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Nanothermodynamics of metal nanoparticles

Zhen Hua Lia and Donald G. Truhlar*b

Metal nanoparticles have been widely used as functional materials in physics, chemistry, and biology.

Understanding their unique thermodynamic properties is essential both for practical applications and

from a fundamental point of view. This perspective article is an overview of recent progresses on the

nanothermodynamics of metal nanoparticles and it especially highlights as examples our own studies on

the structural stability, phases, phase changes, and thermodynamic functions of aluminum nanoparticles.

We discuss using statistical sampling by Monte Carlo and molecular dynamics algorithms to calculate

nanoparticle properties, nanophase properties, free energies, and nucleation rates, and we tried to

understand the results in terms of energy landscapes by using exhaustive enumeration of the multiple

structures of Al nanoparticles from all sizes up to N ¼ 65 plus selected larger calculations.
Size matters

In 1959, Richard Feynman gave a talk entitled “There's plenty of
room at the bottom” at an American Physical Society meeting at
Caltech.1 This talk is oen viewed as the source of inspiration
for nanoscience. In the talk, Feynman speculated that unusual
properties would emerge when the dimensions of the materials
approach nanometer size (now usually taken to mean 1–100 nm
in diameter (ref. 2) or even 500 nm), and he also speculated on
developing nanoscale devices for technology. The invention of
the scanning tunneling microscope (STM) brought the promise
of nanoscience and nanotechnology into broader conscious-
ness by allowing the scientic community to actually see metal
nanoparticles and manipulate them.3 Now STM and other
imaging procedures with nanoscale resolution have become
standard techniques in material science and surface science,
and the promise of functional nanoparticles is well established.

Metal nanoparticles4–6 and subnanometer metal clusters
have been widely used as functional materials for catalysis,
storage, sensing, energy, nonlinear photonics, and medicine.
Metal nanoparticles also occur naturally in certain geological
environments. They have unique chemical, electronic, optical,
and magnetic properties, the understanding of which is a
fundamental basic research subject and is essential for the
practical applications just mentioned. Two generally accepted
sources of the uniqueness of the properties of metal nano-
particles in materials research are the surface effect and
quantum size effect.
talysis and Innovative Materials, Fudan

l: lizhenhua@fudan.edu.cn

y Center, and Supercomputing Institute,

eet Southeast, Minneapolis, MN 55455-

hemistry 2014
The surface effect is the increasing ratio of the number of
surface atoms to the number of interior atoms as a metal
particle becomes smaller. This relationship has an important
effect on the physical properties of metal nanoparticles; for
example, as will be discussed below, it is a primary reason why
the solid–liquid transition temperature of nanoparticles is
inversely proportional to particle radius.

The quantum size effect is due to the valence electrons of
metal atoms being conned in a small space rather than being
delocalized in the conduction band of a bulk solid. If we view
the valence electrons as quasi-free, the average spacing between
consecutive levels of a metal nanoparticle (sometimes called the
Kubo gap7) is inversely proportional to the number N of atoms
in the nanoparticle. Thus the HOMO–LUMO gap of the metal
nanoparticles increases with decreasing particle size.

The above arguments show that the physical and chemical
properties of metal nanoparticles are strongly affected by their
size, and simple models would imply that they are smooth
functions of size. However, when the number of atoms in a
nanoparticle is smaller than �102, adding or removing one
atom from the nanoparticle can dramatically change its prop-
erties, and experience with small nanoparticles shows that their
properties are not a smooth function of number of particles or
the radius. As one decreases the size from nm dimensions to Å
dimensions, metal particles behave more like molecules or
clusters than like particles,8 but we will continue to use the term
nanoparticle if they are larger than 1 nm.

In order to characterize bulk materials, one of the most basic
questions we ask is: what are the thermodynamic properties? In
this article, we address this question for metal nanoparticles.
Based on the above arguments we can see that – unlike
macroscopic particles – the thermodynamic properties of metal
nanoparticles will depend on particle size, and since we are not
in the bulk limit, the conventional thermodynamics of macro-
scopic metals does not apply.
Chem. Sci., 2014, 5, 2605–2624 | 2605
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Nanothermodynamics: the basics

Thermodynamics is a science of very certain consequences,
such as conservation of energy. The high degree of certainty
follows from the large number of particles in a macroscopic
system, because uctuations of macroscopic variables from
their mean values have a magnitude of order O(N�1/2), where N
is the number of particles. For a bulk metal this is O(10�12), but
for an Al45 nanoparticle it is 15%, and for smaller nanoparticles,
it is even larger. Not only do nanoparticles have properties
intermediate between clusters and the bulk, and not only do
they show large uctuations, but also nanoparticles have non-
uniform properties, even within a given nanoparticle. This is
illustrated in Fig. 1, which shows the density as a function of
distance from the centre of mass for three nanoparticles.

Nevertheless, by using the appropriate variable, one can still
make useful analyses and predictions, but there are dramatic
surprises in store if one is only accustomed to bulk thermody-
namics.9,10 For example, not only does the condition of coexis-
tence of phases broaden from a single temperature for a given
pressure of a pure material to a range of temperature, but also
the very nature of the phase change is different, with the
appearance of the slush state.8,11

Thermodynamics is conventionally viewed as applying in the
limit where all extensive variables tend to innity, but it can also
be viewed as a continuum where atomic-scale structure need
not be considered.12 Inversely, when one is not in the thermo-
dynamic limit, atomic-scale structure is very important. For
macroscopic systems, the overwhelming majority of atoms are
bulk atoms, and the relative contribution of surface atoms to an
extensive quantity is O(N�2/3), which is negligible, but for a
small nanoparticle most of the atoms are on the surface, and
atomic-scale properties such as the lower coordination number
of surface atoms are critical.13

The fundamental equation for the internal energy U of a
single-component material in the absence of an external eld is
expressed as

U ¼ TS � PV + mN, (1)

where T is the temperature, S is the entropy, P is the pres-
sure, V is the volume, and m is the chemical potential The
Fig. 1 Nonhomogeneous density distribution in AlN nanodroplets of
three different sizes (N ¼ 55, 400, and 1000) compared to the uniform
density of the bulk liquid. All results are for 1000 K.

2606 | Chem. Sci., 2014, 5, 2605–2624
Gibbs free energy G, the Helmholtz free energy F, the
enthalpy H, and U, S, and V are extensive state functions
whereas T, P, and m are intensive functions which are the rst
derivatives of one extensive variable with respect to another;
for example,

m ¼
�
vG

vN

�
T ;P

¼
�
vU

vN

�
S;V

: (2)

For homogeneous macroscopic systems, the chemical
potential m can also be expressed as

m̂ ¼ G

N
: (3)

However, for nanosystems, due to large fraction of nonbulk
atoms, the extensive state functions are no longer linearly
proportional to N and thus ms m̂. For macroscopic systems, we
have the Gibbs–Duhem relation

�SdT + VdP � Ndm ¼ 0, (4)

so the three intensive variables (m, T, P) are not independent.
Thus m is a function of just two independent variables T and P.
However, since the extensive state functions of nanoparticles
are not linearly proportional to N, m for nanoparticles is not just
a function of T and P, but is also a function of N.

Hill addressed this fundamental difference between macro
and nano systems, and he deduced the basic thermodynamic
equations for nano-sized materials.9,10 At rst, he called these
equations the “thermodynamics of small systems”, but later – in
2000 – Chamberlin introduced the term nanothermodynamics
as a shortened and more fashionable name for the thermody-
namics of small systems.14 Hill's formulation of nano-
thermodynamics is based on the ensemble of small systems
approach, and in a later development Tsallis proposed another
form that is a modied Boltzmann–Gibbs scheme based on the
inherent uctuations in nanosystems.15 Here we will give a brief
introduction to Hill's approach.

For a single-component nanosystem, the equation

dU ¼ TdS � PdV + mdN (5)

is no longer applicable since it applies to macroscopic systems
only. This equation can be generalized by adding another term
at the ensemble level rather than at the single-system level. Hill
treated an ensemble of N equivalent and non-interacting
nanosystems as a macroscopic system with total energy given
by

Ut ¼ NU (5a)

total entropy given by

St ¼ NS (5b)

total volume given by

Vt ¼ NV (5c)
This journal is © The Royal Society of Chemistry 2014
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and total number of particles given by

Nt ¼ NN (5d)

etc., where U, S, V, N, etc. are considered to be thermodynamic
properties of a single small system. Then eqn (5) is augmented
to

dUt ¼ TdSt � PdVt + mdNt + XdN (6)

where we have introduced a kind of system chemical potential
called the “sub-division potential” and given by

X ¼
�
dUt

dN

�
St ;Vt ;Nt

(7)

Integrating eqn (6) from N ¼ 0 to N while keeping all small
system properties constant the following equation is obtained:
Ut ¼ TSt � PVt + mNt + XN (8)

Dividing both two sides by N yields the following equation
for a single small system,

U ¼ TS � P̂V + mN (9)

where we have dened P̂ ¼ P � X/V. By substituting eqn (5a)–
(5d), and (9) into (6), we can derive

dU ¼ TdS � PdV + mdN. (10)

Taking differentials in eqn (9) and cancelling the terms in
eqn (10), the following relation is obtained:7

d(P̂V) ¼ �SdT + VdP � Ndm (11)

This relation is different from that for a macroscopic system
since according to eqn (4) the le hand of eqn (11) equals zero
for a macroscopic system. Therefore, one fundamental differ-
ence between macroscopic systems and nanosystems is that T,
P, and m are all independent for nanosystems. If we choose T, P,
and N as the environmental variables, then m is a function of T,
P, and N instead of just T and P for macroscopic systems.

Eqn (9)–(11) are the fundamental equations for nanosystems
as a generalization of the thermodynamics of Gibbs for
macroscopic systems. The thermodynamics of macroscopic
systems can be viewed as a limiting case of nano-
thermodynamics: For macroscopic systems, Ut is a linear
homogeneous function of Nt and thus dX equals zero in eqn (11)
according to eqn (7).

The nanothermodynamics of Hill nicely illustrates the
differences between macroscopic systems and small systems.
However for practical work, further renements may be useful
or even needed; for example Wang and Yang16 generalized the
theory to take into account the size dependence of the surface
tension.

Having introduced the basic equations of the nano-
thermodynamics, we will next focus on the thermodynamics
properties of specic metal nanoparticles. Most of the
This journal is © The Royal Society of Chemistry 2014
illustrations will be taken from our own work on aluminum
nanoparticles8,17–19 (including a considerable share of previously
unpublished material), but for some topics we also give repre-
sentative (not exhaustive) illustrations or references for other
work on metal nanoparticle thermodynamics. We will be con-
cerned entirely with unsupported naked metal clusters, not
ligand-stabilized or passivated ones.

The internal energy of a molecule is oen taken, to a rst
approximation, as a sum of potential energy, electronic excita-
tion energy, vibrational energy, rotational energy, and trans-
lational energy; the potential energy is a function of
internuclear coordinates called the potential energy surface
(PES), the set of internuclear coordinates is usually called a
geometry, and the geometries where the PES has a local
minimum are called structures. The PES is given, according to
the Born–Oppenheimer separation of electronic and nuclear
motion, as the ground-state electronic energy including, by
convention, the nuclear Coulomb repulsion. The validity of the
Born–Oppenheimer approximation is that the ground elec-
tronic state of the system is well separated in energy from
excited electronic states, and this condition is not usually met
for metal nanoparticles, just as it is not met for bulk metals.
Nevertheless the concept of a potential energy function is
almost universally invoked for simulating nuclear motion in
such systems despite its known failures.20 A key advantage of
the PES concept is that the ground electronic energy may be
approximated by Kohn–Sham density functional theory21 or
wave function theory.22 For large systems like nanoparticles,
affordable yet reliable wave function methods are unavailable,
so Kohn–Sham theory is almost always used. The separation
into potential energy calculated by Kohn–Sham theory, elec-
tronic excitation energy, vibrational energy, rotational energy,
and translational energy will be our starting point, although we
will eventually modify it to take account of multiple low-energy
structures (especially the contribution of congurational
entropy to the free energy).
Structures and stability at 0 K

The starting point for the study of any material is to determine
its structure, and nanoparticles are no exception to this gener-
alization. We therefore rst ask, for nanoparticles of given size
N, which structure is the one that is most likely to be prepared
and observed in experiments. To answer this question is not
easy for two reasons. First, the observed structure may be
kinetically controlled.23 However, our focus here is thermody-
namics. Even at equilibrium though, as discussed further
below, the stability of a structure at a nite temperature is
determined not only by its potential energy but also by its
entropy. Despite these caveats, it is oen assumed, sometimes
incorrectly, that if a particular structure has much lower
potential energy than all other possible isomeric structures, this
structure will be the one most likely observed in experiments.
This minimum-energy structure is called the global minimum
(GM) structure, and nding it for various N has been the focus
of many research projects in many groups.
Chem. Sci., 2014, 5, 2605–2624 | 2607
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Fig. 2 Coordination numbers in AlN nanodroplets of three different
sizes (N ¼ 55, 400, and 1000). All results are for 1000 K.
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To locate GM structures, we need to know the PES and to
have an algorithm to locate the global minimum of this multi-
dimensional function. For the PES, we have two classes of
choices: (i) direct dynamics,24,25 which means that one solves
(approximately, of course) the electronic Schrödinger equation
(or equivalent Kohn–Sham equations) for each geometry that
occurs in the optimization scheme (or, more generally, in a
dynamics calculation) or (ii) using an analytic potential energy
function (PEF). For nanoparticles containing dozens or
hundreds of atoms, direct dynamics with a reliable approxi-
mation scheme for the electronic energies is prohibitively
expensive for a full study since a thorough search for all the
structures of a metal nanoparticle requires the energies of at
least millions of structures to be evaluated. As a consequence,
direct dynamics calculations are oen carried out with Kohn–
Sham theory employing an exchange–correlation functional
chosen for low computational cost rather than highest available
accuracy (for example, the direct dynamics calculations
mentioned below were carried out with the BP86 (ref. 26) and
PBE27 local exchange–correlation functionals rather than with a
more accurate hybrid one), and even with a less expensive
density functional, the calculations are still too expensive for a
full study.

An analytic PEF may be constructed empirically, if enough
data is available, but it isn't for metal nanoparticles. A readily
available and widely used option has been to use a potential
function tted to bulk data; however, we generated reference
data for cohesive energies of aluminum clusters and nano-
particles and found that aluminum PEFs tted only to bulk data
deteriorate seriously in predictive value for N ( 60, with the
mean unsigned error relative to the reference data typically
increasing from <0.2 eV per atom at high N to >0.4 eV per atom
at low N.

Although many empirical PEFs have been proposed for
nanoparticles, not many have been carefully optimized using
accurate structural and energetic data of nanoparticles since
accurate experimental data are scarce for nanoparticles.28 We
found that a successful strategy is to t the PEF to bulk data,
nanoparticle data, and cluster data, mainly generated by elec-
tronic structure calculations but augmented to the extent
possible by any available experimental data, for example, data
for metal diatomic molecules and/or data for the bulk metal.
For aluminum systems we have recently optimized accurate
analytical PEFs29,30 based on both experimental data and
Kohn–Sham calculations employing the hybrid PBE0/MG3
exchange–correlation functional. We note that the PBE0
exchange–correlation functional31 was chosen to be used on
nanoparticles on the basis of extensive validation32 for
aluminum clusters, where benchmark data could be generated.
Among them the NP-A and NP-B potentials are the two PEFs
with highest accuracy. NP-A includes an accurate two-body
potential plus additional terms to account for screening (the
interaction between atoms A and B is screened by the presence
of atom C) and coordination numbers (other factors being
equal, the binding energy per ligand becomes smaller as the
number of ligands increases); this is our most accurate poten-
tial function but the large number of terms makes it expensive
2608 | Chem. Sci., 2014, 5, 2605–2624
for long simulation on large particles. NP-B has a greatly
simplied form that reduces the cost with only a slight decrease
in accuracy. The NP-A and NP-B PEFs have accuracies of just
0.03 eV per atom and 0.04 eV per atom, respectively, for
aluminum nanoparticles.30 The results presented for discussion
in this perspective are mainly based on the NP-B PEF because it
is less expensive to evaluate, which is an important consider-
ation because of the large number of calculations needed to
generate thermodynamic data. Although analytic PEFs allow
much more exhaustive explorations of structures and thermo-
dynamics than is possible with direct dynamics, one should be
aware of their drawbacks, the most important of which is that
they do not take cognizance of electronic orbital effects like
shell lling and the Jahn–Teller effect.

To illustrate the importance of including nanoparticles in
the parameterization, we will revisit the three systems shown in
Fig. 1. For the same three systems, Fig. 2 shows the average
coordination number as a function of the distance from the
centre of mass. For large enough nanoparticles, the coordina-
tion number at the surface converges to about 4.5, much lower
than the bulk solid (which has a coordination number of 12).
The coordination number in the interior converges to 10.5 in
good agreement with the experimental value for the liquid,
which is 10.6. One must include clusters and nanoparticles in
the training set to parametrize reliably for coordination
numbers below 10.5.

Having chosen a PEF, the next step is to choose a global
optimization method for the location of GM structures.33,34

Locating GM structures is a difficult task since the energy
landscape for a metal nanoparticle is very rugged. For
aluminum clusters and nanoparticles, various algorithms have
been used to locate the GM structures.35–40 We adopted a tech-
nique that combines the big-bang search method with molec-
ular dynamics (MD) simulation and a quenching method.17

Once the GM structures are located, we can analyse the struc-
ture and stability of the nanoparticles.

For aluminumparticles, Al19 has a diameter of approximately
1 nm. Thus AlN particles with N $ 19 are tentatively called
nanoparticles while those with N < 19 are called clusters.
However, one must bear in mind that there is no clear boundary
between clusters andnanoparticles.Nevertheless it is interesting
to point out that both experimental41 and computational42,43
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 Second finite energy difference (D2E
(1)
e (N), in eV) of aluminum

nanoparticles. Plotted using data from ref. 17 and 38.

Fig. 5 Excess energy (D(N), in eV) of aluminum nanoparticles. Plotted
using data from ref. 17 and 38.
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evidence forMg clusters indicates thatmetallic bonding set in at
N equal to about 18–20, although the nonmetal to metal transi-
tion is gradual and not precisely dened. As one goes to even
larger N, the size of the nanoparticles grows only slowly with
N. For example, the longest internuclear distance in the GM
structure ofAl65 is 1.33nm. If eachAl atom is surroundedby a van
derWaals sphere (with a van derWaals radius44 of 0.184 nm), the
diameter of this nanoparticle is 1.70 nm. A similar calculation on
Al2 (internuclear distance 0.27 nm) would give a subnanometer
size of 0.64 nm.

As is well known, the low-energy structures of small nano-
particles differ from bulk structures. The bulk structure of Al is
face-centred cubic (FCC), which is a close packed structure in
which each Al atom has a coordination number of 12. For small
N though, icosahedral structures are favoured, as illustrated in
Fig. 3. In the vicinity of N ¼ 55, the FCC structures begin to
become competitive with the icosahedral ones. For N T 130,
FCC becomes consistently favored over hexagonal close packed.

The cohesive energy of the GM structure of a nanoparticle is
dened by

CE(N) ¼ Ee(1) � E(1)
e (N)/N, (12)

where Ee(1) is the potential energy of a single atom and E(g)e (N) is
the potential energy of the classical-equilibrium structure of the
isomer g of the particle of size N (g is not needed for N# 2), and
we have set g ¼ 1 on the right hand side of eqn (12) to denote
the GM structure. Cohesive energy can be used in various ways
to characterize the stability of a nanoparticle. Excess energy
D(N) is one that is dened as

D(N) ¼ N1/3[CE(N) � Ecoh], (13)

where Ecoh is the cohesive energy of the bulk. Another quantity
that can be used to characterize the stability is the second nite
energy difference D2E

(1)
e (N) which is dened as

D2E
(g)
e (N) ¼ E(g)

e (N � 1) + E(g)
e (N + 1) � 2E(g)

e (N), (14)

Results for D2E
(1)
e (N) (N ¼ 19–139) and D(N) (N ¼ 19–310) for

the aluminum nanoparticles are presented Fig. 4 and 5,
Fig. 3 Cohesive energies of AlN nanoparticles for the global minima
and for three bulk crystal habits (FCC, hexagonal close-packed, and
body-centered cubic). Structure classification is based on the
parameter of Honeycutt and Andersen.48 All results are for 0 K.

This journal is © The Royal Society of Chemistry 2014
respectively.17,38 The peaks in the plots correspond to nano-
particles with higher stability than their neighbours. The sizes
of the nanoparticles with extremely high stability are called
magic numbers. Based on both D2E

(1)
e (N) and D(N), we can see

that 19, 23, 38, 55, 79, 116, 147, and 201 are the magic numbers
of the aluminum nanoparticles. Fig. 6 shows the magic-number
structures and shows that they are all highly symmetrical
structures. The GM structure of Al19 is a double icosahedron
structure with two interior atoms. The GM structure of Al23 can
be viewed as a triple icosahedron with three interior atoms. The
GM structures of Al38, Al79, and Al116 are all truncated octahedra
that can be cut out of face-centred-cubic (FCC) bulk. The GM
structures of Al55 and Al147 are icosahedra with Al55 having an
icosahedron core of 13 atoms while Al147 has an icosahedron
core of 55 atoms. For the aluminum nanoparticles larger than
Al300, Shao and Wu et al. found that the majority of the GMs are
truncated octahedra.39,40

The existence of magic numbers is a common property of
metal nanoparticles. Similar phenomena have been observed
for, among others, sodium and gold particles45 and even cti-
tious particles held together by Lennard-Jones potentials.46 Two
models have been proposed to understand this. The rst one is
Chem. Sci., 2014, 5, 2605–2624 | 2609
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Fig. 6 GM structures of Al19, Al23, Al38, Al55, Al79, Al116, and Al147.
Cartesian coordinates taken from ref. 17 and 38 are used to draw the
structures.

Fig. 7 Electron shells in the jelliummodel for the 40 valence electrons
of the Na40 particle. Reprinted from ref. 49 with permission from ACS
publications.
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the geometrical model, which is based on shells of atoms.47 As
mentioned above, the fraction of surface atoms is high in a
nanoparticle. As a result the surface tension of nanoparticles is
high. In order to reduce surface tension, nanoparticles tend to
adopt a more compact and spherical structure. Therefore,
nanoparticles with more compact and spherical geometry will
have higher stability than other nanoparticles.

The second model for understanding the stability of metal
particles is the electronic model, which is based on shells of
electrons.50 The simplest electronic shell model is the jellium
model. In this model, the valence electrons of the metal atoms
are viewed as particles in a box, and the nuclei are treated as a
uniform positively charged background. Thus the densities of
states and the energies of the electrons depend crucially on the
size of the box. When atoms are added and the shells of the
electrons are lled up, the dependence of nanoparticle prop-
erties on size is thus no longer smooth, and the largest
changes in energy occur when a new shell at higher energy
starts to be populated. Nanoparticles with lled electron shells
have extra stability. Fig. 7 is an example of the electrons lling
the energy levels of a spherical Na40 particle in the jellium
model.

We can compare these models for their relevance to the
aluminum clusters. Consider rst the geometrical model. There
are several methods to build nearly spherical nanoparticles. The
rst one is to cut from bulk crystal structure. The spherical
nanoparticles cut in this way from FCC bulk are truncated
octahedra whose size is expressed by

NTOðnl; ncutÞ ¼ 1

3

�
2nl

3 þ nl
�� 2ncut

3 � 3ncut
2 � ncut; (15)

where nl is the length of the edges of the complete octahedron,
and ncut is the number of layers cut at each vertex. Therefore,
with ncut equal to 1 or 2, the sizes of perfect truncated octahedra
are 13, 14, 38, 55, 79, 116, 140, 201, 225, .
2610 | Chem. Sci., 2014, 5, 2605–2624
The second method is to build Mackay icosahedra whose
size is expressed by

NIhðkÞ ¼ 10

3
k3 þ 5k2 þ 11

3
k þ 1; (16)

where k is the number of the shells of the icosahedron. Thus the
sizes of perfect icosahedra are 13, 55, 147, 309, .

The third method is to build truncated decahedra. The
expression for the size of a Marks decahedron is

NM-DhðkÞ ¼ 10

3
k3 þ 10k2 þ 11

3
k þ 1; (17)

which produces the sequence of 18, 75, 192, .
Finding that Al19 and Al23 have a building block of Al13 ico-

sahedra, that Al55 and Al147 are icosahedra, and that Al38, Al79,
Al116, and Al201 are truncated octahedra indicates that the
criterion based on surface effects is an important factor in the
stability of aluminum nanoparticles. However, this conclusion
is based on the approximate PEFs that may overestimate the
stability of more symmetrical structures. Direct dynamics
calculations show that the GM of Al19 has a C1 symmetry and the
double icosahedral structure is high in energy.51,52 For larger
Al55 and Al147 nanoparticles, density functional calculations
with the BP86 exchange–correlation functional indicate that the
truncated decahedral structure of Al55 and truncated octahedral
structure of Al147 are more stable than their corresponding
icosahedral structures.52 Although these results differ from
those obtained with NP-B, they still indicate that geometrically
determined surface effects control the stability of larger
aluminum nanoparticles.

Next consider the electronic shell model. Assuming that
metal particles are spherical, the jelliummodel predicts that the
magic numbers for sodium clusters are 2, 8, 20, 40, 58, 92, 139,
. This is in very good agreement with experiment.53 For
aluminum nanoparticles, each aluminum atom has three
valence electrons and thus the candidates for magic aluminum
particles are Al13

�, Al19
�, Al31

�, Al46
�, etc. Al13

� has been veri-
ed by experiment to be a very stable cluster, which is ratio-
nalized by a double complete shell structure, that is, an
This journal is © The Royal Society of Chemistry 2014
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icosahedron with a complete atomic shell and a complete
electronic shell.54 For its superior stability and its properties
resembling those of halogen anions, it is oen called a
superatom,55,56 as is the neutral cluster with N ¼ 13. The latter,
being one electron shy of a closed shell is found to have strong
resemblance in its reactivity trends to a halogen atom.

For AlN
+ with N ¼ 25–83, the Jarrold group57 found a strong

correlation between the cohesive energies at temperatures
below the melting temperature and the latent heat for melting.
They found evidence of an electronic shell closing at N¼ 37 and
a structural shell closing at N ¼ 44. One should keep in mind
that the optimum structures are not the same for neutral
nanoparticle and the cation.

Wu and coworkers38 used the NP-B potential to optimize the
GM structure for N¼ 38, 63–140, and 27 values of N in the range
147 to 310. In two follow-up papers,39,40 again employing the
NP-B potential, they found the GM structure for 55 additional
values of N, this time in the range 314 to 800. They found that
the structures in the size range 270–405 correspond to adding
surface atoms to truncated octahedra until a 405-atom trun-
cated octahedron is built up, then adding surface atoms to that
structure until reaching a truncated octahedron with 586 atoms,
then adding surface atoms to that until reaching a 711-atom
truncated octahedron. They also found patterns in whether the
surface atoms add to (100) or (111) faces. Finally they compared
the energies of all truncated octahedra up to 9879 atoms, which
were classied into 13 families.

In general the electronic shell model seems most useful for
low N and the geometrical shell model becomes more useful at
largeN. Although the stability of all metal nanoparticles is surely
affected by electronic orbital energies, the electronic shell model
seems to be less useful for aluminum clusters than for sodium
clusters. For sodiumclusters, electronic shell effects appear to be
important even forN > 1000.5,58 Aluminumparticles have amuch
higher cohesive energy than sodium particles, which results in
less exible structures for aluminum particles than for sodium
particles. Therefore, aluminum particles are less spherical than
sodium particles. Independent of the validity of the spherical
jelliummodel for determining the most stable structures, it has
less applicability to understanding the ensemble of structures
nanoparticles with each N, which we consider next.
Fig. 8 Density of vibrational states of the three lowest-energy isomers
of Al61 with “1” representing the global minimum, “2” the second
lowest-energy isomer, and “3” the third lowest-energy isomer.
Reprinted from ref. 17 with permission from ACS publications.
Structures and stability at finite
temperatures

The number of possible isomeric structures of a nanoparticle of
size N is very large. In the past, researchers have oen focused
on the properties of the GM structure, although in some
studies59,60 a few low-lying isomers for a given N were identied.
To some extent, focusing only on the lowest-energy structure or
structures for each N is useful to understand the structural
evolution of nanoparticles because, all other things being equal,
lower-energy structures have greater equilibrium populations
due to larger Boltzmann factors. Thus the population of the GM
structure, due to its low energy, is oen high, and in such cases
its properties can be used to represent the behaviour expected
This journal is © The Royal Society of Chemistry 2014
for the nanoparticle. However this is not always true since the
population Pg of an isomer structure g is not solely determined
by its potential energy. Instead we have:17

Pg ¼ e�E
ðgÞ
e =kBTq

ðgÞ
Rovq

ðgÞ
ElecX

g

e�E
ðgÞ
e =kBTq

ðgÞ
Rovq

ðgÞ
Elec

; (18)

where E(g)e is the potential energy of the isomer g relative to the
GM structure, q(g)Rov is the rovibrational partition function of the
isomerg, kB is the Boltzmann constant, and q(g)Elec is the electronic
partition function, which in the present part of the discussion
will be assumed to be a constant so it cancels out. Although the
GM structure has the lowest energy, its rovibrational partition
function q(1)Rov is oen smaller than that of the other structures,
especially when it is a well ordered structure, since such struc-
tures tend to be smaller (more compact than higher-energy
isomers) with higher vibrational frequencies and higher
symmetry numbers, both of which decrease the partition func-
tion. For example, the vibrational frequency distribution of the
Al61 nanoparticle (Fig. 8) indicates the third lowest-energy isomer
has more so vibrational modes than the GM structure. In our
work, we searched for all structures for each N, and we included
all found structures in our calculations of partition functions.

Adopting the approximate rigid-rotor and harmonic-oscil-
lator (RRHO) approximation for q(g)Rov, the population of each
isomer for a given nanoparticle can be computed according to
eqn (18). The results are shown in Fig. 9 for Al19 and Al61. Fig. 9
shows that the population of the GM of Al19 drops gradually
beyond 700 K. In sharp contrast the population of the GM of
Al61 is already close to zero at room temperature while the
population of the third isomer is higher than 90% at room
temperature. During MD simulations we can quench interme-
diate structures. The population of an isomer structure among
all the quenched structures can thus be obtained from the
simulations.8 The populations of the GM structures (P1) of Al19,
Al37, Al38, and Al61 are plotted in Fig. 10. The P1 plots show that
P1 of Al61 drops to zero beyond 500 K, which is different from
the results computed from partition-function calculations
employing the RRHO approximation. On the other hand, P1 of
Chem. Sci., 2014, 5, 2605–2624 | 2611
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Fig. 9 Three-dimensional representation of Pg (defined by eqn (18))
vs. T and relative energy DE (labeled DE in the plot) for N¼ 19 (left) and
61 (right). Adapted from ref. 17 with permission from ACS publications.

Fig. 10 Population of the GM structure from MD simulations.

Fig. 12 Lowest-energy structures of Al38 and their symmetry and
isomeric excitation energy.
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Al19 drops beyond 700 K, in accordance with the results from
partition-function calculations. Nevertheless, the qualitative
trends obtained from both the partition-function calculations
and the MD simulations are the same: P1 drops to zero with
population diverted to higher-energy isomer structures as
temperature is elevated.

In order to understand the above trends better, it is useful to
make a more detailed comparison of Al37 and Al38. The twelve
lowest-energy structures of Al37 are shown in Fig. 11, and the
Fig. 11 Lowest-energy structures of Al37 and their symmetry and
isomeric excitation energy.

2612 | Chem. Sci., 2014, 5, 2605–2624
twelve lowest of Al38 are shown in Fig. 12. We see that Al37 has
many low-energy structures, and Al38 is a truncated octahedron
with a gap of 0.45 eV between the energies of the two lowest
isomers. At 300 K, the lowest-energy structure of Al37 has a
population less than 0.2%, and the four lowest states have a
population of only 20%, whereas for Al38 the four lowest
structures have a population of 99%. At 1500 K, the lowest 64
states have a population 17% for Al37 and a population of 15%
for Al38.

The above analysis raises two crucial questions: (1) Since P1
becomes zero at high temperature, can the properties of a
nanoparticle be represented by the properties of its GM struc-
ture? (2) Are the magic nanoparticles still magic at elevated
temperatures?

To answer the rst question, one can dene a parameter to
characterize the difference between the properties of the
nanoparticle and its GM structure. For this purpose,
the following particle isomeric energy is dened, which is the
energy difference (including thermal contributions) between
the GM structure and the nanoparticle:

EIso ¼
X
g

�
nEðgÞ

e þ E
ðgÞ
Vib þ E

ðgÞ
Rot � E

ð1Þ
Vib � E

ð1Þ
Rot

�
Pg

¼ �
�
E

ð1Þ
Vib þ E

ð1Þ
Rot

�
þ
X
g

�
nEðgÞ

e þ E
ðgÞ
Vib þ E

ðgÞ
Rot

�
Pg; (19)

where E(g)Vib and E(g)Rot are the vibrational and rotational contri-
butions, respectively, to the thermal energy of isomer g.

From the EIso plots presented in Fig. 13, it can be concluded
even 300 K is a high enough temperature that many nano-
particles cannot be represented by their corresponding GM
structures. At 800 K, only Al19 and Al56 can be represented by
their corresponding GM structures. At 1500 K, no nanoparticles
can be represented by their corresponding GM structures. The
magic nanoparticle Al19 is well represented by its GM structure
in a wide temperature range up to 800 K, while Al23 is well
This journal is © The Royal Society of Chemistry 2014
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Fig. 13 Isomeric energy (eV) as a function of size (left) and tempera-
ture (right) for the aluminum nanoparticles.

Fig. 14 Second finite Gibbs free energy difference (D2GT(N), in eV) of
aluminum nanoparticles.
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represented up to 700 K, Al55 up to 450 K, and Al38 only up to
350 K. We conclude that the properties of the nanoparticles
cannot be represented by the properties of the GM structure or
any other single isomer structure in a wide temperature range.
Surprisingly, the properties of some of the non-magic nano-
particles, e.g. Al52, and Al56 (Fig. 13, right panel) can be well
represented by the properties of their corresponding GM
structures in a wider range of temperatures than the magic
ones, Al38 and Al55.

The case of Al56 is particularly interesting.17 We found that
there are 53 isomers with energies within 0.02 eV of the lowest-
energy one. The GM and the next two lowest-energy isomers are
obtained by adsorbing an Al atom onto the icosahedral Al55
global minimum. The other 50 isomers can be obtained by
inserting one aluminum atom into a ve-member ring formed
by surface aluminum atoms of the icosahedral Al55 global
minimum to make a six-membered ring. As a result, these 53
isomers have very similar structures to the global minimum so
that, although many structures contribute to thermodynamic
averages, the properties of the global minimum may still be
representative.

Kang and coworkers61 studied the cases of N ¼ 51–58 and 64
by direct dynamics. The analysis was complicated because the
dynamically calculated structures were sometimes trapped in
metastable states over the limited time frame examined. (In
comparison the method we used corresponds by construction
to an equilibrated ensemble. Kinetic complications in studying
the melting experimentally have been discussed by Jarrold
et al.62) Their interpretation leaned heavily on the symmetry of
the GM structure. For N ¼ 55 they found structures exhibiting
diffusion of surface atoms around a rigid core that they labelled
as half-solid; these structures resemble the structures discussed
above for N ¼ 56.

These observations indicate that when studying metal
nanoparticles using theoretical means, it is sometimes infor-
mative to study just the properties of a single structure, but in
other cases it is useless, even when considering the GM struc-
ture or even the GM structure of a magic nanoparticle. Gong
and coworkers in a MD simulation study of water clusters
reached similar conclusions.63 This multi-structural situation
indeed presents a challenge to theoretical studies of metal
nanoparticles. Recently, in a direct dynamics MD simulation on
This journal is © The Royal Society of Chemistry 2014
the supported PtnSnm nanoparticles at the catalytically relevant
temperature of 598 K, Vila et al. show that the particles exhibit
large uctuations in morphology.64 By studying the adsorption
of H2 on the PtnSnm nanoparticles they concluded that it is
important to think about a catalyst as a dynamically uctuating
object rather than a static one.

We have limited results for the ease or difficulty of passage
among the multiple low-energy structures in the Al nano-
particles. In a study of Al61 we found transitions from the
lowest-energy structure to the second-lowest energy structure
and to higher-energy structures on the ns time scale at 450 K.
Studying the barriers between stable states would be an inter-
esting project for future work. These simulations did not
include electronically nonadiabatic transitions, but in general
one expects surface crossings between low-energy electronically
excited states (the barriers connecting minima on a potential
energy surface are usually located on shoulders of conical
intersections65). Mapping out the topography of such surface
crossings and the associated dynamical behaviour is another
interesting subject for future work.

To answer the second question, we dene a quantity similar
to D2E

(1)
e (N), in particular the second nite Gibbs free energy

difference:

D2GT(N) ¼ G(t)
T (N � 1) + G(t)

T (N + 1) � 2G(t)
T (N), (20)

where G(t)
T (N) is the Gibbs free energy of the nanoparticle, all the

low-energy isomer structures quenched from the MD simula-
tions, with sizeN at T. Fig. 14 shows that at 300 K, theD2GT(N) vs.
N plot still show peaks atN¼ 19, 23, 38, and 55. However, at 1500
K, these peaks either disappear or even become valleys. For
example, for N ¼ 19 and 38, the peaks become valleys at 1500 K,
indicating Al19 and Al38 nanoparticles become less stable than
their neighbouring nanoparticles. In addition, new peaks arise
at 1500 K and some valleys at 300 K turn into peaks at 1500 K. For
example, new peaks atN¼ 20 and 36 emerges while the valleys at
N¼ 22 and 39 turn into peaks. Therefore,magic nanoparticles at
low temperatures become non-magic, while non-magic ones
become magic at elevated temperatures. The relative stability of
nanoparticles is thus temperature dependent. The entropy
contribution must be considered not only at elevated
Chem. Sci., 2014, 5, 2605–2624 | 2613
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temperatures, for example, to understand melting (considered
in the next section) but also at room temperature.
Fig. 15 Heat capacity curve of a two-state system. Reprinted from ref.
8 with permission from ACS publications.
Nanophases: solid, slush, and liquid
phases

Cleveland et al.66 studied the melting of gold nanoclusters with
N¼ 75, 146, and 459 and pointed out the importance of solid-to-
solid transitions in the melting region. This has become a
theme, although various interpretations67–73 differ in detail,
sometimes emphasizing surface melting or a so-called so solid
or uxional cluster. These references are just a small fraction of
the available work on nanoparticle melting because, unlike
some of the other topics discussed in this perspective, the
question of melting of nanoparticles has been extensively
studied. In the space available, we will not attempt an exhaus-
tive coverage of the literature but rather will focus on a selected
subset of this work that brings out concepts we think should be
emphasized, and we especially discuss our own melting simu-
lations which have the advantage that one can relate the results
to our extensive studies of the potential energy landscape and
which may also be of interest because our analysis is built on a
different point of view than most of the previous work.

For macroscopic systems, a phase is well dened and it corre-
sponds to a region of space throughout which all physical proper-
tiesof amaterial, suchasdensity, chemical composition, and index
of refraction are essentially uniform or continuously varying.74

Solid, liquid, gas, and plasmaphases are the four phases ofmatter.
The transition fromonephase to theother is either arst-orderor a
second-order phase transition. The rst-order phase transition
involves a latent heat and is oen accompanied by an abrupt
change in somephysical properties. A small change in temperature
or pressure is able to change the phase completely from one to
another. Thus, the change of phase can be characterized by a
transition temperatureTt.Melting and evaporation ofmacroscopic
systems are prototype rst-order phase transitions. However, the
phases of nanosystems are notwell dened. Donanoparticles have
phases similar to those in macroscopic systems, for example solid
and liquid phases? How can one determine the phases of nano-
particles? Do they have phase transitions similar to those in
macroscopic systems? To answer these questions, extensive
molecular dynamics simulations have been performed on the
melting transitions of aluminium nanoparticles.8

Starting from 200 K, a nanoparticle with its GM structure was
gradually heated to high temperatures, and then various phys-
ical properties of the nanoparticle were computed. From the
evolution of these physical properties with temperature, infor-
mation about the phases and phase transition of nanoparticles
was extracted. Heat capacity, which is the derivative of the
caloric curve with respect to temperature, is one physical
property widely used to characterize melting transition for both
macroscopic systems and nanosystems. For some systems the
heat capacity has a sharp peak at a transition temperature,
while for others the heat capacity has no sharp peak. The former
kind of system has a rst-order transition, while the latter has a
second-order transition. However, one must be cautious with
2614 | Chem. Sci., 2014, 5, 2605–2624
the use of heat capacity to characterize melting transitions
because we have shown that a peak in the heat capacity curve is
not necessarily related to a phase transition.8 It may just
correspond to a change from high population of one isomer to
high population of another, or to a transition from one elec-
tronic state to another. The heat capacity of a system with two
states in equilibrium with each other can be shown to be:

C ¼ D32=kBT
2

ðeD3=2kBT þ e�D3=2kBT Þ2
; (21)

where D3 is the energy separation between the two states. From
Fig. 15 it can be seen for thismodel system the heat capacity curve
as a functionof temperaturehasapeak.The sharpness of theheat
capacity curve isdeterminedby the energy separationbetween the
two states. The narrower the separation the sharper is the peak
and the lower is the temperature of the peak position. Therefore,
one should use more than just the heat capacity to characterize a
melting transition; because the phase change is a subtle issue,
one should gather as much information as possible.

The Lindemann parameter is another quantity that is widely
used to characterize melting transitions for bulk materials.75

The Berry parameter76 is an extension of the Lindemann
parameter, and it is the relative root-mean-square uctuation in
the interatomic separation:

DB ¼ 2

NðN � 1Þ
X
i\j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
rij2


� 	
rij

2q

	
rij

 ; (22)

where rij is the interatomic distance between atoms i and j. This
parameter is widely used in simulations of clusters and nano-
particles. For a solid state, the Berry parameter is usually below
0.10, while for a liquid state, it is usually above 0.30. In both
kinds of states the Berry parameter increases linearly but slowly
with temperature. Near the temperature of transition, the
parameter has an abrupt jump. In our simulations, we found
that the Berry parameter converges slowly, and very long
simulation times are needed to get converged results; hence it is
not as useful as we had anticipated.

Other properties we explored include: (1) the average
distance of atoms to the centre of mass (CoM), as given by

RCoM ¼ 1

N

X
i

jri � rCoMj; (23)
This journal is © The Royal Society of Chemistry 2014

http://dx.doi.org/10.1039/c4sc00052h


Fig. 17 ln k vs. T curves of aluminum nanoparticles. Results are shown
for the same nanoparticles as in Fig. 16.

Fig. 18 Volume vs. T of aluminum nanoparticles relative to the volume
at 200 K. Results are shown for the same nanoparticles as in Fig. 16.
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where ri and rCoM are the positions of atom i and the CoM,
respectively. (2) Radius of gyration:

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

|ri � rCoM|
2

s
: (24)

(3) Volume:

V ¼ 4

3
pR1R2R3; (25)

where Ri (i ¼ 1, 2, 3) are the three radii of a non-spherical
nanoparticle which are related to the principal moment of
inertia I by:

Ri ¼
ffiffiffiffiffiffiffiffi
5=2

p ffiffiffiffiffiffiffiffiffiffiffi
Ii=M

p
ði ¼ 1; 2; 3Þ; (26)

where M is total mass of the nanoparticle. (4) Coefficient of
thermal expansion:

b ¼ 1

V

dV

dT
: (27)

(5) Isothermal compressibility:

k ¼ 1

kBT

1

V

hV 2i � hVi2
hVi : (28)

Other workers have also used the projected density of vibra-
tional states of the instantaneous normal modes of an MD
simulation.77

In Fig. 16 the heat capacity vs. temperature curves are pre-
sented for selected aluminum nanoparticles; the ordinate is the
dimensionless C/NfkB with Nf being the number of degrees of
freedom of the nanoparticle (Nf¼ 3N – 3). The le part of Fig. 16
shows some nanoparticles that have sharp peaks in the heat
capacity curve, while the right part presents some without a
sharp peak. The natural logarithm of k and the relative volume
(relative to that at 200 K) of the same aluminum nanoparticles
as shown in Fig. 16 are presented in Fig. 17 and 18, respectively.

Fig. 16 shows that those particles with sharp peaks in the
heat capacity vs. T curve have heat capacities that increase
approximately linearly before the peak and decrease approxi-
mately linearly aer the peak. In addition, the peak becomes
sharper with the increase of nanoparticle size indicating a
narrower temperature window for the change. It should be
noted that the position of such a peak does not simply move
from lower temperature to higher temperature as size increases;
Fig. 16 Heat capacity vs. T curves of aluminum nanoparticles. Left:
with sharp peaks; right: no sharp peaks.

This journal is © The Royal Society of Chemistry 2014
it rst decreases and then increases, showing an oscillatory
behaviour. On the other hand, for those heat capacity curves
without sharp peaks the heat capacity increases slowly and then
decreases. The position of the peak does not change much with
particle size.

Solid particles should in general be hard to compress and
more compact than liquid particles and thus should have
smaller volume. As temperature increases, it can be seen that
for those particles with a sharp peak in the heat capacity vs.
T curve, their ln k increases approximately linearly with
temperature at low temperatures, then jumps to higher values,
and then it continues to increase nearly linearly with tempera-
ture at higher temperatures (Fig. 17). As particle size increases,
the ln k vs. T curve also begins to develop a sharp peak. Again
the temperature window, in this case for the change from lower
ln k to higher ln k, becomes narrower for bigger nanoparticles.
On the other hand, for the other nanoparticles (except Al61) ln k

increases linearly with temperature until 800–900 K, there is a
change in the slope to a gentler slope. For Al61 ln k has a jump
between 400 and 500 K, but aer the jump ln k still increases at
about the same rate as below 400–500 K until 800–900 K. As
Fig. 10 indicates that the population of the GM structure drops
to almost zero in this temperature range, a reasonable inter-
pretation is that Al61 has a change of structure between 400
and 500 K.

The volumes of the nanoparticles also give valuable infor-
mation (Fig. 18). For those particles with a sharp peak in heat
capacity vs. T curve, the volume vs. T curve either shows an
abrupt change of slope or a jump. For the other particles the
volume usually increases gradually with temperature – the
Chem. Sci., 2014, 5, 2605–2624 | 2615
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Fig. 19 Percentage (P(E)) of quenched structures in the potential
energy range between E and E + dE with dE ¼ 0.05 eV for Al70. The
abscissa is the potential energy relative to the GM structure. Adapted
from ref. 8 with permission from ACS publications.
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exception being Al61, whose volume has a sudden drop between
400 and 500 K. The coefficient of thermal expansion was studied
in the liquid regime from N ¼ 55 to N ¼ 1000; it increases with
increasing particle size and decreases with increasing
temperature.78

More details can be extracted by analysing various properties
during the transition. For example a close examination of the
curves for Al64 and Al65 indicates that their three properties all
have a slight change around 400 K, probably indicating a
similar structure change as for Al61.

Therefore, the temperature evolution of various properties
can provide useful information on the state of nanoparticles.
Two common trends can be obtained from these properties:
(1) as temperature increases, for some particles the change in
the physical properties occurs in an abrupt manner (rst-order
transition) while for others the change is gradual (second-
order transition). (2) The change in the physical properties
occurs in a temperature window but not at a denite
temperature. The remaining question is: in what state is the
nanoparticle below, in, and above the transition temperature
window?

With combined information on the physical properties of
the nanoparticles, it is clear that below the transition temper-
ature window, the nanoparticles are in the solid state since they
have smaller heat capacity, lower compressibility, smaller
volume, and smaller size, and these properties are almost a
linear function of temperature. Above the transition tempera-
ture window, the nanoparticles are in the liquid state since they
have higher heat capacity, higher compressibility, larger
volume, and larger size. Again, these properties are almost a
linear function of temperature. Therefore, we can denes these
two regions, a low temperature region and a high temperature
where the selected physical properties are almost linear func-
tions of temperature to be the solid state and liquid state of the
nanoparticles, respectively. The upper boundary of the low-
temperature region is the freezing temperature Tf while the
lower boundary of the high-temperature region is the melting
temperature Tm. A temperature window between Tf and Tm
where the nanoparticles are in the middle of the transition from
solid state to liquid state remains to be classied. By further
analysing the isomer distribution of the nanoparticles in this
temperature window, interesting properties regarding this
region can be obtained.

In Fig. 19, the energy distribution of the isomers quenched
from the MD simulation of the Al70 nanoparticle is shown. It
can be seen that at 200 K all the quenched structures are the GM
structure. At room temperature, the quenched structures
become a mixture of the GM structure and several other low-
energy isomers. At 500 K, the populations of high-energy
isomers increase, but the populations of the GM structure and
low-energy isomers are also non-negligible. At 600 K, the pop-
ulations of the GM structure and low-energy isomers further
decrease, and at 700 K, almost all the quenched structures are
high-energy isomers with energies higher than that of the GM
structure by 0.9 eV. As temperature further increases, the energy
distribution of the quenched structures becomes closer and
closer to a Gaussian distribution, and the centre of the
2616 | Chem. Sci., 2014, 5, 2605–2624
distribution moves to higher energy. Since the GM structures of
nanoparticles oen have compact structures27 and are more
rigid than high-energy isomers, they can be viewed as solid-like
structures. High-energy isomers, on the other hand can be
viewed as liquid like structures. From Fig. 19, we can see there is
a transition from the solid-like structures to the liquid-like
structures for Al70 roughly between 300 and 700 K. In this
temperature range, the nanoparticle is a mixture of solid-like
structures and liquid-like structures. The energy distribution of
the quenched isomers in this temperature becomes bimodal.

The melting points of sodium clusters have been well
studied experimentally as function of cluster size.79 In studying
of the melting of sodium clusters, Berry et al. found that there is
a state in which the solid state and liquid state of the nano-
particle coexist.80 Our simulation results have provided direct
evidence for the coexistence of the two states, showing a
bimodal energy distribution of the quenched isomers. We
emphasize that the solid-like and liquid-like structures of the
nanoparticle are not just two structures but each consists of a
set of isomeric structures with similar energy and geometry. For
example, for the Al56 nanoparticle, its solid state is composed of
56 structures with relative energies within 0.07 eV.17 Berry
named this solid-liquid-coexistence state of nanoparticles the
slush state since in this temperature range the nanoparticle is a
mixture of solid-like and liquid-like structures and is frequently
changing its shape. Thus by analysing the temperature depen-
dence of the various properties of nanoparticles and also the
energy distribution of the quenched structures during the MD
simulation, we have found and analyzed the three states of
nanoparticles, i.e., the solid, slush, and liquid states. The
temperature range of the three states for the aluminum nano-
particles are presented in Fig. 20 in a graphic manner where
nanoparticles with Tf ¼ 0 K do not actually have a Tf of 0 K but
are already in the slush state at the starting temperature of the
MD simulation (200 K). The plots in Fig. 20 indicate that unlike
macroscopic systems, the solid–liquid transition of nano-
particles occurs in a temperature window between Tf and Tm in
This journal is © The Royal Society of Chemistry 2014
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Fig. 20 Freezing temperature (Tf) and melting temperature (Tm) of
aluminum nanoparticles.
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which the nanoparticles are in a state called the slush state.
Fig. 20 shows that the temperature window is not narrow. Many
nanoparticles are already in the slush state at room tempera-
ture, and the Tf values of most aluminum nanoparticles are
below 400 K. Generally the temperature window of the slush
state becomes narrower as particle size increases. For the
nanoparticles bigger than Al100, Tm does not vary much and is
close to the bulk melting temperature of 933 K. We nd that Tf
is more oscillatory with size than is Tm.

Jarrold, Aguado, and coworkers reported a series of experi-
ments on charged aluminum nanoparticles and computations
on charged and neutral aluminum nanoparticles that are very
relevant here. Experimental studies81,82 of positively charged
aluminum clusters with N ¼ 31–63 revealed a sharp decrease in
melting temperature between N ¼ 55 and N ¼ 56. The experi-
ments also showed that anionic clusters with N ¼ 51 and 52
have an extra peak in the heat capacity below the melting
temperature. This was interpreted as melting of the surface
before the interior melts. They found that the melting temper-
ature is a non-monotonic function of particle size, and that
some nanoparticles have prominent peaks in the heat capacity
as a function of temperature, whereas others have virtually no
peak. The series of studies also included83 negatively charged
aluminum clusters with N¼ 35–70 and concluded, partly on the
basis of electronic structure calculations of the GM structures,
that both geometric and electronic shell closings (with the latter
at N ¼ 36, 46, and 66) contribute to the variations in the cohe-
sive energies and latent heats, “but structural changes appear to
be mainly responsible for the large variations in the melting
temperatures with cluster size.” A more recent study84 included
direct dynamics simulations that provided evidence for the
slush state. As a result these workers interpreted a rst peak in
the heat capacity as a transition between a vibrationally excited
GM structure and what they called a hot solid phase, and they
interpreted the slush regime as a regime of coexistence between
the hot solid phase and a phase with diffusive behaviour for all
atoms. They also found that electronic shell closings do not
persist in the liquid phase. It is encouraging that these nding
are basically consistent with our interpretation given above,
although they are stated in a different way.

A recent study showed how one can estimate the maximum
cluster size for which a range of temperatures can be observed
This journal is © The Royal Society of Chemistry 2014
in which solid and liquid coexist.85 The wider coexistence
ranges for metal clusters than for dielectric materials were
rationalized in terms of congurational entropy.

Here we provide a few representative references for other
computational studies of melting temperature and the
temperature and size dependences of the heat capacity for
homonuclear metal nanoparticles.86–92 If one considers nano-
alloys, the phase diagram becomes more complicated, and
issues of phase separation and ordering have been studied in,
for example, Cu–Ag,93 Pd–Au,94 Pd–Ag,95 Pd–Pt,96 Fe–Au,97 Rh–
Pt,98 Mg–Al,99 Ag–Au,100 and Cs–Na101 nanoalloys; a review is
available.102

Melting temperature depression

As we have discussed above, the solid–liquid transition (melting
transition) of nanoparticles occurs in a broad temperature
window between Tf and Tm. Therefore, strictly speaking, nano-
particles, unlike macroscopic systems, do not have a denite
transition temperature (Tt) even if environmental variables such
as pressure are xed. For macroscopic systems, Tt¼ Tf¼ Tm. For
nanoparticles, depending on the physical properties used to
characterize the melting one can get different values for Tt that
are between Tf and Tm. Therefore there are no unique Tt values
for nanoparticles. The peak position (Tp) of the heat capacity vs.
T curve is one quantity widely used to identify Tt. But we can
also dene other quantities, for example the peak position of
the b (thermal expansion coefficient) vs. T curve or the position
of the jump of the ln k (natural logarithm of the compressibility)
vs. T curve.8 Since for nanoparticles, as we have discussed above,
melting is due to the transformation of the GM structure to
other high-energy isomers, we can also dene the temperature
at which the percentage population of the GM structure among
all the quenched isomer structures during the melting simula-
tion drops to 50% (TP50). These denitions give slightly different
values for Tt.

Once we have obtained these values the trend in Tt vs. size
can be obtained. This trend is the nanoparticle analogue of the
macroscopic melting-temperature depression. We nd that
nanoparticles have lower Tt (greater depression) than their
corresponding bulk materials, and smaller nanoparticles have
even lower Tt. However, that is just a trend; we will see below
that the Tt values of some aluminum nanoparticles can even be
higher than the bulk value. However, before we discuss these
novel properties, we rst present the prediction of Tt from
thermodynamics considerations.

To extend the thermodynamics for macroscopic systems to
nanosystems, Hill introduced a new thermodynamics function
X which is the sub-division potential.9,10 This function charac-
terizes the effect of increasing the number of the systems in the
ensemble on the total energy of the ensemble (eqn (7)). By using
eqn (5d), the last two terms in eqn (8) can be rearranged from
mNt + XN to (m + X/N)Nt. The effect of increasing the number of
the systems in the ensemble while keeping the total number of
atoms in the ensemble xed is to decreases the system size and
to increase the fraction of surface atoms of the nanosystem.
Since increasing the fraction of surface atoms increases the
Chem. Sci., 2014, 5, 2605–2624 | 2617
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Fig. 21 Melting transition temperature (Tt) of aluminum nanoparticles.
Upper: Tt vs. N; Lower: Tt vs. 1/R where R is the radius of gyration at
200 K.

Chemical Science Perspective

Pu
bl

is
he

d 
on

 2
6 

Fe
br

ua
ry

 2
01

4.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
M

in
ne

so
ta

 -
 T

w
in

 C
iti

es
 o

n 
02

/0
7/

20
14

 0
0:

07
:0

4.
 

View Article Online
surface chemical potential, we recognize that X/N is the surface
chemical potential, to be denoted mS to distinguish it from the
bulk chemical potential m. Then the classical treatment of the
melting of nanoparticles is in line with Hill's formalism of
nanothermodynamics.

Based on the above considerations, we relabel the bulk
chemical potential as mN, and the molar chemical potential of a
nanoparticle can then be expressed as103

m ¼ mN + mS, (29)

where

mS ¼ g
dS

dn
; (30)

where S is the surface area, n is N/NA with NA being Avogadro's
number, and g is the solid–liquid surface tension. For a
spherical nanoparticle of radius R, we have surface area S equal
to 4pR2 and molar volume Vm equal to NA(4/3)pR

3; then

mS ¼ 2gVm

R
; (31)

and

m ¼ mN þ 2gVm

R
: (32)

Several models for the melting of nanoparticles have been
developed.104 Different models give slightly different tempera-
ture dependences of Tt but similar qualitative trends. Here we
introduce one of these models. We start by assuming the equi-
librium of a solid spherical nanoparticle immersed in its bulk
liquid melt. At Tt, the chemical potential of the solid nano-
particle is equal to that of the melt. Since Tt deviates from the
bulk melting point (Tm,N), by assuming a rst order expansion
of mN with respect to temperature, the following expression for
mN can be obtained at pressure P and temperature Tt:

mNðTt; PÞ ¼ mNðTm;N; PÞ þ
ðTt

Tm;N

�
vm

vT

�
P

dT

¼ mNðTm;N; PÞ �
ðTt

Tm;N

SmdT ; (33)

where Sm ¼ �
�
vm

vT

�
P
is the molar entropy. Then the chemical

potential of the solid nanoparticle is

msðTt; PÞ ¼ ms;NðTm;N; PÞ �
ðTt

Tm;N

Sm;sdT þ 2gVm

R
: (34)

For the liquid melt, we have

mlðTt; PÞ ¼ ml;NðTm;N; PÞ �
ðTt

Tm;N

Sm;ldT : (35)

At Tt and Tm,N, ml(Tt, P) ¼ ms(Tt, P) and ms,N(Tm,N, P) ¼
ml,N(Tm,N, P); then it follows that

ðTt

Tm;N

ðSm;l � Sm;sÞ dT þ 2gVm

R
¼ 0: (36)
2618 | Chem. Sci., 2014, 5, 2605–2624
Since Sm,l � Sm,s z DHls/T, where DHls is the latent heat of
fusion, which does not change signicantly with T, we have

DHls

ðTt

Tm;N

1

T
dT þ 2gVm

R
¼ DHlsln

�
Tt

Tm;N

�
þ 2gVm

R
¼ 0;

ln

�
Tt

Tm;N

�
¼ ln

�
1þ Tt � Tm;N

Tm;N

�
¼ � 2gVm

DHlsR
:

(37)

Expansion of ln
�
1þ Tt � Tm;N

Tm;N

�
to rst order yields

Tt � Tm;N

Tm;N

¼ � 2gVm

DHlsR
: (38)

This is the well-known Gibbs–Thomson relation that the
melting-temperature depression of nanoparticles is propor-
tional to 1/R.105

For aluminum nanoparticles the Tt values obtained from
heat capacity vs. T curves are shown in Fig. 21 as a function of
N and 1/R. From Fig. 21 it can be seen that only for particles
bigger than Al80 is Tt a smooth function of N and 1/R.
Therefore the Gibbs–Thomson relation can only be applied to
particles bigger than Al80. For small nanoparticles, Tt shows
a strongly oscillatory behaviour. Most aluminum nano-
particles have a lower Tt than bulk aluminum. However, there
are a few nanoparticles (Al20, Al21, Al22, Al25, Al26, and Al27)
with higher Tt than bulk aluminum. This is a common
property of metal nanoparticles and has been observed in
experiment for charged aluminum (Fig. 22) and gallium
nanoparticles.49,106 We may also notice that adding or
removing one atom from a nanoparticle may cause a jump of
more than 100 K in Tt. This has also been conrmed by
experimental studies (Fig. 22).49,106

Experimental studies involving calorimetric measurement
have obtained DHls for metal nanoparticles such as Sn107 and
Al106,108 nanoparticles. There are different hypotheses for the
This journal is © The Royal Society of Chemistry 2014
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Fig. 22 Melting transition temperature (Tt) of Al25
+–Al128

+ nano-
particles. Reprinted from ref. 106 with permission from Annual
Reviews.
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size dependence of DHls for nanoparticles. One assumes that it
varies with 1/R according to108

DHlsðRÞ ¼ DHlsðNÞ � 2gVm

R
: (39)

Another assumes that it is related to 1/R by107

DHlsðRÞ ¼ DHlsðNÞ
�
1� R0

R

�3

; (40)

where R0 is a tting parameter with the dimension of length.
Experimental results indicate that for larger nanoparticles the
size-dependent of DHls ts eqn (40) better than eqn (39).108 For
smaller nanoparticles, the experimental results of Jarrold and
co-workers on cationic aluminum nanoparticles indicate that it
shows strong oscillatory behaviour.106 This is an analogue of the
strong size dependence of the cohesive energies.17,106
Thermodynamic functions

Experimentally it is hard to measure the thermodynamic func-
tions of metal nanoparticles. There are many technical diffi-
culties. For example it is difficult to prepare size-selected
nanoparticles with high purity. Except for heat capacity and
latent heat of fusion, very little is known experimentally about
the thermodynamic functions of metal nanoparticles, except for
a few cases such as the heat of formation of Sn nanoparticles.109

Although electronic structure calculations are able to compute
the thermodynamic functions of small molecules with chemical
or even sub-chemical accuracy, for metal nanoparticles such
calculations are still prohibitively difficult. With the develop-
ment of an accurate PEF for metal nanoparticles, we are able to
provide a systematic way to calculate the thermodynamics
functions of metal particles by molecular simulations.

The accurate PEF we use is tted to data where Al atoms
exhibit a wide variety of coordination numbers. Chamaani
et al.110 analysed clusters with tetrahedral and truncated octa-
hedral shapes in terms of a model recognizing two kinds of
energy contributions, one due to inner atoms and one to surface
atoms. This does not seem to recognize the wide variety of
coordination numbers in the nanoparticles such that all surface
atoms are not equivalent.

Vásquez-Pérez et al.111 used direct dynamics to calculate heat
capacities of positively charged nanoparticles of Al with N ¼ 27
This journal is © The Royal Society of Chemistry 2014
and 28. Their results show no signicant peak for N ¼ 27 and a
well-dened peak for N ¼ 28 at 700 K, whereas experiment112

shows a broad peak at 700 K for the former case and a sharper
peak at 600 K for the latter. By using an analytic PEF, we were
able to examine a much larger number of cases, but a disad-
vantage of using the PEF, as compared to direct dynamics, is
that the PEF has been developed only for neutral nanoparticles.

The conventional method to compute molecular thermo-
dynamic functions such as standard-state heat of formation
(DfH�) is by computing the atomization energy of the molecule
at 0 K. Then from the atomization energy at 0 K and the DfH�

values of the composing atoms at 0 K, the DfH� of the molecule
at 0 K can be obtained by arithmetic. The difference between
DfH� at temperature T (usually room temperature) and DfH� at
0 K can be obtained from a calculated partition function based
on the PEF of the nanoparticle. The partition function is
obtained by a sum over states for each structure, with excited
vibrational and rotational states making the dominant contri-
bution for most closed shell molecules. If one considers
liquids rather than molecules, it is impossible to enumerate all
the local minima of the system, and one must use statistical
methods to sample the structures. Metal nanoparticles
(nanodroplets and nonrigid disordered nanosolids) are
between the two extremes of small molecules and bulk liquids,
and we will calculate their free energies using a mix of state
counting and sampling methods. However, for metal nano-
particles, the accurate calculation of a molecular partition
function is not an easy task for the following reasons: (1) the
vibrational modes in metal particles are highly anharmonic
and nonrigid, with signicant vibration-rotation coupling. (2)
At room temperature, many metal nanoparticles are already a
mixture of many isomer structures. The calculation has to
include a large number of isomer structures. (3) As we have
discussed above, many metal nanoparticles are already in a
slush state at room temperature, and thus the distributions of
sizes and shapes of the nanoparticles are strong functions of
temperature. Therefore, accurate calculations of partition
functions are only possible for very small clusters.

We have computed the partition function of Al2–Al4 by
Monte-Carlo integration of conguration integrals.18 The
results obtained for Al2 are close to the most reliable experi-
mental results. However, this method cannot be applied
routinely to nanoparticles since it is too expensive. Here we
introduce a method to calculate the standard-state free energy
of formation of nanoparticles from molecular simulations
through the simulation of reaction equilibrium constants.

Consider the reaction

A + AN � 1 4 AN, (R1)

where A represents a metal atom. The free energy change
DG�(N) of reaction R1 under standard state conditions can be
obtained from its equilibrium constant. Then the standard-
state free energy of formation of AN is given by a recursion
relationship:

DfG
�(N) ¼ DG�(N) + DfG

�(N � 1) + DfG
�(1), (41)
Chem. Sci., 2014, 5, 2605–2624 | 2619
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where DfG�(1) is the free energy of formation of the isolated
atom, which is known for most atomic species. We have
proposed two methods to compute equilibrium constant of
reaction R1 from molecular simulations. The rst one is by
simulating the formation and dissociation of nanoparticles by
aggregation-volume-bias Monte-Carlo (AVBMC) methods.18,113

The second one is to simulate the forward (formation) and the
backward (dissociation) rate constants of R1 by MD
simulations.19 The equilibrium constant can be obtained
from the forward and reverse rates by detailed balance.
From the simulated equilibrium constant, DG�(N) can be
obtained.

The AVBMC and MD simulations are all performed with the
analytical NP-B potential, whose evaluation is fast but is less
accurate than the NB-A potential and rst principle calcula-
tions. In addition, the simulations do not include electronic
excitations, but their contributions to the standard-state free
energy of formation cannot be neglected for metal nano-
particles, especially at high temperatures. Therefore, to obtain
accurate DG�(N) for R1 (DG�

acc(N)) several corrections have to be
applied to the simulated DG�(N):

DG�
acc(N) ¼ DG

�
(N) + DDEHLC

e (N)

+ DGElec(N) + DGHLC
IsoRov(N). (42)

The rst correction in eqn (42) is the high-level correction
(HLC) to the potential energy change of R1:
Fig. 23 Simulated values of DG�(N) for reaction R1 as a function of
size.
DDEHLC
e (N) ¼ DEHL

e (N) � DELL
e (N), (43)

where DEHL
e (N) and DELLe (N) are the potential energy change

calculated by theoretical methods of the high level (HL) and low
level (LL), respectively. In our studies, Kohn–Sham density
functional theory with the PBE0 exchange–correlation func-
tional is chosen as HL, while LL is NP-B.

The second correction in eqn (42) is the contribution to
DG�(N) of R1 from electronic excitations:

DGElecðNÞ ¼ �kBT ln
qElecðNÞ

qElecðN � 1ÞqElecð1Þ ; (44)

The electronic partition functions (qElec(N)) can be computed
from electronic excitation energies obtained from time-depen-
dent density functional calculations for small particles. For
larger particles this method becomes too expensive, so qElec(N)
is calculated by assuming a distribution of electrons in the
Kohn–Sham orbitals by Fermi–Dirac statistics.18,114 This method
requires just a single-point calculation for the electron ground
state of the nanoparticle. In principle qElec(N) should be calcu-
lated for every structure, but we assume the electronic partition
function is independent of structure, and we calculate it only for
the GM structures.

The third correction in eqn (42) accounts for the differ-
ence in DG�(N) simulated by a more accurate PEF. Although
the simulations are not performed with the more accurate
NP-A potential, a correction can be approximately calculated
by the following method. Adopting separable assumption
2620 | Chem. Sci., 2014, 5, 2605–2624
of vibrational and rotational motions, the isomeric-vibra-
tional–rotational partition function of a nanoparticle is
calculated by

qIsoRov ¼
X

e
�D3ðgÞ
kBT q

ðgÞ
Rov; (45)

where D3(g) is the energy of isomer g relative to the GM struc-
ture, and q(g)Rov is calculated by the harmonic oscillator-rigid
rotator approximation. The correction is then taken as

DGHLC
IsoRovðNÞ ¼ �RT ln

"
f HLC
IsoRovðNÞ

f HLC
IsoRovðN � 1Þ

#
; (46)

with

f HLC
IsoRov(N) ¼ qHL

IsoRov(N)/qLLIsoRov(N), (47)

where the HL and LL represent the NP-A and NP-B potentials,
respectively.

TheDG�(N) values for reaction R1 as obtained byMC andMD
simulations are presented as functions of size in Fig. 23. From
the gure it can be seen that both MC andMD give quite similar
results for DG�(N), and they differ from each other by no more
than 4 kcal mol�1. However the two simulations do show a
different trend for nanoparticles with size bigger than N ¼ 30.
For the MC method, DG�(N) gradually increases while for the
MD method it always decreases. Similar to the other properties,
for larger nanoparticles (N > 30 in this case) DG�(N) is almost a
smooth function of N. On the other hand, for smaller nano-
particles DG�(N) oscillates with size N.

Adding all the correction terms to DG�(N) simulated by the
MC method yields our most accurate estimates, labelled
DG�

acc(N), shown in Fig. 24. Unlike the uncorrected values, the
corrected values show strong oscillatory behaviour as functions
of nanoparticle size. This is due to the strong oscillation of
DDEHLC

e (N), DGElec(N), and DGHLC
IsoRov(N) with size. All three of

these terms are signicant. As an example, the electronic exci-
tation contribution to the free energy at 1000 K is�2.8,�0.2, and
�1.6 for N¼ 37, 38, 39, respectively, and is�5.8,�0.2, and�1.8
kcal mol�1 for N ¼ 55, 56, and 67. (Strong size dependence of
vibrational contributions was also found in other studies115,116 of
other metal clusters and nanoparticles.) Some corrections reach
as high as 30 kcal mol�1. Therefore, thermodynamic values
This journal is © The Royal Society of Chemistry 2014
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Fig. 24 DG�
acc(N) of R1 (in kcal mol�1) as a function of size. Fig. 25 DG(N) vs. N (left) and D2Gf(N) vs. N (right) at 1500 K.
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obtained from molecular simulations using PEFs can only be
used as a rst step. Due to the difficulty of carrying out accurate
calculations, our nal free energies are not as reliable as one
might wish, but they provide a start on the long-term project of
calculating reliable thermodynamics functions for metal
nanoparticles.

With DG�
acc(N) and the reliable experimental free energy of

formation for Al atom and Al2 molecule, DfG�(N) can be
obtained for the aluminum nanoparticles as a function of N.
With these DfG�(N), quantities similar D(N) and D2E

(1)
e (N) can be

dened to characterize the stability of nanoparticles at
temperatures above 0 K. Because DfG� of the bulk metal is zero,
a quantity similar to D(N) can be dened as:

DGðNÞ ¼ N
1
3DfG

�ðNÞ
N

¼ DfG
�ðNÞ
N

2
3

: (48)

Similarly, D2Gf(N) can be dened as

D2Gf(N) ¼ DGf(N � 1) + DGf(N + 1) � 2DGf(N). (49)

The plots forDG(N) vs. N andD2Gf(N) vs. N are given in Fig. 25.
It should be noted that the most stable nanoparticles are those
with the most negative DG(N) or the most positive D2Gf(N). It can
be seen from the plots that the magic nanoparticles at 0 K
become unstable at 1500 K. Al55 is an outstanding example for
this temperature effect on the stability of nanoparticles. The
DG(N) vs. N plot has a very high peak at N¼ 55 while the D2Gf(N)
vs. N plot has a very deep valley at N ¼ 55, indicating Al55 is very
unstable at 1500 K. This conclusion is qualitative in agreement
with that obtained by the Gibbs free energy difference as dened
by eqn (20) which does not take electronic excitation and other
high level corrections into consideration.

Using our free energy changes and the kinetic data for both
the forward (formation) and backward (dissociation) reactions
for R1, many interesting results can be obtained for the
aluminum nanoparticles, for example one can model the
homogeneous nucleation of clusters and nanoparticles, which
occurs primarily by monomer addition.117 Signicant deviation
from the prediction of the classical nucleation theory (CNT) has
been found because of the anomalous free energy of the Al55
nanoparticle. The calculated steady-state nucleation rates for
aluminum nanoparticles are many orders of magnitude lower
than those predicted by CNT.
This journal is © The Royal Society of Chemistry 2014
Concluding remarks

Metal nanoparticles are of great importance in technology and
have great promise for becoming even more important in future
technologies. This article is an overview of recent work on the
nanothermodynamics of metal nanoparticles, with most of the
examples drawn from our own work on aluminum. Several
important conclusions emerge:

Stability of nanoparticles and their multiple structures. Surface
effects have a huge impact on the stability of nanoparticles at 0K.
Nanoparticles with extraordinary stability all have well ordered
compact geometries with complete geometrical shells. Elec-
tronic-shell closings and quantum-size effects play only a minor
role in determining the stability of larger nanoparticles, but are
signicant for smaller nanoparticles. The structural stability of
nanoparticles is greatly affected by temperature, and it can only
be understood properly, even for a single size of nanoparticle,
only by consideringmultiple structures, oen with coordination
patterns differing both from small-molecule chemistry and from
those found in the bulk. Many nanoparticles already show a
population of isomers higher in energy than the global
minimumstructure at roomtemperature. Stable structures at 0K
may be unstable at high temperatures. Thus the properties of
metal nanoparticles at operando temperatures (oen above
room temperature) cannot be represented by a single structure,
e.g. the GM structure. This presents a challenge to theoretical
studies on nanoparticles since to obtain reliable results, the
properties of many isomeric structures have to be sampled.

The multi-structural aspect of nanoparticles has, it seems to
us, been underemphasized. In contrast, there has been a
considerable emphasis on thenature of the lowest-energy species
for each N. The properties of a metal nanoparticle are an average
over its populated structures, and their populations are deter-
mined by free energy, not energy. The relative ordering of pop-
ulations may be quite different from the relative ordering of
energies, and in fact the so-called magic number structures
(lowest-energy structures of special stability) do not always have
the highest populations. Because of experimental difficulties in
unravelling the ensemble ofdominant structures, computational
modelling has irreplaceable value in the eld of nanoscience.

Phases and phase changes of nanoparticles. Three phases of
nanoparticles have been studied. They are the solid, slush, and
liquid phases. The melting transition region of metal
Chem. Sci., 2014, 5, 2605–2624 | 2621

http://dx.doi.org/10.1039/c4sc00052h


Chemical Science Perspective

Pu
bl

is
he

d 
on

 2
6 

Fe
br

ua
ry

 2
01

4.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
M

in
ne

so
ta

 -
 T

w
in

 C
iti

es
 o

n 
02

/0
7/

20
14

 0
0:

07
:0

4.
 

View Article Online
nanoparticles can be either fairly sharp or very broad, depend-
ing very sensitively on cluster size, but usually the transition
from solid to liquid phases of metal nanoparticles occurs in a
wide temperature window in which the nanoparticles are in a
slush state. By analysing various properties of the nanoparticles
during the transition we have determined the temperature
window for the slush state. Many nanoparticles are already in
the slush state at room temperature. The transition temperature
from solid to liquid phase is usually lower than that of the bulk
material, and the degree of depression is found to follow the
Gibbs–Thomson relation for aluminum nanoparticles bigger
than Al80. However, for smaller particles the transition
temperature shows a strong oscillation with size, and for some
particles the transition temperature is even higher than that of
the bulk material.

Thermodynamic functions of nanoparticles. One oen uses the
term “classical thermodynamics” to differentiate the traditional
study of macroscopic variables from statistical mechanics and
statistical thermodynamics, where one relates themacro scale to
the atomic scale. Here we have discussed another aspect, namely
the differentiation fromnanothermodynamics. In this regardwe
should also emphasize that traditional thermodynamics is based
on classical mechanics. The statistical thermodynamics of bulk
materials requires a quantum mechanical treatment of atomic-
scale phenomena, and the use of quantum mechanics is even
more unavoidable for discussing nanoparticles.

The free energy is the single most important thermodynamic
property; its knowledge is equivalent to knowing the partition
function, from which all thermodynamic variables can be
derived. We have proposed a very general method to compute
the free energy of formation (DfG�(N)) of metal nanoparticles
with a given size (number of atoms N) through molecular
simulations based on a potential energy surface obtained from
quantum mechanical electronic structure calculations. Molec-
ular simulations using Monte-Carlo or molecular dynamics
methods are used to simulate the equilibrium constant of the
reaction A + AN�14 AN. From this equilibrium constant the free
energy change of this reaction is obtained; DfG�(N) can then be
obtained by recursion. Various high-level corrections have been
applied to DG�(N) to obtain our most accurate estimates of
DfG�(N).
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and J. M. López, J. Chem. Phys., 2008, 129, 144702.
58 M. Manninen and S. M. Reimann, in Nanoclusters: A Bridge

across Disciplines, ed. P. Jena and A. Castleman Jr, Elsevier,
Amsterdam, 2010, pp. 437–484.

59 M. Yang, K. Jackson and J. Jellinek, J. Chem. Phys., 2006,
125, 144308.

60 Y. Dong, M. Springborg and I. Warnke, Theor. Chem. Acc.,
2011, 130, 1001.

61 J. Kang and Y.-H. Kim, ACS Nano, 2010, 4, 1092–1098;
J. Kang, S.-H. Wei and Y.-H. Kim, J. Am. Chem. Soc., 2010,
132, 18287–18291.

62 M. F. Jarrold, B. Cao, A. K. Starace, C. M. Neal and
O. H. Judd, J. Chem. Phys., 2008, 129, 014503.

63 Y. Zhai, A. Laio, E. Tosatti and X.-G. Gong, J. Am. Chem. Soc.,
2011, 133, 2535–2540.

64 F. D. Vila, J. J. Rehr, S. D. Kelly and S. R. Bare, J. Phys. Chem.
C, 2013, 117, 12446–12457.

65 O. Tishchenko, D. G. Truhlar, A. Ceulemans and
M. T. Nguyen, J. Am. Chem. Soc., 2008, 130, 7000–7010.

66 C. L. Cleveland, W. D. Luedtke and U. Landman, Phys.
Rev. B: Condens. Matter Mater. Phys., 1999, 60, 5065–
5077.

67 P. Labastie and R. L. Whetten, Phys. Rev. Lett., 1990, 65,
1567–1570.

68 D. J. Wales and R. S. Berry, Phys. Rev. Lett., 1994, 73, 2875–
2878.

69 F. Calvo and P. Labastie, J. Phys. Chem. B, 1998, 102, 2051–
2059.

70 S. J. Zhao, S. Q. Wang, D. Y. cheng and H. Q. Ye, J. Phys.
Chem. B, 2001, 105, 12857–12860.

71 R. S. Berry, in Strength from Weakness: Strcutural
Consequences of Weak Interactions in Molecules,
Supermolecules, and Crystals, ed. A.Domenicano and I.
Hargittai, Kluwer, Dordrecht, 2002, pp. 143–168.

72 H. Duan, F. Ding, A. Rosén, A. R. Harutyunyan, S. Curtarolo
and K. Bolton, Chem. Phys., 2007, 333, 57–62.

73 R. S. Berry and B. M. Smirnov, Phys. Rep., 2013, 527, 205–
250.

74 P. W. Atkins, P. W. Atkins and J. De Paula, Atkins'Physical
Chemistry, Oxford University Press, Oxford, New York, 7th
edn, 2002.

75 F. A. Lindemann, Phys. Z., 1910, 11, 609–615.
76 R. S. Berry and J. L. Krause, Adv. Chem. Phys., 1988, 70, 35–

51; Y. Q. Zhou, M. Karplus, K. D. Ball and R. S. Berry,
J. Chem. Phys., 2002, 116, 2323–2329.

77 P.-H. Tang, T.-M. Wu, P. J. Hsu and S. K. Lai, J. Chem. Phys.,
2012, 137, 244304; P.-H. Tang, T.-M. Wu and S. K. Lai,
J. Phys.: Conf. Ser., 2013, 454, 012026.

78 N. E. Schultz, A. W. Jasper, D. Bhatt, J. I. Siepmann and
D. G. Truhlar, Aluminum nanoparticles: Accurate
Potential Energy Functions and Physical Properties, in
Multiscale Simulation Methods for Nanomaterials, ed. R. B.
Ross and S. Mohanty, Wiley, Hoboken, 2008, pp. 169–188.
Chem. Sci., 2014, 5, 2605–2624 | 2623

http://dx.doi.org/10.1039/c4sc00052h


Chemical Science Perspective

Pu
bl

is
he

d 
on

 2
6 

Fe
br

ua
ry

 2
01

4.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
M

in
ne

so
ta

 -
 T

w
in

 C
iti

es
 o

n 
02

/0
7/

20
14

 0
0:

07
:0

4.
 

View Article Online
79 W. Schmidt, R. Kusche, B. Von Issendorff and
H. Haberland, Nature, 1998, 332, 238–240.

80 R. S. Berry, Microscale Thermophys. Eng., 1997, 1, 1–18.
81 G. A. Breaux, C. M. Neal, B. Cao and M. F. Jarrold, Phys. Rev.

Lett., 2005, 94, 173401.
82 C. M. Neal, A. K. Starace, M. F. Jarrold, K. Joshi,

S. Krishnamurty and D. G. Kanhere, J. Phys. Chem. C,
2007, 111, 17788–17794.

83 A. K. Starace, C. M. Neal, B. Cao, M. F. Jarrold, A. Aguado
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84 A. Aguado and J. M. López, J. Phys. Chem. Lett., 2013, 4,
2397–2403.

85 R. S. Berry and B. M. Smirnov, Entropy, 2010, 12, 1303–1324.
86 D. Schebarchov and S. C. Hendy, J. Chem. Phys., 2005, 123,

104701.
87 R. S. Berry and B. M. Smirnov, J. Phys. Chem. A, 2009, 114,

14220–14226.
88 A. Aguado, J. Phys. Chem. C, 2011, 115, 13180–13186.
89 F. Calvo, E. Pahl, P. Schwerdtfeger and F. Spiegelman,

J. Chem. Theory Comput., 2012, 8, 639–648.
90 S. L. Gafner, J. J. Gafner, I. S. Zamulin and L. V. Redel,

J. Comput. Theor. Nanosci., 2012, 9, 993–1000.
91 Q. Shu, Y. Yang, Y.-T. Zhai, D. Y. Sun, H. J. Xiang and

X. G. Gong, Nanoscale, 1012, 4, 6307–6311.
92 A. V. Yakubovich, G. Sushko, S. Schramm and

A. V. Solov'Yov, Phys. Rev. B: Condens. Matter Mater. Phys.,
2013, 88, 035438.

93 A. Christensen, P. Stoltze and J. K. Norskov, J. Phys.:
Condens. Matter, 1995, 7, 1047–1057.

94 I. Atanasov and M. Hou, Surf. Sci., 2009, 603, 2639–2651.
95 Y. J. Li, W. H. Qi, B. Y. Huang, M. P. Wang and S. Y. Siong,

J. Phys. Chem. Solids, 2010, 71, 810–817.
96 H. Y. Oderji and H. Ding, Chem. Phys., 2011, 388, 23–30.
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