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Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular
dynamics simulations. Here, we present an improved version of the local interpolating moving least
squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise
interactions are modeled separately from many-body interactions. Second, permutational invariance
is incorporated in the basis functions, using permutationally invariant polynomials in Morse vari-
ables, and in the weight functions. Third, computational cost is reduced by statistical localization, in
which we statistically correlate the cutoff radius with data point density. We motivate our discussion
in this paper with a review of global and local least-squares-based fitting methods in one dimension.
Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation
of gradients, a feature that is important for molecular dynamics. The approach, which we call sta-
tistically localized, permutationally invariant, local interpolating moving least squares fitting of the
many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential
energy surface to an electronic structure dataset for N4. We discuss its performance on the dataset
and give directions for further research, including applications to trajectory calculations. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4862157]

I. INTRODUCTION

Born-Oppenheimer potential energy surfaces (PESs)
play a vital role in many subfields of chemistry. For example,
a PES is a basic requirement for the calculation of cross
sections and reaction rates from classical or quasiclassical
trajectory methods in molecular reaction dynamics.1 Energy
transfer and dissociation in high-temperature air must be un-
derstood for the accurate simulation of hypersonic aerospace
flows using computational fluid dynamics (CFD) and other
approaches.2–5 To investigate these chemical processes, a
potential energy surface for N2 + N2 collisions is required. In
a recent paper, a global PES was presented for the N4 system;
the surface was based on electronic structure calculations
using complete active space second-order perturbation theory
(CASPT2) and a least squares fitting method involving
permutationally invariant polynomials.6 In the present pa-
per, we describe an alternate strategy, which we pursued
concurrently, for fitting a six-dimensional surface to the
tetranitrogen dataset. Our approach is a new version of the
local interpolating moving least squares (L-IMLS) method, as
investigated by Dawes et al.7–10 and Guo et al.,11 with three
improvements. (1) Our method treats pairwise interactions
separately from many-body interactions. (2) It incorporates
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permutational invariance, both in the basis functions and in
the weight functions, by applying ideas pioneered by Braams
and Bowman12 and Xie and Bowman.13, 14 (3) The method
employs a statistically correlated cutoff radius for increased
computational efficiency. We call our approach statistically
localized, permutationally invariant, local interpolating
moving least squares fitting of the many-body potential,
abbreviated SL-PI-L-IMLS-MP or simply L-IMLS-G2,
where G2 denotes “second generation.”

Numerous techniques have been proposed for construct-
ing potential energy surfaces from analytic functions, given
a discrete set of data from quantum chemistry. The motiva-
tion for this fitting procedure is well-known: in many chem-
ical problems, it is prohibitively expensive to carry out di-
rect dynamics, i.e., to generate energies and forces as needed
directly from electronic structure calculations. Instead, one
uses a fitting function that is relatively inexpensive to evaluate
for energies and gradients. Fitting potential energy surfaces
for systems with more than three atoms presents many chal-
lenges, and it has yielded a rich literature. Several reviews
of fits and fitting methods are available.15–18 In addition to
approaches based on L-IMLS and permutational symmetry,
which form the foundation for the present research and which
we will discuss (with references) in detail, other schemes
include those based on splines,19–22 the double many-body
expansion method (DMBE),23–25 reproducing kernel Hilbert
space interpolation (RKHS),26, 27 the combined valence
bond molecular mechanics method (CVBMM),28 modified
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Shepard interpolation,29–31 and the multiconfiguration molec-
ular mechanics method (MCMM).32–34

A useful categorization of fitting methods is explained in
a recent review.17 We summarize that discussion briefly, since
it formed a conceptual framework for much of this research.
Fitting methods can be global or local. In a global method,
each electronic structure data point influences the fitting func-
tion uniformly, i.e., in a way that is formally independent of
the evaluation location. For a method to be global it is not
necessary for each data point to have precisely the same ef-
fect on the fitting function; such a condition of constancy is
a stronger condition than that of spatial uniformity. In a local
method, the influence of a data point on the fitting function
may vary with evaluation location. Typically, this means that
only those data points that are nearby, with respect to an ap-
propriate multi-dimensional definition of distance, affect the
fitted energy at an evaluation point. L-IMLS and L-IMLS-G2
are local methods. We will further explore the distinction be-
tween global and local approaches throughout this paper. Note
that any fitting method may be classified as global or local;
this classification scheme is universal, because it is based only
in a general sense on the way in which data points influence
the fitting function.

In Sec. II, we discuss several variants of least squares
methods, restricting our attention to one dimension. Our pur-
pose there is to briefly review concepts, terminology, and prior
research that will form the foundation for our exposition of
L-IMLS-G2. In Sec. III, we develop L-IMLS-G2 in six di-
mensions. We devote particular attention to the separation of
pairwise interaction energy from the total energy, the incor-
poration of permutational invariance in the basis functions,
the incorporation of permutational invariance in the weight
function distance metric, and the construction of a cutoff ra-
dius correlation for reducing computational cost. Finally, we
present results from the application of L-IMLS-G2 to the N4

dataset, draw conclusions, and give suggestions for future
work.

II. GLOBAL AND LOCAL FITTING IN ONE DIMENSION

Consider a set of N data points, specified by the se-
quences (x1, x2, . . . , xN) and (f1, f2, . . . , fN). Suppose we wish
to fit the data using a quadratic polynomial. Thus, we wish to
determine coefficients (a1, a2, a3) such that the fitting function
f(x) = p(x) = a1 + a2x + a3x2 is a reasonable approximation
to the data. The factors 1, x, and x2 are basis functions. A sim-
ple way to solve this problem is to minimize the following
functional:

E(p(x)) =
N∑

k=1

(p (xk) − fk)2. (1)

As discussed in textbooks on linear algebra, this leads to the
matrix normal equations,

BTBa = BTf, (2)

where T denotes a matrix transpose, and where we have de-
fined the following matrices:35

B =

⎛
⎜⎜⎜⎜⎜⎝

1 x1 x2
1

1 x2 x2
2

...
...

...

1 xN x2
N

⎞
⎟⎟⎟⎟⎟⎠ , a =

⎛
⎜⎜⎝

a1

a2

a3

⎞
⎟⎟⎠ , f =

⎛
⎜⎜⎜⎜⎜⎝

f1

f2

...

fN

⎞
⎟⎟⎟⎟⎟⎠ .

(3)
The normal equations are solved for the coefficients {aj}
using linear algebra. Those coefficients define the quadratic
polynomial. This process is the standard least squares (LS)
approach.

The method can be refined by introducing weights into
the normal equations. Lancaster and Šalkauskas give a de-
tailed discussion of a variety of least-squares-based methods,
including theoretical issues of differentiability and numerical
stability.36 Suppose that some of the data points are deemed
more significant than others, that is, we place a higher priority
on the fitting function’s accuracy near some data points than
near others. Then we seek to minimize the following func-
tional:

E(p(x)) =
N∑

k=1

ω (xk) (p (xk) − fk)2. (4)

Here, ω is the weight function, defined at least on the set {xk}.
A data point with a larger weight will have a larger influence
on the functional. Minimization of E leads to new matrix nor-
mal equations,

BT�Ba = BT�f, (5)

where we have defined the following diagonal matrix:

� =

⎛
⎜⎜⎜⎜⎜⎝

ω (x1) 0 · · · 0

0 ω (x2) · · · 0

...
...

. . .
...

0 0 · · · ω (xN )

⎞
⎟⎟⎟⎟⎟⎠

/(
N∑

k=1

ω (xk)

)
.

(6)
Observe that � is normalized such that all of its elements
lie between 0 and 1. As before, the normal equations are
solved for the coefficients {aj}, which define the fitted poly-
nomial. This process is the weighted least squares (WLS)
approach.

There are many ways to define weights in the WLS
method. When the value of the weight function at one of
the data point coordinates xi is relatively large, the resulting
WLS polynomial will be especially accurate near that point.
With a large enough weight, the polynomial will appear to
nearly interpolate through the data point at xi, although it is
important to note that true interpolation is only achieved in
the theoretical limit of infinite relative weight at xi. It is inter-
esting that smooth solutions to Eq. (5) can be obtained even
with extremely large relative weights.36, 37 These observations
motivate the consideration of a family of WLS polynomials,
one associated with each data point. We can construct a set
of WLS polynomials {p1(x), p2(x), . . . , pN(x)} using a corre-
sponding set of weight functions {ω1(x), ω2(x), . . . , ωN(x)},
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where the polynomial pi(x) is designed to be especially
accurate in the vicinity of xi. We refer to xi as the localiza-
tion point of the WLS fit. This procedure, which requires us
to solve a total of N matrix equations of the form given in
Eq. (5), can be accomplished by equating ωi(x) to a general-
ized, two-parameter weight function of the following form:

ω (x, xi) ≡ ν

(
z = |x − xi |2

R2

)
, where ν(z) ≡ exp(−z)

zpν + ε
pν
ν

.

(7)
Similar functions have been studied in the one-dimensional
case in the work of Maisuradze et al.38, 39 McLain also rec-
ommends a similar function in his studies of weighted least
squares methods.40, 41 In Eq. (7), pν is an integer power, εν is
a small number used to ensure that ωi(x) is well-defined at x
= xi, and R is a constant scaling parameter. We refer to the
variable z as the weight function variable. In this scheme, a
good generalized weight function should have the properties
that it is large when z = 0 (at the localization point) and that
it decreases sharply as z increases.

Having constructed a family of WLS polynomials in this
way, we can now define a smooth fit to the entire dataset. We
refer to the polynomials as local fitting functions or simply
local fits. A new fitting function is defined as a weighted av-
erage of the local fits:

f (x) =

N∑
i=1

w (x, xi) pi (x)

N∑
i=1

w (x, xi)

. (8)

In Eq. (8), w(x, xi) is not the same as ω(x, xi). These two func-
tions serve different mathematical purposes; ω defines values
in matrix equations that are solved for the coefficients of the
local fits, whereas w defines weights in a weighted average
of all local fits. Farwig presented a detailed study of inter-
polation methods involving equations similar to Eq. (8).42, 43

Furthermore, the modified Shepard interpolation scheme that
Collins and Ischtwan presented for PES fitting relies on a sim-
ilar formula. Note, however, that their method requires the
gradient and Hessian at each data point to construct Taylor
polynomials.29, 30 (Some success has also been achieved with
modified Shepard interpolation schemes that do not require
Hessians,44, 45 but further discussion of these methods is be-
yond our scope.) In the present approach, only energies are
needed at the data points.

The purpose of w is to vary the influence of the local fits
on f(x). We use a form similar to Eq. (7), with new parameters
pu and εu that serve roles similar to those of the parameters pν

and εν . For simplicity, we use the same value of the scaling
parameter R:

w (x, xi) ≡ u

(
z = |x − xi |2

R2

)
, where u(z) ≡ 1

zpu + ε
pu
u

.

(9)
When the evaluation point x is close to one of the data points
xi, the corresponding weight function w(x, xi) is large, and
the value of f(x) is nearly equal to the value of the correspond-
ing local fit pi(x). In this way, the local fits are recovered near
the data points themselves, which had defined the localiza-

tion points in the WLS constructions. The weighted sum in
Eq. (8) combines the local fits into a single smooth function.
The process we have described is the local interpolating mov-
ing least squares (L-IMLS) approach. The term L-IMLS and
its application to PES fitting in physical chemistry are due to
Dawes et al.7 and Guo et al.,11 who developed the method for
systems of higher dimensionality. Their research makes use
of weight functions similar to those in Eqs. (7) and (9).

Notice that the evaluation of an L-IMLS fitting function
by Eq. (8) does not require any matrix computations. The con-
struction of the local fits should be done in advance, yielding
a set of coefficients {a[i]

j } for each of the data points xi. Then,
calculating f(x) at any location only requires the evaluation
of the local fits, the evaluation of the weight functions, and
finally the summation and normalization defined by Eq. (8).
We refer to these two distinct phases of the L-IMLS proce-
dure as the construction step and the evaluation step. The fact
that the evaluation step does not involve any work with ma-
trix equations is a vital feature with regard to efficiency, as
Dawes et al. and Guo et al. emphasize in their development
and analysis of the method.7, 11

It is useful to categorize the three methods above in the
framework17 we described in the Introduction. The LS and
WLS approaches are global fitting methods. In the context
of our one-dimensional discussion, they each yield a sin-
gle quadratic polynomial, with coefficients determined by the
data points via matrix normal equations. L-IMLS is a local
approach. It involves the determination of a set of quadratic
polynomials, one associated with each data point. With a typ-
ical weight function, the fitting function defined by Eq. (8)
is more heavily influenced by data points that lie closer to the
evaluation point. Thus, the data points do not influence the fit-
ting function in a spatially uniform way. We expect the local
method to be both more accurate and more computationally
expensive than the global methods, because it uses a larger
number of coefficients to define the fitting function. Figure 1
illustrates each of the three methods applied to a set of five
data points.

For each of the examples considered in this section, the
fitting function was based on polynomials, since we used
monomial basis functions. When possible, we will continue to
frame our discussion in terms of polynomials for simplicity.
However, note that each of the LS, WLS, and L-IMLS meth-
ods can be used with other basis functions, such as trigono-
metric, rational, or exponential functions. Least squares meth-
ods are not limited to fitting functions of polynomial form. In
this exposition, we do require that all basis function coeffi-
cients be determined linearly, via matrix normal equations of
the form given by Eq. (5). Nonlinear methods are available
for determining fitting function parameters in more general
problems, but these are beyond our scope. Moreover, such ap-
proaches present additional difficulties, such as sensitivity to
initial guesses.46

We also remark on a fourth kind of least squares method
found in the literature. In the interpolating moving least
squares (IMLS) approach, the fitting function f is defined as
follows. At an evaluation point x, we form a set of matrix
normal equations as in Eq. (5), by using the weight func-
tion ωx(x′) ≡ ω(x′, x) in which the localization point is taken
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FIG. 1. Illustration of different fitting methods in one dimension using
quadratic polynomials, for the data set defined by (xi) = (0, 1, 2, 3, 4) and
(fi) = (3, −2, 4, 7, 16). Part (a) depicts the LS method. Part (b) depicts the
WLS method, with the weight function given by Eq. (7) with pν = 1 and
εν = 10−3. Results are shown for two different selections of the localization
point (l.p.). Part (c) depicts the L-IMLS method. The weight function for the
construction step is the same weight function used in part (b). The weight
function for the evaluation step is given by Eq. (9) with pu = pν and εu = εν .
The dashed lines are the five local fits. The solid line is the fitting function
defined by Eq. (8).

to be the evaluation point itself. The normal equations are
solved for a set of coefficients {aj}. These define a single
polynomial, which is then evaluated at x. The resulting value
is f(x). Lancaster and Šalkauskas include a thorough discus-
sion of IMLS methods, both for one-dimensional and multi-
dimensional problems.36 The IMLS approach was studied for
physical chemistry applications by Maisuradze et al.38, 39 Tok-
makov et al. also explored how to incorporate gradient infor-
mation at the data points into the IMLS method.47 The work
by Guo et al. focuses on explicitly comparing the IMLS and
L-IMLS approaches.11

The difference between L-IMLS and IMLS merits em-
phasis. Both are local methods by the definitions given
above17 (despite the distinction in nomenclature). IMLS is a
simpler method in some respects; it involves only one ma-
jor computation step and one generalized weight function.
However, it is typically much more computationally expen-
sive, since each fitting function evaluation with IMLS requires
the solution to a new set of matrix normal equations. In par-
ticular, it would be quite difficult to express an IMLS fitting
function in an explicit form like Eq. (8). Ultimately, as Guo
et al. conclude, IMLS is less practical than L-IMLS for multi-
dimensional fitting problems. Moreover, they found that the
accuracies of IMLS and L-IMLS are similar.11

We conclude this section with several important com-
ments about terminology. As a method for fitting potential en-
ergy surfaces, L-IMLS developed out of earlier studies using
IMLS.7, 11 However, in organizing this discussion, we made a
pedagogical choice to explain L-IMLS in terms of WLS fits,
rather than introducing IMLS first. We believe this to be a
more direct way to present and understand the method. Ac-
cording to Lancaster and Šalkauskas, the term “moving” in
IMLS refers to the use of a new weight function, new ma-
trix normal equations, and a new polynomial for every fitting
function evaluation.36 Strictly speaking, L-IMLS takes a dif-
ferent approach, in which a finite number of polynomial co-
efficients are computed in advance. Thus, rather than view-
ing L-IMLS as a variant of a moving least squares method, it
might be better characterized as a local weighted least squares
(L-WLS) method; it relies on a family of WLS local fits. Fur-
thermore, as we noted earlier, the term “local” in L-IMLS
could be interpreted as redundant, since IMLS is itself a local
method according to the definitions17 we reviewed. Neverthe-
less, we will continue to use the term L-IMLS to maintain
consistency with prior literature.

Our final remark concerns the term “interpolating.” For-
mally, a method is interpolating only if it produces a surface
that passes through every one of the data points. Accordingly,
in the exposition of Lancaster and Šalkauskas, IMLS is de-
scribed as a special case of an ordinary moving least squares
(MLS) method in which the maximum value of a generalized
weight function ω(x′, x) is increased to infinity.36 We will in-
stead use the term “interpolating” more loosely, to refer to
methods that are designed to give highly accurate approxima-
tions to data but that do not necessarily achieve the theoretical
interpolation limit. Again, this is done for consistency with
earlier literature in the physical chemistry community.

III. SL-PI-L-IMLS-MP IN SIX DIMENSIONS

Having explored the conceptual framework of the L-
IMLS approach, we now describe how we applied these ideas
to construct a six-dimensional potential energy surface for
a four-atom system with permutational invariance. As men-
tioned in Sec. I, we can refer to our method by the long
name in the section heading or by the shorter name L-IMLS-
G2. Throughout the development of this method, we main-
tained the following overall goals: (1) Our approach should
yield a highly accurate and smooth surface. (2) It should be
computationally efficient to evaluate energies. Finally, (3) the
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method should be simple enough so that gradients, as needed
for molecular dynamics simulations, can be computed analyt-
ically and efficiently.

A. Overview

We first give an overview of L-IMLS for the general six-
dimensional fitting problem, establishing notation and con-
ventions that will be used when we describe the distinguish-
ing features of L-IMLS-G2. An analogous formulation of
multi-dimensional L-IMLS can be found in the article by
Guo et al.11 Also instructive are the expositions of the IMLS
method by Kawano et al. and Maisuradze et al. in their studies
of the six-dimensional HOOH system.48, 49 Finally, as noted
previously, Lancaster and Šalkauskas give an extensive treat-
ment of multi-dimensional IMLS in their text.36

Consider a set of N data points, specified by three
sequences:

(x1, x2, . . . , xN) , (q1, q2, . . . , qN ) , (f1, f2, . . . , fN ) .

The ith data point is described by two ordered six-tuples, xi

= (xi, 1, xi, 2, . . . , xi, 6) and qi = (qi, 1, qi, 2, . . . , qi, 6), and by
the energy fi. We call xi the coordinates of the point in the
basis function coordinate system, and we call qi the coor-
dinates of the point in the weight function coordinate sys-
tem. These two coordinate systems could be the same, but
we will discuss the general case where they are not. We as-
sume that we have a well-defined way to convert between
the two coordinate systems. The flexibility granted by this
framework is an important feature. Indeed, Maisuradze et al.
have noted the advantages of using a “hybrid” coordinate sys-
tem, in which the coordinate system for the basis functions
is not necessarily the same as the one used for the weight
functions.49

As in one dimension, L-IMLS in six dimensions consists
of two distinct steps: a construction step and an evaluation
step. In the first step, we construct a set of N local fits, one for
each data point, as follows. Consider one of the points xi ∼
qi , where the symbol ∼ denotes equivalence across the two
coordinate systems. Treating xi ∼ qi as a localization point
for a WLS fit, we construct a local fit of the following form:

pi(x) =
M∑

j=1

a
[i]
j bj (x). (10)

In this equation, {bj(x)} are basis functions and {a[i]
j } are co-

efficients. M is the number of basis functions used for each
local fit. We next introduce a weight function defined on the
weight function coordinate space:

ω (q1, q2) ≡ ν

(
z = d2 (q1, q2)

R2 (q1)

)
, where

(11)

ν(z) ≡ exp(−z)

zpν + ε
pν
ν

.

Equation (11) is similar to Eq. (7), but now we have defined
the weight function variable z more generally; d2(q1, q2) de-
notes the square of the distance between points q1 and q2 in
the weight function coordinate space. For now, we will as-

sume that this distance metric is well defined; it will be dis-
cussed in greater detail in Sec. III D. Also, we allow the scal-
ing parameter R to be a function of q1, the first argument of
ω; this will also be the subject of further discussion.

Minimization of the functional,

E (pi(x)) =
N∑

k=1

ω (qk, qi) (pi (xk) − fk)2, (12)

leads to the normal equations,

BT�iBai = BT�if, (13)

where we have defined the following matrices:

B =

⎛
⎜⎜⎜⎝

b1 (x1) b2 (x1) · · · bM (x1)
b1 (x2) b2 (x2) · · · bM (x2)

...
...

. . .
...

b1 (xN ) b2 (xN ) · · · bM (xN )

⎞
⎟⎟⎟⎠ ,

ai =

⎛
⎜⎜⎜⎜⎜⎝

a
[i]
1

a
[i]
2

...

a
[i]
M

⎞
⎟⎟⎟⎟⎟⎠ , f =

⎛
⎜⎜⎜⎜⎝

f1

f2

...

fN

⎞
⎟⎟⎟⎟⎠ , (14)

�i =

⎛
⎜⎜⎜⎝

ω (q1, qi) 0 · · · 0
0 ω (q2, qi) · · · 0
...

...
. . .

...
0 0 · · · ω (qN, qi)

⎞
⎟⎟⎟⎠

/

(
N∑

k=1

ω (qk, qi)

)
.

Observe that the definition of B in Eq. (14) is a generalization
of the definition used in Eq. (3). Solving Eq. (13) for the coef-
ficients {a[i]

j } defines the local fit pi(x). We repeat this process
for each of the data points. This ultimately yields an N × M
array of coefficients, describing a family of local fits.

For the evaluation step, we define a second weight func-
tion, analogous to Eq. (9),

w (q1, q2) ≡ u

(
z = d2 (q1, q2)

R2 (q1)

)
, where

(15)

u(z) ≡
(

s(z)

zpu + ε
pu
u

)
,

where

s(z) =
{

(1 − z4)4 if 0 ≤ z < 1

0 if z ≥ 1
. (16)

Note that s(z) forces u(z) to be zero for all z ≥ 1. The powers
of 4 in Eq. (16) are used to achieve a satisfactory degree of
differentiability. We use the same scaling factor R in Eq. (15)
that we used in Eq. (11). Whenever the distance d(q1, q2) is
greater than or equal to R(q1), the weight function w(q1, q2)
is zero; therefore, R will be called the cutoff radius for the
remainder of the discussion. Our choice in Eq. (16) is based
on the work of Guo et al.11 and Kawano et al.,50 who inves-
tigated cutoff strategies using a slightly more general form of
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Eq. (16). An alternative choice for s(z) involving an exponen-
tial function can be found in the paper by Tokmakov et al.47

and in the work of Levin.51 Yet another choice based on the
hyperbolic tangent function can be found in earlier work by
Maisuradze et al.49 and by Guo et al.52

Consider an arbitrary point x ∼ q. We adopt the short-
hand notation d2

i = d2(q, qi). Then the fitting function evalu-
ated at x is defined by the following expression:

f (x) =

N∑
i=1

w (q, qi) pi(x)

N∑
i=1

w (q, qi)

=

∑
{i:d2

i <R2(q)}
w (q, qi) pi (x)

∑
{i:d2

i <R2(q)}
w (q, qi)

.

(17)
As in Eq. (8), f(x) is a weighted, normalized sum of local fits
evaluated at x. We only need to consider the local fits pi whose
localization point qi lies within a hyper-sphere that is centered
at q and has a radius of R(q). As we noted in our discussion of
Eq. (16), all other local fits receive a weight of zero and can
be ignored.

B. The separation of pairwise interaction energy

Next we describe how we adapted the multi-dimensional
L-IMLS method to construct a PES for a system of four iden-
tical atoms, using the example of N4. Our focus will be on
the distinguishing features of L-IMLS-G2. In this subsection
we explain the initial step in our approach. As described in
an earlier paper6 and the references contained therein, the po-
tential energy curve for the N2 molecule has been extensively
studied. Consequently, it is desirable to guarantee the follow-
ing property in the N4 PES: for geometries that are character-
ized only by pairwise interactions, the PES should reduce to a
sum of pairwise potentials. We can ensure this behavior by fit-
ting the energy difference between the total electronic energy
E (which was calculated from quantum chemistry), and the
pairwise component of the electronic energy EPW (which was
previously fit6 using an analytic generalized Morse potential).
The N4 fitting procedure is conducted only on the resulting
many-body component of the electronic energy EMB:

f = EMB ≡ E − EPW. (18)

We expect EMB to be a smoother function than the total en-
ergy E, with favorable consequences for the accuracy of our
fitting procedure (and, indeed, our experience bears this out).
In particular, the EPW term captures much of the character
of the steep repulsive walls of the six-dimensional PES. This
concept of fitting the difference from an energy component
that is expressible in a simple analytic form was also dis-
cussed by Kawano et al.; in Eq. (18), EPW plays the role
of a “zeroth-order potential function” in the context of their
investigation.48 The basic principle is even older.53

C. Permutational invariance and the basis functions

We next turn to the definitions of a six-dimensional co-
ordinate system and a set of basis functions {bj} to use in
Eq. (10). A system of four atoms has six internal degrees of
freedom. Consider any geometry of four atoms, correspond-
ing to a single point on the potential energy surface. In previ-

ous work,6 this point was identified by the following ordered
six-tuple t:

t = (t1, t2, t3, t4, t5, t6) = (rA, rB, d, θA, θB, φ) . (19)

These variables are depicted in the diagram in Figure 1 of
Ref. 6; rA and rB are the 1–2 and 3–4 diatomic distances, θA

and θB are the angles that the 1–2 and 3–4 diatomic axes form
with the line from the center of mass of 1–2 to the center of
mass of 3–4, d is the distance between these two centers of
mass, and φ is the dihedral angle. (Specifically, φ is the an-
gle between the plane containing the 1–2 axis and the line
from the center of mass of 1–2 to the center of mass of 3–
4, and the plane containing the 3–4 axis and the line from
the center of mass of 1–2 to the center of mass of 3–4.) We
call t the coordinates of the point in the default coordinate
system. While this scheme proved useful for organizing elec-
tronic structure calculations, it is not a practical choice for the
L-IMLS-G2 procedure: the mixture of distances and angles
is cumbersome when defining basis functions and distances.
Instead, a common choice is to identify the point by the set
of six internuclear distances, which we denote by the ordered
six-tuple q̃,

q̃ = (q̃1, q̃2, q̃3, q̃4, q̃5, q̃6) = (r12, r13, r14, r23, r24, r34) ,

(20)
where rbc is the distance in three-dimensional Cartesian space
between atom b and atom c. We call q̃ the coordinates of the
point in the raw internuclear distance coordinate system. To
better reproduce the repulsive walls of the potential energy
surface and its asymptotic behavior at large internuclear dis-
tances, a modified coordinate system can be defined using
Morse variables. We define a new ordered six-tuple q = (q1,
. . . , q6) by the following expression, for l = 1, . . . , 6:

ql = exp

(
− q̃l − q̃eq

a

)
. (21)

In this expression, q̃eq is the equilibrium bond distance (equal
to 1.098 Å for nitrogen) and a is a parameter. Both have units
of distance. We call q the coordinates of the point in the raw
Morse coordinate system.

The basis functions should account for the permuta-
tional symmetry of the system.54 More specifically, if a ge-
ometry can be obtained by a permutation of the atoms of
a second geometry, then the basis functions evaluated for
each geometry should be identical. The subject of incorpo-
rating permutational invariance in PES fitting has been dis-
cussed in detail in the literature, and several approaches have
been suggested. Murrell et al. recommended the use of sym-
metry variables, which they constructed by analogy with
the irreducible representations of permutation groups.55 In
a recent review, Braams and Bowman described two other
approaches,12 which we summarize here. In the monomial
symmetrization approach, the PES is expressed as a linear
combination of polynomial basis functions in the Morse vari-
ables. Each basis function is constructed to ensure permu-
tational invariance, by using the correspondence between
permutations of the atoms and permutations of the vari-
ables. Xie and Bowman studied this method in detail and
developed codes to perform the procedure.13, 14 In the
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second approach, the PES is expressed as a sum of products of
primary invariant polynomials and secondary invariant poly-
nomials in Morse variables. The number of primary invari-
ant polynomials is always equal to the number of variables.
Braams and Bowman used results from the theory of polyno-
mial invariants to show that, with a finite number of secondary
invariant polynomials, all possible invariant polynomials up
to an arbitrary order can be expressed in this way in the func-
tional form of the PES. The authors used the computational
algebra package MAGMA to assist in determining secondary
invariant polynomials.12, 56 Bowman et al., in their recent re-
view, emphasize the importance of accounting for permuta-
tional symmetry in PES construction in general.18 As exam-
ples, we note that the methods they describe were applied to
PESs for NO3 and OH3,57, 58 among many other systems.

To incorporate permutational invariance into the L-IMLS
method, we combined various ideas from these previously
used approaches. First, we chose a set of six permutation-
ally invariant polynomials x = (x1, . . . , x6). These define a
new six-dimensional coordinate system, which we call the
permutationally invariant Morse coordinate system. We de-
fine the basis functions as simple monomials in those coor-
dinates. Thus, the six coordinates play roles similar to those
of the primary invariant polynomials described by Braams
and Bowman,12 although our method does not include cor-
responding elements that are analogous to the secondary in-
variant polynomials. Importantly, our goal was not to ensure
that all possible permutationally invariant polynomials could
be expressed in terms of basis functions. Because the fitting
function is expressed as a weighted average of a large num-
ber of local fits, per Eq. (17), each one only needs to contain
enough terms to adequately approximate a relatively small
region of the PES. We will discuss the performance of our
method in Sec. VI.

Ultimately, we used the following expressions to define
the permutationally invariant Morse coordinate system. These
were selected from among the permutationally invariant poly-
nomials generated by the procedure described by Xie and
Bowman:13, 14

x1 = 1

12

(
q1q2 + q1q3 + q1q4 + q1q5 + q2q3 + q2q4

+q2q6 + q3q5 + q3q6 + q4q5 + q4q6 + q5q6

)
,

x2 = 1

4
(q1q2q4 + q1q3q5 + q2q3q6 + q4q5q6) ,

x3 = 1

24

⎛
⎜⎜⎜⎝

q1q2(q1 + q2) + q1q3(q1 + q3) + q1q4(q1 + q4)

+ q1q5(q1 + q5) + q2q3(q2 + q3) + q2q4(q2 + q4)

+ q2q6(q2 + q6) + q3q5(q3 + q5) + q3q6(q3 + q6)

+ q4q5(q4 + q5) + q4q6(q4 + q6) + q5q6(q5 + q6)

⎞
⎟⎟⎟⎠,

x4 = 1

4
(q1q2q3 + q1q4q5 + q2q4q6 + q3q5q6) , (22)

x5 = 1

12

⎛
⎜⎝

q1q3q4 + q2q3q4 + q1q2q5 + q2q3q5

+q2q4q5 + q3q4q5 + q1q2q6 + q1q3q6

+q1q4q6 + q3q4q6 + q1q5q6 + q2q5q6

⎞
⎟⎠ ,

x6 = 1

3
(q1q2q5q6 + q1q3q4q6 + q2q3q4q5) .

Each of these six coordinates approaches zero, as a system ap-
proaches a geometry exhibiting only pairwise interactions. In
this way, we maintain consistency with our strategy of fitting
only the many-body component of the energy, as expressed
in Eq. (18). Observe that x1, x2, and x3 capture three-body
interactions; if a geometry is dominated by pairwise interac-
tions, then each of these coordinates will be small. Likewise,
x4, x5, and x6 capture four-body interactions; if a geometry
is dominated by pairwise interactions and three-body interac-
tions, then each of these coordinates will be small. Note that
a polynomial such as q1 + q2 + q3 + q4 + q5 + q6 would not
be a suitable choice for this scheme. This polynomial is per-
mutationally invariant, but it does not have the asymptotic be-
havior required by our strategy of fitting only the many-body
component of the energy. Finally, we note that the constant
normalizing factors in Eq. (22) were added mainly to assist in
interpreting coordinate values. As expected, they do not ap-
pear to have any significant impact on PES quality.

Using the coordinate system described by Eq. (22), the
monomial basis functions were enumerated based on degree.
It is a simple exercise to list all such monomials. There are six
of degree one, 21 of degree two, 56 of degree three, and 126
of degree four. Thus, if we wished to use all basis functions of
degree two or less, we would use a total of 27 basis functions.
To use all basis functions of degree three or less or of degree
four or less, we would use, respectively, 83 or 209. Note that a
constant term is not allowed. Indeed, to maintain consistency
with our strategy of fitting only the many-body component of
the energy, all basis functions must vanish as four or more of
the six internuclear distances approach infinity.

D. Permutational invariance and the distance metric

The weight functions of Eqs. (11) and (15) require a dis-
tance metric, which assigns a real number d2(q1, q2) to each
pair of points q1 and q2. The distance metric plays a critical
role in any method based on L-IMLS: it assigns a numerical
measure of closeness to a pair of points, which is used both
to construct the normal equations in Eq. (13) and to compute
the weighted average of local fits in Eq. (17). A good distance
metric should return a small value for a pair of points if and
only if the two corresponding geometries are similar. In par-
ticular, if q1 and q2 are different ordered six-tuples, but q1

describes a geometry that can be obtained by a permutation
of the atoms in the geometry described by q2, then d2(q1, q2)
should be zero. The need to account for permutational invari-
ance in this way makes the selection of a distance metric a
subtle task.

Consider any two points q1 and q2, expressed in the raw
Morse coordinate system. The most naïve approach is to use
a simple two-norm of the vector q1 − q2:

d2 (q1, q2) =
6∑

l=1

|q1,l − q2,l |2 = |q1 − q2|2 . (23)

However, this definition ignores the permutational symmetry
of the four-atom system: it will only return zero if q1 and q2

are identical ordered six-tuples, and not in the case that q1 and
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FIG. 2. Example of failure of the naïve distance metric. We consider two
geometries, one of which is obtained by a permutation of the atoms of the
other. Following the conventions in Eqs. (20) and (21) with a = 1.0 Å, the
coordinates of geometry (1) are q̃1 = (1.2, 1.9, 1.1, 1.1, 1.9, 2.0) Å and q1
= (0.90, 0.45, 1.0, 1.0, 0.45, 0.41). The coordinates of geometry (2) are
q̃2 = (1.9, 1.2, 1.1, 1.1, 2.0, 1.9) and q2 = (0.45, 0.90, 1.0, 1.0, 0.41, 0.45).
Observe that the array q2 is a reordering of the array q1. The distance met-
ric given by Eq. (23) yields d2(q1, q2) ≈ 0.42 �= 0, despite the fact that the
geometries are permutationally symmetric.

q2 are different but correspond to permutationally symmetric
geometries. Figure 2 gives an illustration of this difficulty.

We develop a more sophisticated strategy as follows.
There are a total of 4! = 24 possible permutations of four
identical atoms. Each of these 24 permutations corresponds
to a permutation of the six raw Morse coordinates, according
to the conventions of Eqs. (20) and (21). For any ordered six-
tuple q2, let χ k(q2) be the rearranged ordered six-tuple that
corresponds to the kth permutation, where k = 1, . . . , 24. Then
we can define the distance metric as a minimum of two-norms
over all such permutations:

d2 (q1, q2) = min
{|q1 − χk(q2)|2 : k = 1, . . . , 24

}
. (24)

The use of a minimum function in a distance metric for IMLS-
based methods has been explored by other workers.59 This
distance metric meets the “zero distance condition” described
above, and we were able to use it to obtain a continuous PES.
However, the surface was not smooth: the use of the mini-
mum function led to cusps in the surface, and it destroyed our
ability to compute continuous, analytic gradients. Note that
problems related to smoothness have also been observed in
some potential energy surfaces constructed from splines.60

Consequently, we sought a function that has a behavior
similar to the minimum function used in Eq. (24) but is also
continuously differentiable with respect to the coordinates of
the first point q1. A modified power mean can be used to sat-
isfy both of these conditions.61 We used

d2 (q1, q2) =
(

24∑
k=1

(|q1 − χk (q2)|2)−pd

) −1
pd

, (25)

where pd is a power that defines the sharpness of the function.
We set pd = 2. Note that the minimum function is recovered
in the limit pd → ∞. This distance metric proved effective,
yielding an accurate and continuously differentiable surface.
The performance of the method will be discussed in more de-
tail in Sec. VI.

E. The cutoff radius correlation

In the fitting function evaluation step of L-IMLS, we cal-
culate a weighted average of local fits from Eq. (17). The
number of local fits is equal to the number of data points that
lie within a hyper-sphere that is centered on the evaluation
point q and has a radius R(q). We denote this number by L,
and we say that those points lie within the cutoff radius. The
cost of an evaluation depends strongly on L. Thus, it is de-
sirable to keep this number as small as possible, while still
maintaining a highly accurate fit. Evidently, the number of
points cannot be zero, since then no local fits would be used
to evaluate the fitting function. One typically imposes a con-
dition that L never falls below some threshold value Lmin that
ensures a desired level of accuracy.

The distribution of data points throughout the six-
dimensional coordinate space depends on how those data
points were originally obtained. For many chemical datasets,
it is not true that the data points are approximately uni-
formly distributed throughout the relevant portion of space,
nor would this property typically be attractive from a chem-
ical point of view. Instead, some regions are populated with
data points more densely than others. For example, regions
of high density might correspond to equilibrium geometries,
transition states, or reaction pathways. If a constant cutoff ra-
dius value was used in all evaluations, then the need to main-
tain L ≥ Lmin would force us to set R based on the lowest-
density region of the coordinate space where calculations are
needed. This, in turn, would degrade performance in the high-
density regions, where an unnecessarily large number of local
fits would be used in Eq. (17).

Several strategies for increasing computational efficiency
in IMLS-based methods via the cutoff radius have been ex-
plored in the literature, as noted earlier in our discussion of the
s(z) function in Eq. (16). Two works describe ideas for varying
the cutoff radius at different evaluation locations. Maisuradze
et al. used a variable cutoff radius and a smooth damping
function to improve efficiency in a six-dimensional imple-
mentation of IMLS.49 More recently, Kawano et al. com-
pared two cutoff strategies in IMLS, which they termed the
fixed radius cutoff and density adaptive cutoff approaches.
The later approach involved a sophisticated iterative scheme
to determine the cutoff radius.50 Also, note that the weight
functions used in the work by Dawes et al. incorporate a
density-adaptive scaling factor, but it was not used as a cut-
off radius.7 These researchers interpret their scaling factor as
a type of confidence radius, citing earlier work by Thompson
et al.62

We use a new statistical approach, which we call the
statistically localized strategy. First, for each data point, we
calculate a single characteristic coordinate qch, which is as-
sumed to correlate in some way with the density of data
points. Next, we construct a univariate polynomial cutoff ra-
dius correlation (CRC), which expresses the cutoff radius
as a function of the characteristic coordinate. For an ar-
bitrary location in six-dimensional space, the cutoff radius
is obtained simply by calculating the characteristic coordi-
nate and then evaluating the CRC. For our problem, we de-
fined the characteristic coordinate qch by the following simple
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expression:

qch ≡ qch(q) = q2
1 + q2

2 + q2
3 + q2

4 + q2
5 + q2

6 . (26)

Then, the cutoff radius is expressed in the following form:

R (qch) =
Cmax∑
c=1

αcq
c−1
ch . (27)

This value is squared for use in Eqs. (11) and (15). In this
expression, Cmax is the total number of terms in the CRC,
and {αc} are coefficients. We used Cmax = 5 for N4. This
choice and the choice of the characteristic coordinate given in
Eq. (26) were based on numerical experimentation; a strategy
was deemed effective if it was simple and it yielded a signifi-
cant gain in computational efficiency.

We determine the coefficients {αc} by a least squares pro-
cedure, performed as a pre-processing step before the local
fit construction step. Our algorithm consists of the following
steps. First, we choose a target value Ltar and a minimum al-
lowable value Lmin for the number of points within the cut-
off radius associated with each data point. We then loop over
all data points. For each point qi, we calculate two values:
Rtar(qi), the value of the cutoff radius needed to include ex-
actly Ltar data points within the cutoff radius, including qi it-
self, and qch(qi), the characteristic coordinate for qi, given by
Eq. (26). We then use a standard least squares method to fit
a polynomial curve to the one-dimensional dataset Rtar ver-
sus qch. This gives an initial guess for the coefficients {αc}.
Next, to ensure reasonable quality of the CRC, we again loop
through all data points. For each point qi, we compute the cut-
off radius R(qi) using Eq. (27) and determine the number of
points L that lie within it. If L ≥ Lmin for all data points, then
the CRC is deemed valid. Otherwise, we increase the value
of Ltar and repeat the entire procedure. In our implementation,
we also used various simple weighting strategies in the least
squares procedure to improve the fit of the CRC to the data
Rtar versus qch.

For the tetranitrogen system, this statistical approach
proved effective at increasing computational efficiency. For
the final CRC, we used Lmin = 3 and Ltar = 59, after numeri-
cal experimentation. The average number of local fits used in
the fitting function evaluations was significantly lower when
we used the CRC instead of a constant cutoff radius limited
by the lowest-density region of the coordinate space, and high
fitting accuracy was maintained. We will discuss the perfor-
mance of the method in more detail in Sec. VI.

Finally, it is instructive to compare the statistically lo-
calized approach with the density adaptive cutoff method de-
signed by earlier researchers.49, 50 In those prior studies, the
cutoff radius was defined implicitly by a nonlinear equation
(involving a sum over all data points), which was solved using
an iterative scheme. In the present work, the cutoff radius is
defined explicitly by Eqs. (26) and (27). Its computation dur-
ing a PES evaluation is generally much less costly, since the
coefficients {αc} in Eq. (27) can be determined in advance.
Likewise, it is straightforward to calculate the derivatives of
Eqs. (26) and (27), a feature that facilitates the analytic evalu-
ation of gradients. A disadvantage of the statistically localized
approach is that it is does not provide a strict lower bound on

the value of L; as we discussed above, the L ≥ Lmin condition
is verified only at the data points themselves. Consequently, it
is possible that this condition will fail to hold at a location far
from any data points. By contrast, the density adaptive cutoff
method does not present this risk, because it guarantees that L
never falls below a user-specified value.50

F. Analytic gradients

As we have stated earlier, we were guided in our research
by the desire to keep L-IMLS-G2 simple enough to allow gra-
dients to be computed analytically, instead of resorting to fi-
nite difference approximations. Our method meets this goal.
Indeed, it is a straightforward (though rather tedious) exer-
cise to compute the derivatives of Eq. (17) with respect to
each of the 12 Cartesian coordinates describing a four-atom
system. This requires calculation of the derivatives of the
weight functions given by Eq. (15), the basis functions, the
distance metric given by Eq. (25), the cutoff radius correla-
tion given by Eq. (27), the characteristic coordinate given by
Eq. (26), the coordinate transformation from raw Morse coor-
dinates to permutationally invariant Morse coordinates given
by Eq. (22), the coordinate transformation from raw internu-
clear distance coordinates to raw Morse coordinates given by
Eq. (21), and finally the coordinate transformation from
Cartesian coordinates to raw internuclear distance coordi-
nates. Note that the derivatives of the cutoff radius are partic-
ularly simple, since it is expressed as a univariate polynomial.
We verified the correctness of our implementation of analytic
gradients by demonstrating excellent agreement with numer-
ical gradients, which we calculated using a central finite dif-
ference scheme.

IV. DATA TO BE FIT

We applied the L-IMLS-G2 method to a set of 16 435
data points for the tetranitrogen system. These were presented
in previous work.6 Note that we used the updated version of
the dataset, which was discussed in the erratum6 to the ini-
tial publication. Also note that unit conversion factors were
provided with the dataset. For consistency, those same factors
should be used in any analysis of the data.

V. CONSTRUCTING THE FIT

In this section, we discuss the procedures we used to
construct and analyze a potential energy surface for the N4

system using L-IMLS-G2. Our focus is on how we selected
key parameters in the fitting approach. There are many ways
to judge the quality of a potential energy surface. Typi-
cally, more than one method of judgment is needed to gain
confidence that the surface is suitable for further work. In
our research, we used two quantitative tests, a fitting accu-
racy test and a cross validation test, to measure the success
of the fitting function, and we also used several qualitative
tests.

In the fitting accuracy test, the L-IMLS-G2 fitting func-
tion is evaluated using Eq. (17) at each of the electronic
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structure data points themselves. The evaluated energies are
compared with the energies of the data points, which we call
the reference energies. Statistics, such as the mean unsigned
error, are then computed on the results. This is perhaps the
simplest test that can be done to measure the success of the L-
IMLS-G2 method. However, it would be dangerous to rely
only on the fitting accuracy test to claim that a viable fit-
ting function has been obtained. Indeed, recall that L-IMLS-
G2 uses each of the data points as localization points for a
set of N local fits; the method is explicitly designed to yield
good approximations for the data points themselves. Thus,
other tests are needed to ensure that surface quality is main-
tained at points in space that are not extremely close to a data
point.

The cross validation test is one such test. Detailed de-
scriptions can be found in Ref. 63. Here, we give a concise
summary of the procedure. First, we select an integer K, and
we divide the set of data points into K partitions of approxi-
mately equal size. For our research, we use K = 5; i.e., we use
five partitions. (These are constructed by arranging the points
in a chemically motivated order, then putting points 1, 6, 11,
. . . in the first partition, points 2, 7, 12, . . . in the second par-
tition, and so on.) Next we iterate over the partitions. For each
partition I, we construct a set of local fits using only the data
points in the other remaining partitions. Then, we use these
local fits to evaluate the fitting function at each of the data
points in partition I, and the evaluated energies are compared
with the reference energies. In this way, the points in partition
I form a test set, and the points in the other remaining parti-
tions form a training set; the procedure is repeated using each
of the partitions as a test set. The cross validation test gives
a quantitative measure of the predictive capability of the fit-
ting method: low errors will be returned if the fitting function
accurately approximates data points that were not used in its
construction.

We also devoted particular attention to the performance
of L-IMLS-G2 along the four linear synchronous transit
(LST) paths64 that were considered6 in the original electronic
structure calculations. Further details of these paths can be
found in the earlier paper,6 and specification of the paths’ end-
points can be found in the supplemental material.65 A total of
30 electronic structure data points were obtained along these
LST paths. To qualitatively evaluate the predictive capabil-
ity of our method, we calculated the fitted energy along these
paths in two cases. In the full dataset case, we included all
points in the L-IMLS-G2 construction step. In the reduced
dataset case, we included all points except the 30 LST points.
For a high-quality PES, the fitted energies should closely
match the electronic structure energies in both cases, and the
curves from each case should be qualitatively similar. Such
behavior would support the claim that the PES is accurate
even in regions where electronic structure data was not ob-
tained.

Armed with the quantitative fitting accuracy and cross
validation tests and the qualitative test using the LST paths,
we proceeded to explore different choices of the parameters
in the L-IMLS-G2 method. Specifically, we needed to se-
lect values for pν and εν in Eq. (11) and for pu and εu in
Eq. (15). These weight function parameters can have a dra-

matic effect on the quality of the fit. To reduce the size of the
parameter space, we chose to set pν = pu and εν = εu in our
work. (However, as we have noted above, this is not a neces-
sary constraint.) We varied pu from 1 to 4 and varied εu from
10−3 to 10−1. We note the following qualitative trends from
this search. Within reasonable bounds, larger values of pu and
smaller values of εu decreased fitting accuracy errors but in-
creased cross validation errors. This is an expected result. In-
deed, such changes sharpen the weight functions in Eqs. (11)
and (15), which in turn forces the L-IMLS-G2 fitting function
to be more strongly dominated at an evaluation point by the
local fit associated with the nearest data point. Thus, the fit-
ting function tends to become a better approximation to the
data points themselves, at the expense of overall smoothness.
The predictive capability of the fitting function suffers, as cap-
tured in the larger cross validation errors. We examined var-
ious one-dimensional and two-dimensional cuts through the
six-dimensional PES to further assess accuracy and smooth-
ness. Ultimately, based on these quantitative and qualitative
tests, we chose pu = 3 and εu = 10−1 as recommended val-
ues. Note that we do not have strong reasons to believe that
these choices are optimal for an arbitrary dataset. Rather, they
seem to be good choices for the tetranitrogen dataset we con-
sidered, and they could be seen as reasonable initial guesses
if applying the method to other data.

We also explored different values for the a parameter
used to define the raw Morse coordinate system in Eq. (21).
Within reasonable bounds, this variation did not appear to sig-
nificantly affect error statistics from the fitting accuracy or
cross validation tests. We chose the value a = 0.85 Å for our
final fitting function. The error statistics tended to be much
more sensitive to the choices of the weight function parame-
ters described above than to the choice of a.

We also studied different values for the maximum order
η of the basis functions in the local fit construction step. We
found that a large value of η was not necessary to obtain a
high quality PES. Indeed, since a PES based on L-IMLS tech-
niques is constructed from a large number of local fits, it does
not appear necessary to use a high-order polynomial for each
one, especially when we remove the steep pairwise potential
beforehand, per Eq. (18). Indeed, it may even be less accu-
rate to use a large value of η. Errors in the fitting accuracy
and cross validation tests were generally lower after η was in-
creased from 2 to 3. However, for η = 4, the errors increased
considerably for some points in the cross validation test. This
may indicate that, at this value of η, L-IMLS-G2 is over-fitting
the dataset. We use this language to refer to the situation in
which the PES is extremely accurate near the data points used
in its construction, but is of unacceptable quality in other re-
gions of space. We therefore used η = 3 for the final fit. This
corresponds to a total of 83 basis functions for each local
fit.

A final consideration in our research concerned the pos-
sibility of redundancy in the N4 dataset. The permutation-
ally invariant distance metric in Eq. (25) gave us a math-
ematical tool to identify the closest pairs of data points in
the six-dimensional weight function coordinate space. We
noticed that the dataset included some pairs of points that
were separated by a very small distance, indicating that the
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TABLE I. Mean unsigned errors (MUEs) from the fitting accuracy test, for
various values of the order η of the local fits. All energies and MUEs are in
kcal/mol.

MUE
Data subset Number of points η = 2 Final fit η = 4

E < 100 516 0.33 0.17 0.084
100 ≤ E < 228 1556 0.57 0.32 0.20
228 ≤ E < 456 9238 0.68 0.41 0.28
456 ≤ E < 1000 1515 3.3 2.0 1.3
1000 ≤ E 323 2.9 1.5 0.80
All data 13148 1.0 0.60 0.39

corresponding geometries were nearly the same, except for
permutation of the atoms. Building on the hypothesis that, in
such cases, only one of the geometries should be necessary
to build a sufficiently accurate L-IMLS-G2 PES, we added
a capability to our code to systematically identify and rank
the closest pairs of data points with respect to the distance
metric in Eq. (25). For each pair up to a user-specified max-
imum, one of the data points in the pair could be excluded
or masked from future consideration in the fitting procedure.
After experimentation with this tool, we decided to use a 20%
masking strategy. That is, we chose to exclude the top 20%,
rounded down, of the electronic structure data points that were
deemed “most redundant” by the permutationally invariant
distance metric. We thus masked a total of 3287 data points
out of the total 16 435, for a final recommended dataset of
13 148 data points. Errors from the fitting accuracy and cross
validation tests were only slightly affected by this masking
strategy, while the average number of local fits used for the
fitting function evaluations decreased substantially. Thus, we
considered this improvement in efficiency to be worthwhile,
and all results shown in this paper used the masked dataset.

VI. FINAL RESULTS – ACCURACY AND EFFICIENCY
OF THE FIT

Summarizing the outcomes of the investigations de-
scribed above, the final potential energy surface for the tetran-
itrogen system used pν = pu = 3, εν = εu = 10−1, a = 0.85 Å,
η = 3, and a 20% masking strategy. A Fortran subroutine of
the N4 PES is in the POTLIB library.66, 67

Table I shows results from the fitting accuracy test for
this fit, and Table II shows results from the cross validation

TABLE II. Mean unsigned errors (MUEs) from the cross validation test
with five partitions, for various values of the order η of the local fits. All
energies and MUEs are in kcal/mol.

MUE
Data subset Number of points η = 2 Final fit η = 4

E < 100 516 0.44 0.26 0.13
100 ≤ E < 228 1556 0.89 0.59 0.43
228 ≤ E < 456 9238 1.2 0.98 0.90
456 ≤ E < 1000 1515 5.0 3.9 3.6
1000 ≤ E 323 7.3 6.5 11
All data 13148 1.7 1.4 1.4

TABLE III. Mean unsigned errors (MUEs) for planar and nonplanar ge-
ometries from the fitting accuracy test on the final fit. This table was gener-
ated from the same results used for Table I. All energies and MUEs are in
kcal/mol.

Planar Nonplanar

Data subset Number of points MUE Number of points MUE

E < 100 317 0.19 199 0.15
100 ≤ E < 228 903 0.36 653 0.27
228 ≤ E < 456 5325 0.38 3913 0.45
456 ≤ E < 1000 1013 1.7 502 2.4
1000 ≤ E 290 1.3 33 3.6
All data 7848 0.58 5300 0.63

test. For comparison, we also include results from the corre-
sponding test fits using η = 2 or η = 4 instead of η = 3. Mean
unsigned errors (MUEs) are given in these tables; root-mean-
square errors are provided in the supplemental material.65 As
expected by design of the method, the errors in Table I are
quite small, typically a few tenths of a percent or less. High
accuracy is also reflected in the cross validation test statis-
tics in Table II, where errors are typically less than 1%. Fur-
thermore, we note that the cross validation test may actually
overestimate expected errors, in the sense that the final fit is
based on 13 148 data points, while the fits used in this test
are each based on only about 10 518 points. The possibility of
over-fitting the original data by using η = 4, as discussed in
the Sec. V, is especially evident in the cross validation MUEs
for those data points with reference energies E greater than or
equal to 1000 kcal/mol. Indeed, notice that the MUE for this
data subset drops when η increases from 2 to 3 (the recom-
mended value), but then rises substantially when η is further
increased to 4. Observe that this increase in error in the cross
validation test occurs even though the corresponding error in
the fitting accuracy test decreases. This illustrates the finding,
discussed in Sec. V, that using higher-order basis functions
with L-IMLS-based methods does not necessarily increase
overall surface quality.

Tables III and IV show additional statistics, which were
gathered using the same test data used for Tables I and II,
respectively. We divide the data points into two categories:
those corresponding to planar geometries of the four nitro-
gen atoms and those corresponding to nonplanar geometries.

TABLE IV. Mean unsigned errors (MUEs) for planar and nonplanar ge-
ometries from the cross validation test with five partitions on the final fit.
This table was generated from the same results used for Table II. All energies
and MUEs are in kcal/mol.

Planar Nonplanar

Data subset Number of points MUE Number of points MUE

E < 100 317 0.30 199 0.19
100 ≤ E < 228 903 0.68 653 0.47
228 ≤ E < 456 5325 0.99 3913 0.98
456 ≤ E < 1000 1013 3.9 502 3.9
1000 ≤ E 290 5.6 33 14
All data 7848 1.5 5300 1.2
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FIG. 3. Fitted energies along the four linear synchronous transit (LST) paths. For each path, a fit is considered based on the full dataset (full) and based on the
reduced dataset (red.), which was obtained by eliminating the 30 LST points. As defined in previous work,6 λ is the LST parameter corresponding to progress
along the path. Further information about the endpoints of the paths can be found in prior work6 and in the supplemental material.65

Out of the total 13 148 data points, 7848 correspond to pla-
nar geometries and 5300 correspond to nonplanar geome-
tries. Notice that the MUEs associated with each category
are comparable; errors associated with the nonplanar geome-
tries are slightly higher for high-energy points but slightly
lower for low-energy points. This provides further evidence
that the fitting procedure is robust and is capable of rep-
resenting the full dimensionality of the potential energy
surface.

The accuracy attained by the present fit may be compared
with that of an earlier fit6 to essentially the same dataset. This
previous research employed a global method based on permu-
tationally invariant polynomials in Morse variables; it yielded
a mean unsigned error over 16 435 data points of 4.1 kcal/mol.
The local method used in the present article appears to be
much more accurate, yielding overall MUEs of 0.60 kcal/mol
and 1.4 kcal/mol from the fitting accuracy and cross valida-
tion tests, respectively. This is an expected result; as we dis-
cussed earlier in this paper, local methods are generally more
accurate but more computationally expensive than global
methods.

When fitting a potential energy surface for use in dy-
namics calculations to an electronic structure dataset, little is
gained by fitting the data to a higher accuracy than that of the
associated electronic structure method. Because the CASPT2
method used to generate the data fitted here was chosen based
on the need to describe bond dissociation to highly open-shell

species,6 the data is less accurate than could be attained for
a study of a closed-shell singlet system near its equilibrium
geometry. Consequently, it is noteworthy that the accuracy of
the L-IMLS-G2 PES, as reflected in the tests of Tables I–IV,
is generally better than the expected accuracy of CASPT2 it-
self for energies at least up to the dissociation limit of about
228 kcal/mol.

Figure 3 shows results from the qualitative test of pre-
dictive capability based on the LST paths. We show the ref-
erence energies and the fitted energies corresponding to the
full and reduced dataset cases, as discussed in Sec. V. The
fitted energies from the full dataset case agree well with the
reference energies along all four paths. Shifting our attention
to the reduced dataset case, we see that excellent agreement
is maintained along the second and fourth paths. A larger dis-
crepancy is seen along the first and, especially, the third path:
the fitted energies from the reduced case deviate both from
the reference energies and from the fitted energies from the
full case. This deviation is most pronounced in the third path
near the cusp at about λ = 0.6, which is due to a state cross-
ing. Ultimately, we consider the kind of discrepancies shown
in Figure 3 (most serious at energies above the dissociation
limit) to be acceptable. They are also a reminder of the in-
herent limitations of constructing the lowest adiabatic PES
for a system exhibiting surface crossings (and avoided cross-
ings along cuts). A similar difficulty was discussed in detail
in the previous work.6 Finally, we reiterate that a broader
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TABLE V. Statistics on the number of local fits used for the evaluations in
the fitting accuracy test. Lμ is the mean number of local fits and Lσ is the
standard deviation of the number of local fits. All energies are in kcal/mol.

Data subset Number of points Lμ Lσ

E < 100 516 450 119
100 ≤ E < 228 1556 346 214
228 ≤ E < 456 9238 460 409
456 ≤ E < 1000 1515 216 159
1000 ≤ E 323 110 94
All data 13148 409 368

measure of the ability to fit points away from the origi-
nal data is provided by the cross validation test discussed
above.

We can judge computational efficiency by examining the
number of local fits used to evaluate the fitting function via
Eq. (17). Recall that the final PES involves 13 148 local fits,
and each one of these consists of 83 basis functions with co-
efficients determined via matrix normal equations of the form
given by Eq. (13). By implementing the cutoff radius corre-
lation in Eq. (27), the number of local fits used for any par-
ticular fitting function evaluation is typically much less than
the total number available. Tables V and VI show the mean
and standard deviation of the number of local fits used for
each energy evaluation in the fitting accuracy and cross vali-
dation tests, respectively. Typically, less than 5% of the avail-
able local fits are used for any one case. Note that the results in
Tables V and VI also reflect the increased efficiency granted
by the 20% masking strategy to reduce data redundancy. For
comparison, results from testing on the unmasked dataset are
provided in the supplemental material.65 Also note that the
number of local fits is typically larger than the target value
Ltar that was used to construct the cutoff radius correlation,
as described in Sec. III E. This is a consequence of the vari-
able density of data points across the coordinate space and of
the least squares weighting schemes that were used to deter-
mine the coefficients {αc} of the cutoff radius correlation in
Eq. (27). The ultimate measure of success of the cutoff ra-
dius correlation was the gain in computational efficiency that
it provided.

In Figure 4, we show selected one-dimensional cuts
through the final PES. In each one, five of the six default co-
ordinates are fixed. The energy and one component of the gra-
dient with respect to the Cartesian coordinates are presented.

TABLE VI. Statistics on the number of local fits used for the evaluations in
the cross validation test with five partitions. Lμ is the mean number of local
fits and Lσ is the standard deviation of the number of local fits. All energies
are in kcal/mol.

Data subset Number of points Lμ Lσ

E < 100 516 360 96
100 ≤ E < 228 1556 277 171
228 ≤ E < 456 9238 368 327
456 ≤ E < 1000 1515 173 128
1000 ≤ E 323 88 76
All data 13148 328 295

FIG. 4. One-dimensional cuts through the N4 fitted PES, with fixed parame-
ters θA = θB = φ = 90◦, rA = 1.098 Å or rA = 1.298 Å, and d = 1.2 Å. (a)
shows excellent agreement between the fitted energies and the corresponding
electronic structure data. (b) shows the fitted gradient component ∂E/∂y for
the third nitrogen atom, computed analytically (an.) and numerically (num.)
using central finite differences with a step-size of 10−3 Å. The agreement
between the analytic and numerical gradients is excellent. (c) shows a closer
view of numerical gradient curves corresponding to rA = 1.098 Å, with var-
ious values of the finite difference step-size. The 10−3 Å case from (b) is
shown again for clarity. As the step-size is decreased below about 10−2 Å,
the curve does not appreciably change, supporting the claim that the numeri-
cal computation in (b) is converged.

Figure 4(a) shows that the agreement between the reference
energies and the fitted energies is excellent, even where the
PES exhibits sharp features. Figure 4(b) illustrates that the
agreement between the analytical and numerical gradients is
excellent; inspecting cuts like these was one of the techniques
we used to verify that analytic gradients were properly im-
plemented. Figure 4(b) also shows that the gradient curves
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FIG. 5. Performance data corresponding to the one-dimensional cuts of
Figure 4. (a) depicts the cutoff radius used in each evaluation, as given by
Eq. (27). (b) depicts the number of local fits used for each evaluation.

are smooth. Notably, they do not exhibit erratic behavior near
the data points themselves; such an undesirable result can oc-
cur if the weight functions in Eqs. (11) and (15) are exces-
sively sharp due to poor choices of parameters. Figure 4(c)
depicts the effect of the finite difference step-size on one of
the numerical gradient curves; in particular, we show the nu-
merical gradient curves computed using step sizes of 10−1,
10−2, 10−3, 10−4, and 10−6 Å. The latter four curves are es-
sentially indistinguishable. Generally, we found that the nu-
merical results were converged for step-sizes of 10−3 Å or
less.

Figure 5 shows the cutoff radius and the number of lo-
cal fits used in each evaluation, for the same cuts that were
considered in Figure 4. This provides one way to visualize
the CRC of Eq. (27). The variation in the number of local
fits is due to the CRC and to the non-uniform spatial dis-
tribution of data points. Importantly, observe that, although
the number of local fits varies from about 100 to about 1200
along the cuts, the quality of the energy and gradient curves in
Figure 4 does not appreciably change. This provides further
evidence that the weight functions and the CRC are operating
as intended.

Figure 6 shows examples of two-dimensional cuts
through the final energy surface and through one of the
gradient-component surfaces. Here, four of the six default co-
ordinates are fixed, and two are varied. The figure shows that
both surfaces are smooth.

FIG. 6. Two-dimensional cuts with fixed parameters θA = θB = 90◦,
φ = 0◦, and rA = 1.098 Å. (a) shows the fitted potential energy, and (b)
shows the gradient component ∂E/∂y for the third nitrogen atom computed
analytically from the fit. Each cut was constructed from 80 000 points.

VII. SUMMARY AND FUTURE WORK

In this paper, we discussed an improved L-IMLS method.
After reviewing the least squares, weighted least squares, and
L-IMLS methods in one dimension, we described a new ver-
sion of L-IMLS for a six-dimensional system of four atoms.
The method may be called statistically localized, permuta-
tionally invariant, local interpolating moving least squares fit-
ting of the many-body potential, or, more simply, L-IMLS-
G2. Our approach incorporates permutational invariance in
both the basis functions and the weight functions. We treat
pairwise interaction energy distinctly from many-body inter-
action energy, and we use a cutoff radius correlated to data
point density to statistically account for the variable density
of data points. All elements of the method were designed in
such a way to allow gradients to be computed analytically. We
applied the method to construct a highly accurate PES for a
N4 dataset developed in previous work.

Like other local fitting methods, L-IMLS-G2 yields very
accurate surfaces with relatively low-order polynomial local
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fits. Because an energy evaluation using L-IMLS-G2 depends
only on nearby data points, the method is especially well-
suited to PESs with rugged features, such as those used for
modeling high-temperature vibrational energy exchange and
dissociation. The method is typically both more accurate and
more expensive than, for example, a global approach6 that re-
lies on a single, high-order polynomial. We discussed several
important considerations in using the L-IMLS-G2 method.
The quality of the fit is strongly affected by the choice of
weight functions, coordinate systems, and the distance metric.
We noted that it is possible to obtain a PES that is very accu-
rate near the data points, but is of unacceptably poor quality in
other regions; such behavior can be avoided by making proper
choices of parameters. The tradeoffs between accuracy and
smoothness can be analyzed quantitatively by using a cross
validation test to measure predictive capability in regions not
populated with data points.

Future research on this topic could focus on several key
threads. First, we note that L-IMLS-G2 can be applied to
any system of four atoms (i.e., even if those atoms are not
identical), by appropriately accounting for the system’s per-
mutational symmetry. (While most of the paper focuses on
the illustrative case of four identical atoms, L-IMLS-G2 can
be adapted to other cases with minor changes. The method,
as developed above, is sufficiently general so that other sys-
tems could be treated by defining proper analogues to the raw
Morse coordinate system given by Eq. (21), the permutation-
ally invariant Morse coordinate system given by Eq. (22),
and the permutationally invariant distance metric given by
Eq. (25). All core principles of L-IMLS-G2 would remain
unchanged. Note, in particular, that all of Sec. III A remains
general; it does not make the assumption of identical atoms.
Presently, we are planning to adapt the method in this way
to construct a PES for N2O2. The extension of the method to
systems of more than four atoms is also feasible, although fur-
ther modifications would be needed to account for the higher
dimensionality of the PES. Obviously, serious consideration
would need to be given to the resulting increase in computa-
tional cost.

In the near term, we plan to use the tetranitrogen L-
IMLS-G2 PES to conduct quasiclassical trajectory calcula-
tions, to study vibrational energy exchange and dissociation in
high-temperature environments typical of hypersonic flows.
We are interested in further comparing the performance of the
L-IMLS-G2 surface with that of the N4 surface described in
previous work,6 which used a global method based on permu-
tationally invariant polynomials. We wish to more carefully
quantify the differences in the two surfaces for dynamics cal-
culations, both in terms of computational cost and trajectory
outcomes. Additional work could also focus on the explo-
ration of alternative choices for the weight functions, the per-
mutationally invariant Morse coordinate system, the distribu-
tion of data points, and the cutoff radius correlation scheme.
Many different choices were explored for this research, but
we have by no means exhausted all possibilities. In particular,
we are interested in more advanced ways to improve perfor-
mance by reducing the average number of local fits needed
in the fitting function evaluation step. Finally, much deeper
consideration can be given to the idea of more tightly inte-

grating the fitting process with the electronic structure calcu-
lations and the trajectory calculations. For example, Castillo
et al.68 and Dawes et al.69 have considered how to couple tra-
jectory calculations with fitting to automatically identify areas
of space for new electronic structure data. Nevertheless, we
believe that the present second-generation L-IMLS method is
already a step forward, and the enhancements we introduced
here should be useful for fitting the potential energy surfaces
of other systems.
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