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Army ants tunneling for classical simulations†

Jingjing Zheng, Xuefei Xu, Rubén Meana-Pañeda and Donald G. Truhlar*

The classical trajectory method (also called molecular dynamics) is the most widely used method for

ensemble averaging and calculating rate constants of complex dynamical systems; however it has the

serious drawback of not allowing tunneling. Here, we show how to include tunneling efficiently in real-

time classical trajectories by using the army ants algorithm for quantum mechanical rare event sampling

and partially optimized semiclassical tunneling paths based on valence internal coordinates. Three

examples, HN2 dissociation and two kinds of HCOH isomerizations, are used to illustrate the tunneling

method. We show that the army ants tunneling algorithm is very efficient (even lower computational

costs than calculations without tunneling) and yields physically reasonable rate constants. The new

algorithm is straightforward to include in any molecular dynamics package, and it allows sampling of

regions of phase space that are classically inaccessible but that may lead to different products or

different energy distributions than are populated by non-tunneling processes.
Introduction

The classical trajectory method1,2 is the most widely used
approximation for molecular dynamics simulations of chemical
processes. It is very general, and it can be approximately justi-
ed because the de Broglie wavelength for nuclear motion is
usually small compared to the characteristic length on which
the potential energy changes. The classical trajectory method
has two well-known major deciencies though: (1) bound
vibrational motions can have any energy with no reference to
quantized vibrational energy levels of the quantum mechanical
stationary states; (2) tunneling is neglected.

Deciency no. 1 is most serious for low vibrational energies,
and a chief symptom is that systems are not required to have
zero point energy (ZPE). (Zero point energy is an exact constraint
only for stationary states, but we know from extensive experi-
ence with approximate and accurate solutions of the
Schrödinger equation that it is an approximate local constraint
on bound vibrational modes even during dynamics.) Various
approximation schemes have been proposed to alleviate this
difficulty, e.g., quantization at the beginning of a trajectory3 (the
so-called quasiclassical trajectory method), enforcing energy
transfer between modes during a trajectory,4,5 or treating bonds
with high-frequency vibrations as rigid.6 None of these proce-
dures is satisfactory for all situations, but nevertheless they can
be helpful and have been found useful. But including ZPE in
classical trajectories is beyond the scope of the present article.
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Deciency no. 2 affects not just classical trajectory calcula-
tions but also many wave packet methods where the center of
the wave packet follows a classical trajectory.7 In this article, we
propose a simple method, called army ants tunneling, to
include tunneling in real-time classical trajectory calculations.

A variety of semiclassical methods have been proposed for
tunneling calculations, but we will limit our attention here to
the ones most related to the present work. Previously, semi-
classical methods for calculating tunneling probabilities have
been developed successfully for calculating thermal reaction
rates in the variational transition state theory framework, where
dominant tunneling paths start and end near a minimum
energy path.8 In approximations (called large-curvature
tunneling9,10 and least action tunneling11,12) that turned out to
have the broadest general validity,13 tunneling occurs along
straight-line (rectilinear) paths (in the limit of large reaction-
path curvature) or optimized paths (in the more general case)
from a caustic surface of bound vibrational motion in the
reactant region to a caustic surface of bound vibrational motion
in the product region. (A caustic is a surface that separates the
region visited by classical trajectories from regions not visited.)
Similar tunneling paths emanating from caustic surfaces were
proposed for electronically nonadiabatic processes where the
state with the largest tunneling probability will dominate, and
this will oen be the state with the shortest tunneling path.14 In
general, from a semiclassical perspective, the optimum
tunneling path is the one with the least imaginary action,11,12

which is a compromise between a low-energy path, a short path,
and a path with a low reduced mass. In this semiclassical spirit,
adding straight-line tunneling paths normal to caustic surfaces
was suggested for use in classical trajectory simulations15 via a
branching model that was originally proposed16 for surface
hopping.
Chem. Sci., 2014, 5, 2091–2099 | 2091
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The addition of tunneling paths to trajectories has been used
for calculating isomerization tunneling splittings where the
nal terminus of the tunneling path is taken as a caustic of the
isomerized well and where one calculates an average tunneling
amplitude by averaging a trajectory in one well rather than
branching.17–19 Why is tunneling not incorporated in classical
simulations more broadly? One reason is that the proposed
branching15 is carried out as for the anteater algorithm16 origi-
nally proposed for surface hopping. In particular, when a
system reaches a turning point in some mode, a tunneling
probability Pt is computed for a straight tunneling path along
the direction of that mode, and the tunneling path is followed if
Pt exceeds a random number l (all random numbers in this
article are uniform on [0, 1]). If Pt is, for example, 10�3 or less, it
means that one tunneling path is followed on average for each
one thousand or more tunneling events; therefore trajectories
will rarely tunnel, and the method will be inefficient for
sampling tunneling events. A second reason is that rectilinear
tunneling paths (i.e., paths that are straight in Cartesian coor-
dinates) in the direction normal to a caustic surface may be far
from optimum and may even lead to negligible tunneling
probability. Here we propose improvements motivated by both
of these shortcomings.

Prior to the army ants algorithm, two methods were used for
sampling trajectories. In one, called the ants algorithm, trajec-
tories would be bifurcated at a quantum event (tunneling in the
present context, surface hopping in the original context16), and
one would follow the quantum branch with weight Pt and the
non-quantal branch with weight 1 � Pt; this has the disadvan-
tage of oen leading to an impractically large number of
branches to follow, where the large number of branches
resemble a swarm of ants. The alternative is to follow the
quantal branch with probability Pt or the non-quantal branch
with probability 1 � Pt (like an anteater, this scheme follows
mainly the paths where ants, i.e., trajectories, are most likely to
be found); this has the disadvantage for small Pt that one
seldom follows the interesting quantal branches. To make rare-
event sampling more efficient we replace the anteater algo-
rithm16 by the army ants algorithm introduced earlier20 for rare
events in surface hopping.

Furthermore we partially optimize the tunneling paths by
using curvilinear coordinates instead of rectilinear coordinates,
i.e., using valence internal coordinates. It is known from
vibrational spectroscopy and successful molecular mechanics
methods that valence internal coordinates (bond stretches,
bond angle bends, and torsions) are much less strongly coupled
than rectilinear normal modes,21 and normal-mode motion is
only valid for small amplitude motion since normal modes are
based on the harmonic-oscillator approximation. In fact, even
along reaction coordinates, rectilinear motion is much less
physical than valence coordinate motions.22,23 Thus a simple
way to partially optimize tunneling paths for general situations
is to replace rectilinear motion by motion along a valence
internal coordinate, such as a bond stretch, bond angle bend, or
torsion, or by motion along a combination of two or more
valence internal coordinates, such as a difference of two stretch
coordinates for atom-transfer reactions. Therefore, in the
2092 | Chem. Sci., 2014, 5, 2091–2099
application presented here, we use motions along internal
coordinates as our tunneling paths.

A consequence of the variational principle that the opti-
mized tunneling path is the tunneling path with the least
imaginary action is that the optimum tunneling path should
have the largest tunneling probability. In practice it is imprac-
tical to completely optimize the tunneling path. The specic
partial optimization scheme proposed in the paper is only one
possibility, but it is sufficient to illustrate the new method for
including tunneling. Experience shows that partial optimiza-
tion of tunneling paths is oen very useful, and it has been used
successfully in many previous applications of multidimensional
tunneling methods with variational transition state theory; this
includes reactions in the gas phase, in liquid-phase solution, at
gas–solid interfaces, and in enzymes.8,11–13,24 The present paper
allows one to include this kind of tunneling calculation in
molecular dynamics simulations.

Methods

In this section we present the details of the army ant branching
algorithm for the sampling of rare events and how the tunneling
path and action integral are computed in internal coordinates.

Army ants branching algorithm

Each trajectory starts with a weight of unity. When a tunneling
probability Pt is calculated for a possible tunneling path, we take
two steps to determine if the trajectory is branched or not and
how the weight of a trajectory is changed: (1) one computes g ¼
max(h, Pt) where h is a parameter, and picks a random number
l1. If l1 > g, there is no tunneling, and the classical trajectory
continues without changing its weight. (2) If l1 < g, one picks
another random number l2, and if l2 > 0.5, there is still no
tunneling, but the weight of the trajectory is decreased by a
factor 1 � Pt/g. However if l2 < 0.5, one accepts the tunneling
path and its weight is changed by a factor of Pt/g. Consequently
we follow tunneling events about half the time when h is chosen
to a value close to 1, but they are weighted to ensure that the
result converges to the same probability of tunneling as in the
anteater method. Since, very oen, Pt � 0.5, the statistics on
tunneling events are greatly improved, and we can efficiently
explore regions of space reached only by tunneling.

The choice of h affects the rate of convergence with respect to
the number of trajectories but not the converged results, so this
choice is a practical matter. Calculations in this article were
carried out with h taken as 0.95. Some examples of calculations
with other values of h are also given for discussion.

Tunneling path

The trajectory is monitored at every integration step to see if it
reaches a turning point of the tunneling coordinate, where that
coordinate reaches a maximum or minimum, i.e., where p$d0 is
zero, where p is the momentum and d0 is the unit vector along
the tunneling direction that denes the initial direction of the
tunneling in (unscaled) Cartesian coordinates. In the current
study, the tunneling direction is chosen to be a single valence
This journal is © The Royal Society of Chemistry 2014
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internal coordinate or a combination of internal coordinates.
The unit vector d0 is calculated as Dx0/|Dx0| where Dx0 is a small
displacement of Cartesian coordinate along the tunneling
direction from the current geometry. The Cartesian displace-
ment can be calculated by

Dx0 ¼ ADR0 (1)

where A is a generalized inverse matrix of the Wilson Bmatrix,25

and DR0 is a column vector of internal coordinate displace-
ments. Eqn (1) is only accurate to rst order, and it is used
iteratively until Dx0 is converged.26 When the tunneling direc-
tion is along one single coordinate or a combination of two
internal coordinates, all elements of DR0 are zero except the one
or two that correspond to the tunneling direction. More
generally each element of DR0 represents a small displacement
of an internal coordinate along the tunneling direction. Atom-
transfer reactions involve signicant changes of at least two
bond lengths; for a bond length displacement of the breaking
bond equal to Dr (where Dr > 0), we set the bond length
displacement of the forming bond equal to �lDr, where l is an
adjustable synchronicity parameter. The optimum tunneling
path is the one with the greatest tunneling probability,11,12 so we
can optimize the path by varying l. It is possible to optimize trial
tunneling paths with more parameters, but in the present
article we restrict ourselves to the simple choices just presented.

When a turning point is reached, we calculate the tunneling
probability in the isoinertial coordinate system q related to the
3N-dimensional Cartesian coordinate x by

q ¼ m1/2x/m1/2 (2)

where m is a diagonal matrix of order 3N containing three
copies of each of the N atomic masses associated with each of
the 3N unscaled Cartesian coordinates, and m is any constant
reduced mass. Then the tunneling probability is Pt¼ e�2q where
q is the imaginary action integral calculated along the tunneling
path and given by

q ¼ 1

h-

ðxmax

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½VðqÞ � Vðq0Þ�

p
dx (3)

where x is the distance along the tunneling path of position q
relative to the starting point of tunneling path q0, xmax is the
length of whole tunneling path in isoinertial coordinates, and
we have used the fact that the isoinertial coordinate system has
the same reduced mass m in all directions of 3N-dimensional
space. The physical reasoning leading to eqn (3) is the same as
used previously.9,15
Fig. 1 Potential energy profiles.
Calculations

To illustrate the new method, we made calculations for
hydroxycarbene isomerizations and HN2 radical dissociation in
their ground electronic states:

cis-HCOH / trans-HCOH (R1)

HN2 / H + N2 (R2)
This journal is © The Royal Society of Chemistry 2014
trans-HCOH / H2CO (R3)

The potential energy surface for (R1) and (R3) is calculated by
the PDDG/PM3 (ref. 27) method, and the trajectories are carried
out by direct dynamics by coupling a modied version of the
ANT28 program with the MOPAC-mn29 program. An analytic
potential energy surface30 is used for the HN2 dissociation.
Reaction (R1) has a barrier of 1.09 eV along the H–C–O–H
torsional coordinate, reaction (R2) has a barrier to dissociation
of 0.50 eV, and reaction (R3) has a barrier of 1.57 eV to transfer
of H; see Fig. 1.

The ensemble of initial states was selected to be random
except for the xed total internal energy E and the total angular
momentum xed at zero. For each energy, NVE ensembles have
10 000 trajectories for R1 and 100 000 trajectories for (R2) and
(R3). To obtain better convergence for demonstrating the results
with various h values, we also ran 400 000 trajectories for (R2) at
energy 0.44 eV. We used a 4th order Runge–Kutta integrator
with a step size of 0.1 fs.

In each case, we dene a complete set of 3N – 6 nonredun-
dant internal coordinates, where N is the number of atoms;
then we dene a tunneling direction. The tunneling direction
for (R1) is the torsion angle, for (R2) it is the H–N1 bond length
(where N1 is the nitrogen closer to H), and for (R3) it is a
combination of decreasing the forming C–Ht bond length and
increasing the O–Ht bond length in a ratio l : 1, where Ht is the
transferred hydrogen atom, and l is a xed parameter for a given
Chem. Sci., 2014, 5, 2091–2099 | 2093
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calculation on an ensemble of trajectories. Thus for (R1) and
(R2), the internal coordinate displacement vectors in eqn (1)
have all elements zero along tunneling path except the H–C–O–
H dihedral angle and the bond length H–N1 respectively. For
(R3), the elements of the internal coordinate displacement
vector corresponding to the changes of C–Ht and O–Ht bonds
are �lDr and Dr along the tunneling path, and the other four
internal coordinate displacements (C–H bond, C–O bond, H–C–
O angle, and the bending angle of O out of the C–H–Ht plane)
are zero. The value of Dr is zero at the initial turning point and
gradually changes to a positive value that gives the same energy
as that of the initial turning point. In dening a set of non-
redundant internal coordinates for (R3), we took care that any
internal coordinate involving Ht that is not xed along the
tunneling path should not be included in the 3N – 8 internal
coordinates that are not involved in the tunneling direction. For
example, with our choice of internal coordinates, when Ht is
moving along the tunneling path, the C–Ht–O angle is not xed.

Reaction is assumed to have occurred and the trajectory
stopped when the torsion angle is between 130 and 180 deg. or
between �180 and �130 deg. (R1), when the H–N1 distance is
equal to or larger than 4 Å (R2), or when the new C–H bond is
equal to or smaller than 1.2 Å (R3). The reaction probability Pr at
time t equals the sum of the weights of trajectories that have
already reacted divided by the sum of the weights of all trajec-
tories at this point in time.

To calculate the rate constant k(E), we assume the following
relation between number of non-reactive trajectories (Nnonreact)
and the total number of trajectories (Ntotal) at time t for an
ensemble with energy E if each trajectory is equally weighted

Nnonreact(E) ¼ Ntotal(E)exp(�k(E)t) (4)

If we write the reaction probability as Pr(t) ¼ (Ntotal �
Nnonreact)/Ntotal at time t, then eqn (4) can also be written as

ln(1 � Pr) ¼ �k(E)t (5)

Therefore, reaction rate k(E) can be obtained by tting the
linear (or nearly linear) region of the decay curve of ln(1� Pr) vs.
t. When each trajectory is weighted by the army ants algorithm,
the reaction probability Pr(t) is given as

PrðtÞ ¼

XNreact

j¼1

WjðtÞ

XNtotal

i¼1

WiðtÞ
(6)

where Nreact is the number of reactive trajectories, and Wi(t) is
the weight of trajectory i at time t, and Wj(t) is the weight of
reactive trajectory j at time t.
Results and discussion

The decay of the logarithm of the nonreactive probability, ln(1�
Pr), is plotted in Fig. 2 for reactions (R1) and (R2); the negative
slopes of each line aer the induction period are the
2094 | Chem. Sci., 2014, 5, 2091–2099
steady-state rate constants, which will be given in a later gure.
Without including tunneling, both reactions take a much
longer time to reach the rst order decay rate and have smaller
decay rates by about two orders of magnitude. We noticed that
the curves with tunneling are not as smooth as those without
tunneling and also noticed that decay curves with tunneling
have much smaller nonreactive probabilities. The scatter in the
decay curves with tunneling occurs in the region where the
number of remaining non-reactive trajectories is small leading
to inevitable numerical noise in the sampling if the simulation
is carried to long enough time. (The scatter on the curves with
tunneling does not result from the tunneling method but rather
from following the ensemble until there are few nonreactive
ensemble members remaining.)

For reaction (R3), we optimized the tunneling path by
adjusting the parameter l that appears in the denition of the
tunneling direction. Fig. 3 shows the natural logarithm of the
non-reactive probability, ln(1 � Pr), of reaction (R3) using
various l values. The simulation with l ¼ 1 gives the smallest
tunneling probabilities, as seen by the smaller rates of reaction
when the energy is lower than barrier. The reaction probabili-
ties of trajectories increase as l is decreased in Fig. 3, and the
reaction path with l¼ 0.7 is approximately optimized, at least in
a microcanonical ensemble sense.

Reaction rate constants k are plotted as functions of total
energy E in Fig. 4 and 5. Although some total energies are
greater than the barrier height, the reader should keep in mind
that most of the initial energy is not in the reaction coordinate
and is not available for surmounting the barrier due to
approximate vibrational adiabaticity in the threshold region of a
chemical reaction.31 Thus the reaction rate is dominated by
tunneling at these energies. When tunneling is included, the
rate constant k(E) decreases smoothly as the energy is lowered
until the classical rate is too slow to calculate. The rate
constants depend on the l values for reaction (R3), and the
optimum l value for the rate constants is approximately l ¼ 0.7,
which is consistent with Fig. 3. One expects that the tunneling
may be underestimated because the tunneling paths are not
fully optimized; full optimization is not practical in semi-
classical methods, but research into optimization is an inter-
esting subject of further research.

Note that internal coordinates are nonlinear functions of
atomic Cartesians, whereas conventional normal-mode coordi-
nates are rectilinear in Cartesians. A major advantage of
internal coordinates over rectilinear coordinates is that recti-
linear coordinates usually become unphysical for large devia-
tions from equilibrium structures. For example, HCOH has one
normal mode for torsional motion, but a large-amplitude
motion along this rectilinear normal-mode coordinate not only
changes the torsion angle but also changes C–H and O–H bond
lengths, which leads to nonphysical tunneling paths and
negligible tunneling probabilities. Our method overcomes this
problem by using internal coordinates, and we do obtain
appreciable tunneling probabilities.

For the HCOH isomerization (R1) when E ¼ 1.56 eV, 2.4% of
the trajectories react without tunneling; for the HN2 case when
E ¼ 0.74 eV, 24% of the trajectories react without tunneling.
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Natural logarithm of nonreactive probability ln(1 � Pr) vs. time at various total energies. The HCOH plots are for the cis-HCOH / trans-
HCOH reaction, and the HN2 plots are for the HN2 / H + N2 reaction.

Fig. 3 Natural logarithm of nonreactive probability ln(1 � Pr) vs. time for the trans-HCOH to H2CO reaction (R3) at total energy E ¼ 0.82 eV (a)
and E ¼ 1.22 eV (b), using various l values.
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Here, “react without tunneling” refers to the trajectories that
react before any tunneling branching criterion is satised; this
becomes more important as the energy is raised even in simu-
lations where tunneling is allowed. Note that although only 76%
of the reactive events occur by tunneling for the HN2 case with E
¼ 0.74 eV, the reaction rate with tunneling at this energy is
about two orders of magnitude larger than those calculated
without considering tunneling because the rate is determined
by the slope of the decay curves in Fig. 2, and the decay of the
reactant population is much faster when tunneling is allowed.
However, at the lowest energy for which each reaction was
studied, all reactions occur by tunneling; for these cases, the
This journal is © The Royal Society of Chemistry 2014
number of tunneling probabilities that falls into each range of
order of magnitude is illustrated in Fig. 6 and 7. For (R1) at 0.86
eV, we observed 10 682 tunneling events for 10 000 trajectories
(some systems tunnel but do not satisfy the criterion given
above for reaction, so we keep integrating, and then they tunnel
back); for the cases in Fig. 6(b) and 7, we observe 100 000
tunneling events for 100 000 trajectories in each case. Note that
these numbers of tunneling events are those followed according
to the army ants algorithm, which means (since h is close to
unity) that approximately the same number of potential
tunneling events are not followed in the trajectories. In Fig. 6(a),
most tunneling events have probabilities between 10�16 and
Chem. Sci., 2014, 5, 2091–2099 | 2095
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Fig. 4 Rate constants k(E) of reactions (R1) (a) and (R2) (b).

Fig. 5 Rate constants k(E) of the trans-HCOH to H2CO reaction (R3)
obtained with various l values.

Chemical Science Edge Article

Pu
bl

is
he

d 
on

 2
4 

Ja
nu

ar
y 

20
14

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
in

ne
so

ta
 -

 T
w

in
 C

iti
es

 o
n 

02
/0

4/
20

14
 2

3:
35

:5
7.

 
View Article Online
10�20, and tunneling events with probability 10�20 or less are
accepted 2313 times. In Fig. 6(b), most tunneling events have
probabilities between 10�5 and 10�13. However the trajectories
with very small tunneling probabilities have small weights, and
the rate constant for both (R1) and (R2) is dominated by
trajectories with tunneling probabilities greater than 10�7.

The tunneling probabilities are spread over a very large range
in (R3). Note that the trajectories with l ¼ 1.0 have larger
number of tunneling events in the peak range (probability from
10�14 to 10�22), but the rates are dominated by tunneling events
with larger probabilities. The numbers of tunneling events at
Fig. 6 Number of tunneling probabilities that fall into each range of orde
(b) 100 000 trajectories of (R2) with total energy 0.24 eV.

2096 | Chem. Sci., 2014, 5, 2091–2099
0.82 eV total energy with probabilities in the range of 10�8 to
10�12 are 3072, 3508, 3708, and 3636 for l equal to 1.0, 0.9, 0.8,
and 0.7, respectively.

Table 1 lists the computational cost for calculations with
tunneling and without tunneling at a given total energy above
threshold. Although calculating imaginary action integrals
along tunneling paths adds some cost, we see speedup by
factors of 3 to 60 due to the faster reaction rates. With the
anteater algorithm, most trajectories will not tunnel, so the
average time per trajectory will be similar to the runs without
tunneling. Since the dominant tunneling probabilities for
reactions (R1) and (R2) are about 10�4 to 10�5, army ants runs
will show a speedup as compared to anteater runs (over and
above the speedups in Table 1) of about 4 to 5 orders of
magnitude due to not having to run as large a number of
trajectories to get good statistics.

Fig. 8 shows that the induction time depends on the value of
h used in the tunneling branching, i.e., smaller h values give
longer induction times. One can imagine that the induction
time would be longer than the longest practical simulation time
if h were zero (equivalent to the anteater algorithm) because the
probability of following a tunneling path is very low for small h,
and it is hard to observe any tunneling events with a reasonable
number of trajectories. However, as shown in Fig. 8, aer the
induction period is over, one obtains similar slopes and hence
similar rate constants for the different values of h. Although
reaction rate constants converged with respect to the number of
trajectories would not depend on h, the reader should be aware
r of magnitude. (a) 10 000 trajectories of (R1) with total energy 0.86 eV

This journal is © The Royal Society of Chemistry 2014
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Fig. 7 Number of tunneling probabilities that fall into each range of
order of magnitude for the trans-HCOH to H2CO reaction (R3) at total
energy E ¼ 0.82 eV, obtained by various l values. The logarithms are
common logarithms in this figure.

Table 1 Computation timesa (in hours)

Reaction With tunneling Without tunneling

(R1)b 0.05 2.92
(R2)c 0.03 0.10

a Calculations were performed in parallel using 80 processors on an HP
Linux cluster, each with two quad-core 2.8 GHz Intel Xeon processors.
b Total energy is 1.36 eV and 10 000 trajectories are calculated for the
timing test. c Total energy is 0.64 eV and 100 000 trajectories are
calculated for the timing test.

Fig. 8 Natural logarithm of nonreactive probability ln(1 � Pr) vs. time
using various h values for HN2 dissociation.
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that MD simulations with a nite amount of sampling always
depend to some extent on the nature and extent of the sampling
leading to some statistical uncertainty,32–35 as shown by the
variation of about 15% in Fig. 8. The variation of the results with
h is smaller than the combined uncertainty due to nite
statistics, the initialization algorithm, and the induction time.

We have shown previously in the context of variational tran-
sition state theory in which all degrees of freedom can be
quantized36–43 that semiclassical tunneling methods can be
quantitatively accurate for small molecules and for enzyme
kinetics.13,44–49 Here we combined the same kind of semiclassical
tunneling methods with classical molecular dynamics in a
practical way; this involves additional approximations because
non-tunneling degrees of freedom are not quantized in classical
molecular dynamics simulations, an issue that is not solved here
This journal is © The Royal Society of Chemistry 2014
but that needs to be addressed in future work. Nevertheless the
method as presented eliminates the qualitative error of not
including tunneling, and it allows simulations to access product
regions that are inaccessible in the absence of tunneling.
Concluding remarks

In this article, we present the army ants tunneling method using
internal coordinates to dene tunneling paths for classical trajec-
tories, and we demonstrate the method by calculating classical
trajectories with tunneling in a single valence coordinate for two
example reactions and in a combination of two internal coordi-
nates for one atom-transfer reaction. One of the main goals of the
method is to allow one to explore regions of phase space reached
only by tunneling, because they may lead to different products or
different energy distributions than are populated by non-tunneling
processes. The army ants algorithm allows tunneling to be
included in classical trajectories very efficiently; the full calcula-
tions on an ensemble are less computationally expensive than
calculating the reaction rate without tunneling. The army ants
tunneling method is designed to be applicable to dynamical
processes in arbitrarily large systems, for example, catalysis by
enzymes or at heterogeneous interfaces, and it also can be extended
to electronically nonadiabatic dynamics. It is reasonably straight-
forward to add to any classicalmolecular dynamics program so that
one can explore regions of space reached only by tunneling.
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