Cm depend on geometry in the
APRP.) Let Dm¼ |Cm|, and let Qm be the harmonic turning point
of qm:

Qm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Zm=km

p
; (24)

Since an active mode has |U23| large and U2(Qm) � U2(0)
small, we dene
Chem. Sci., 2014, 5, 4661–4680 | 4675
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Fig. 12 The atomic displacements of vibrational mode n16b (a), and
calculated and APRP diabatic potentials and the most relevant diabatic
couplings at conical intersections of the 1pp* and 1ps* states (b) and
the 1pp and 1ps* states (c) along scaled Cartesian normal-mode
displacements.
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XðQmÞh jU23ðQmÞj
U2ðQmÞ �U2ð0Þ : (25)

Substituting eqn (22)–(25), we have

X ðQmÞ ¼ Dm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=kmZm

p
: (26)

This is the simplest unitless quantity that goes up when |U23|
goes up and is larger when the rise in U2 is smaller.

We calculated X(Qm) for all out-of-plane modes at a planar
geometry of the S1 state of phenol that has the same OH
distance as the transition state but the rest of the coordinates
are the same as in the equilibrium geometry of the S1 state. We
found that X(Qm) is 0.12 for mode n16a (103 cm�1), 0.064 for
mode 11 (197 cm�1), and 0.050 for mode 10a (389 cm�1), but it
ranges between 0.013 and 2 � 10�4 for the other seven out-of-
plane modes of phenol (with frequencies in the range 92–865
cm�1). This provides a simple explanation for why n16a mode is
the most prominent excited mode observed46,51 in the products
of the photodissociation reaction; and we note that mode 10a is
4676 | Chem. Sci., 2014, 5, 4661–4680
also observed51 to be excited in the products. We note that
vibrational modes can also be excited during the energy release
phase as the system progresses from the region of the saddle
point and CI1 down to products, but the analysis just given is
consistent with the interpretation51 of at least some of the
observed vibrational mode selectivity as arising from the ability
of various vibrational modes to promote state coupling.
Unfortunately this is called promotion of “nonadiabatic tran-
sitions” in ref. 51, but actually—as the above discussion should
make clear—the relevant consideration is promotion of diabatic
coupling, which leads to adiabatic passage, not nonadiabatic
transitions.
3.5. Nonplanar conical intersections

The conical intersections occur in a (3N � 8)-dimensional
manifold, where N is the number of atoms. Thus, in phenol
molecule, the conical intersection should have a dimension of
31. Both U13 and U23 vanish for planar geometries, which form
a 23-dimensional manifold, because 2N � 3 ¼ 23. With the
further constraint of U2 ¼ U3 or U1 ¼ U3, the

1pp*/1ps* and
1pp/1ps* conical intersections occur in a 22-dimensional
manifold in planar geometry. This is a relatively low-dimen-
sional subset of the full 31-dimensional seam, and therefore
most of the conical intersection seam has nonplanar
geometry.

Locating conical intersections that are not determined by
symmetry can be carried out by special algorithms in the
adiabatic representation.129,130 However, with the analytic
diabatic PES matrices of phenol on hand, we can locate such
conical intersections more easily.131,132 Contour plots of U2 �
U3 and U23 with respect to the C2–C1–O–H torsion angle f and
one of the H out-of-plane bend angles, in particular q8�2�1�3,
which denotes the deviation of atom 8 from the 2�1�3 plane,
are shown in Fig. 13 at r ¼ 1.29 Å. At the planar geometries,
both f and q8�2�1�3 are zero, and adiabatic state V3 is 0.21 eV
higher in energy than adiabatic state V2. The seam with U22 ¼
U33 ¼ 0 and the seam with U23 ¼ 0 cross at f ¼ 40.1� and
q8�2�1�3 ¼ 25.0�. If these two diabatic states formed a closed
space, that point (solid circle in Fig. 13) will be a nonplanar
conical intersection of V2 and V3, but due to the perturbation
by diabatic state U1, the location of the true conical inter-
section is displaced from this point. Nevertheless this is a
good starting point for a search, and by making a contour
plot of V2 � V3 in this vicinity (which is inexpensive because
we have an analytic representation), we nd that V2 ¼ V3 ¼
5.93 eV at f ¼ 49.3� and q8�2�1�3 ¼ 15.8� (solid square in
Fig. 13).

In Fig. 14, we present the contour plots of U1 � U3 and U13

with respect to the C2–C1–O–H torsion angle f and one of the H
out-of-plane bend angles q9�3�2�4 at r ¼ 2.20 Å. The seam with
U1 � U3 ¼ 0 eV and the seam with U13 ¼ 0 eV cross at f2�1�7�13

¼ 12.4� and q9�3�2�4 ¼ �16.2� which is also a nonplanar
conical intersection with V1 ¼ V2 ¼ 4.54 eV as a result of the
smallness of the perturbation by diabatic state U2 at this
geometry.
This journal is © The Royal Society of Chemistry 2014

http://dx.doi.org/10.1039/C4SC01967A


Fig. 13 Contour plots of U2 � U3 and U23 (in eV) to locate the non-
planar conical intersection of the 1pp* and 1ps* states at rOH ¼ 1.29 Å.
The solid square and circle are explained in Section 3.5. Fig. 14 Contour plots of U1 � U3 and U13 (in eV) to locate the non-

planar conical intersection of the 1pp and 1ps* states at r ¼ 2.20 Å.
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4. Summary and concluding remarks

Photochemical reactions and other light-induced processes
involving electronically excited states are important for
synthesis and a myriad of other applications, but theoretical
understanding has lagged that for thermal reactions. In this
paper we take steps to try to improve this situation. First, using
on a new method, we present fully analytic coupled potential
energy surfaces and their couplings, based on high-level elec-
tronic structure calculations for a system with a large number
(33) of internal degrees of freedom. These surfaces are based on
an improved version of the APRP method that uses internal
coordinates with better global behavior than the usual internal
coordinates. For the three-state photodissociation of phenol, we
have used the improved APRP method to develop analytic full-
dimensional diabatic potential energy surfaces not only for the
surfaces and their analytic gradients, but also for analytic dia-
batic coupling surfaces and their gradients; by transformation
the method then yields adiabatic energy surfaces and their
gradients and nonadiabatic momentum couplings.

Selected scans show that our APRP diabatic PESs and dia-
batic coupling surfaces reproduce well the results calculated
previously by the fourfold way with the MC-QDPT method. We
illustrate the magnitudes of the diabatic couplings and adia-
batic gaps for various nonplanar geometries and show how they
may be used to provide a simple estimate of which vibrational
modes promote the dissociation process. By diagonalizing the
This journal is © The Royal Society of Chemistry 2014
diabatic potential matrices, conical intersections can be
correctly reproduced, and we show how to use the APRP
potential matrix to locate points on conical intersection seams
at nonsymmetrical geometries.

We used the APRP potentials to locate the transition state,
minimum-energy path, and vibrationally adiabatic potential
energy curve for electronically adiabatic photodissociation of
phenol on the S1 surface and to study of thermal rate constants
for adiabatic dissociation, which conrmed the importance of
tunneling for S1 state photodissociation of phenol.

The APRP potential for phenol can be used for the study of
dynamics of photodissociation of phenol to elucidate the effect
of ring motion, including out-of-plane vibrational modes. The
success of the APRP method in producing coupled surfaces and
couplings suitable for full-scale dynamics calculations is
encouraging because the method is very general, and the
improved APRP method can be used to map out coupled
potential energy surfaces and their couplings for other complex
systems, thereby allowing much more complete molecular
dynamics simulations than have been practical in the past.
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